Continuum Mechanics Through the Twentieth Century a Concise Historical Perspective Solid Mechanics and Its Applications

Total Page:16

File Type:pdf, Size:1020Kb

Continuum Mechanics Through the Twentieth Century a Concise Historical Perspective Solid Mechanics and Its Applications Solid Mechanics and Its Applications Series Editor: G.M.L. Gladwell Gérard A. Maugin Continuum Mechanics Through the Twentieth Century A Concise Historical Perspective Solid Mechanics and Its Applications Volume 196 Series Editor G. M. L. Gladwell Department of Civil Engineering University of Waterloo Waterloo, ON Canada For further volumes: http://www.springer.com/series/6557 Aims and Scope of the Series The fundamental questions arising in mechanics are: Why?, How?, and How much? The aim of this series is to provide lucid accounts written by authoritative researchers giving vision and insight in answering these questions on the subject of mechanics as it relates to solids. The scope of the series covers the entire spectrum of solid mechanics. Thus it includes the foundation of mechanics; variational formulations; computational mechanics; statics, kinematics and dynamics of rigid and elastic bodies: vibrations of solids and structures; dynamical systems and chaos; the theories of elasticity, plasticity and viscoelasticity; composite materials; rods, beams, shells and membranes; structural control and stability; soils, rocks and geomechanics; fracture; tribology; experimental mechanics; biomechanics and machine design. The median level of presentation is the first year graduate student. Some texts are monographs defining the current state of the field; others are accessible to final year undergraduates; but essentially the emphasis is on readability and clarity. Gérard A. Maugin Continuum Mechanics Through the Twentieth Century A Concise Historical Perspective 123 Gérard A. Maugin Institut Jean Le Rond d’Alembert Université Pierre et Marie Curie Paris Cedex 05 France ISSN 0925-0042 ISBN 978-94-007-6352-4 ISBN 978-94-007-6353-1 (eBook) DOI 10.1007/978-94-007-6353-1 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2013931199 Ó Springer Science+Business Media Dordrecht 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science?Business Media (www.springer.com) Preface What is This Book About? ‘‘You reasoned it out beautifully… It is so long a chain, and yet every link rings true’’ (Dr. Watson to Sherlock Holmes) The proposed conspectus of the development of continuum mechanics throughout the twentieth century seems to be unique in its scope and ambition. Although reminding the reader of the early developments of the discipline with the magisterial works of our elders (from Newton to the late nineteenth century or more precisely the advent of the First World War), the book concentrates on the twentieth century, and more particularly on its second half, as witnessed by the author who has lived directly through these developments, and has humbly tried to contribute to them. But the main reason for this delineation is that the post World- War Two period saw an incredible burgeoning and progress in the enlargement of the field, its mathematization and its rational organization, i.e., both in its objec- tives and methods, to the benefit of fruitful applications to the mechanics of large classes of materials and in reciprocal interaction with other fields. This has been a fruitful period that saw a consolidation of analytical works, and a development of new aspects, both in modeling and mathematical approach. This is placed in a context where the marked interest of the author for the history of Science, for Epistemology, and for People is obvious, having been much influenced by Pierre Duhem and Clifford Truesdell. Accordingly, this is also a study about individuals and scientific schools and institutions in an evolving social and historical context that experienced tragic events. We hope the book succeeds to present with objectivity a balanced appraisal of contributions from various parts of the world. The chosen approach emphasizes the importance of the role played by (i) organized professional groups, e.g., the A.S.M.E with its specific spirit in the v vi Preface USA, (ii) traditional strongholds such as the University of Cambridge in the UK or the Technical University of Hannover in Germany, (iii) remarkable individuals such as Clifford Truesdell in the USA, or Paul Germain in France, or still Leonid Sedov in the Soviet Union, and others in Poland, Germany, and Japan, and (iv) a well-structured network of teaching institutions and research units whether in countries that inherited from the Austro-Hungarian Empire, or in the original system of ‘‘grandes écoles’’ in France and their copies all over the world, or the Academies of Sciences in formerly communist-led countries such as the Soviet Union. That is, the development of modern continuum mechanics; in spite of its technical subtleties (effects of nonlinearity, thermodynamic irreversibility, microstructure, and singularities) that are carefully scrutinized, is shown to take place within a true human background with its grandeurs and pettiness, and not as a purely abstract teleological evolution. This permeates an exposition which is, therefore, vivid and bears witness of an epoch making process, to which the author contributes both his technical expertize and his international experience. In order to fulfil this ambitious project and to satisfy the various needs of potential readers, a three-way strategy has been implemented. After two pre- liminary chapters that take the reader to post World War I and underline the newly raised technical questions and the ongoing general reflections on the bases of continuum mechanics, three chapters are devoted to: (i) new progress in nonlinear aspects (in both elastic solids and the newly formulated rheology of non-Newto- nian fluids), (ii) a specific spirit distilled to continuum mechanics by the influential organized group represented by the American Society of Mechanical Engineers (in particular with works in plasticity but also in coupled fields), and (iii) the aerial view of continuum mechanics introduced by the Truesdell School with its efforts at a true rationalization and axiomatization, as well as its construct of an efficient thermomechanics, and its positioning in a real historical perspective. The second strategic line is implemented in the next six chapters where a more per-country or regional view has been chosen for reasons that should be clear enough. This is due to the existence—still true at the time of most of the second half of the twentieth century—of national styles, peculiar teaching and research institutions inherited from the past, and the role played by some remarkable individuals. This is the case in the UK, France, Poland, and Germany. The rest of western and southern European contributions are described in one lengthy chapter together with some indications on some Asian countries. It is to repair an unjust too frequent belittling of the role played by the Soviet Union and Russia that a long chapter is devoted to them. This allows for a more balanced view than usually given. The third line consists in the deeper and more technical examination of four special avenues of developments which the author estimates to be most emblematic-and original-of the last 50 years and to which he can devote a more thoughtful approach having been much involved in these. They are: (i) the interaction between continuum mechanics and electromagnetism, (ii) the mechanics of generalized continua, (iii) the so-called configurational mechanics of continua, and (iv) relativistic continuum mechanics. These four avenues bring us Preface vii closer to other fields of physics in conjunction with typical twentieth century developments (exploitation of coupled fields, physical acoustics, solid-state physics, the ‘‘mechanics of materials’’, and relativistic physics). An epilogue providing a general summary and pointing to recent and future developments (going to smaller scales, influence of powerful computational means, and
Recommended publications
  • Identification of Potentially Tsunami Hazard Coastal Regions in China
    Report of the Chair www.asme.org/divisions/amd SUMMER NEWS 2007 KENNETH M. LIECHTI, EDITOR Report of the Chair Timoshenko Medalist Awards & Medals Journal of Applied Mechanics News from the Technical Committees In Memoriam Tom Farris Tradition dictates that the outgoing Chair of the Division provide a report in the Newsletter. My five-year term on the committee ended June 30, 2007. I was humbled when Dusan Krajcinovic approached me about serving on the Executive Committee. The Applied Mechanics Division has a long history of being one of the strongest and most respected ASME divisions and taking a leadership role within AMD is a great honor that carries tremendous responsibility. It was a great pleasure to share this responsibility with Stelios Kyriakides, Pol Spanos, Mary Boyce, Wing Kam Liu, K Ravi-Chandar, Dan Inman, Zhigang Suo and Tayfun Tezduyar. I assure you that they all work tirelessly on behalf of AMD. I am pleased that Ares Rosakis of the California Institute of Technology agreed to serve on the Executive Committee beginning his term July 1, 2007. These outstanding individuals will continue distinguished, thorough and vibrant leadership of AMD. AMD continues to be one of the largest contributors to IMECE with 58 sessions in Chicago in 2006. One of the challenges for AMD is the annual request of more sessions at IMECE than are eventually allotted. This issue was particularly acute in Chicago. Thanks to all of the AMD Technical Committee Chairs who worked patiently with Dan Inman, 2006 Program Chair, to get as many sessions as possible by collaborating with other Divisions.
    [Show full text]
  • JHU/APL Colloquia
    JHU Applied Physics Laboratory Colloquia November 15, 2019 www.jhuapl.edu/colloquium/archive [email protected] 2019 – 2020 Stephen Moore (Author and Journalist) UNCOMMON VALOR: Recon Company Medal of Honor Heroes of FOB-2. November 8, 2019. Lawrence Goldstone (Author) Going Deep: John Philip Holland and the Invention of the Attack Submarine. November 1, 2019. David Blodgett (JHU/APL) Optical Imaging of the Brain: Is There Really Anything to See? October 25, 2019. Larrie D. Ferreiro (George Mason Univ.) Brothers at Arms: American Independence and the Men of France and Spain Who Saved It. October 18, 2019. Dr. Etta Pisano, M.D., FACR (Beth Israel Deaconess Medical Center) The Tomosynthesis Mammographic Imaging Screening Trial (TMIST) – A Bridge to Personalized Breast Cancer Screening. October 16, 2019. Héctor L. Díaz (Hispanics In History Cultural Organization) The Hispanic Assistance to the American Revolution. October 11, 2019. Andrés Muñoz-Jaramillo (Southwest Research Institute) How the Hemispheric Polar Field Reversal Sets the Timing and Shape of the Solar Cycle. October 9, 2019. Dave "Bio" Baranek (Author, "TOPGUN Days") Topgun and Tomcats: High Explosives, Type-A Personalities, and Prandtl–Meyer Expansion Fans. October 4, 2019. 2018 – 2019 Mojie Crigler (END Fund) Under the Big Tree: Extraordinary Stories From the Movement to End Neglected Tropical Diseases. September 27, 2019. CAPT Mercedes Benitez-McCrary, Dr.HSc, MA CCC-SLP (Chief Professional Officer - Chief Therapist Officer, United States Public Health Service) “Puentes Y Verjas” – Hispanic Health. September 20, 2019. Eric Haseltine (Analyst and Consultant) The Spy in Moscow Station: A Counterspy's Hunt for a Deadly Cold War Threat.
    [Show full text]
  • Queens' College Record 2009
    QUEENS’ COLLEGE RECORD • 2009 Queens’ College Record 2009 The Queens’ College Record 2009 Table of Contents 2 The Fellowship (March 2009) The Sporting Record 38 Captains of the Clubs 4 From the President 38 Reports from the Sports Clubs The Society The Student Record 5 The Fellows in 2008 44 The Students 2008 9 Retirement of Professor John Tiley 44 Admissions 9 Book Review 45 Director of Music 10 Thomae Smithi Academia 45 Dancer in Residence 10 Douglas Parmée, Fellow 1947–2008 46 Around the World and Back: A Hawk-Eye View 11 The Very Revd Professor Henry Chadwick 47 On the Hunt for the Cave of Euripides Fellow 1946–59, Honorary Fellow 1959–2008 48 Five Weeks in Japan 13 Richard Hickox, Honorary Fellow 1996–2008 49 Does Anyone Know the Way to Mongolia? 50 South Korea – As Diverse as its Kimchi 14 The Staff 51 Losing the Granola 52 Streetbite 2008 The Buildings 52 Distinctions and Awards 15 The Fabric 2008 54 Reports from the Clubs and Societies 16 The Chapel The Academic Record 62 Learning to Find Our Way Through Economic Turmoil 18 The Libraries 64 War in Academia 19 Newly-Identified Miniatures from the Old Library The Development Record 23 The Gardens 66 Donors to Queens’ 2008 The Historical Record The Alumni Record 24 1209 And All That 69 Alumni Association AGM 26 A Bohemian Mystery 69 News of Members 29 Robert Plumptre – 18th-Century President of Queens’ 80 The 2002 Matriculation Year and Servant of the House of Yorke 81 Deaths 33 Abraham v Abraham 82 Obituaries 37 Head of the River 1968 88 Forthcoming Alumni Events The front cover photograph shows the Martyrdom of St Lucy from a miniature attributed to Pacino di Bonaguida, from the Old Library.
    [Show full text]
  • Cracking the Einstein Code: Relativity and the Birth of Black Hole Physics, with an Afterword by Roy Kerr / Fulvio Melia
    CRA C K I N G T H E E INSTEIN CODE @SZObWdWbgO\RbVS0W`bV]T0ZOQY6]ZS>VgaWQa eWbVO\/TbS`e]`RPg@]gS`` fulvio melia The University of Chicago Press chicago and london fulvio melia is a professor in the departments of physics and astronomy at the University of Arizona. He is the author of The Galactic Supermassive Black Hole; The Black Hole at the Center of Our Galaxy; The Edge of Infinity; and Electrodynamics, and he is series editor of the book series Theoretical Astrophysics published by the University of Chicago Press. The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London © 2009 by The University of Chicago All rights reserved. Published 2009 Printed in the United States of America 18 17 16 15 14 13 12 11 10 09 1 2 3 4 5 isbn-13: 978-0-226-51951-7 (cloth) isbn-10: 0-226-51951-1 (cloth) Library of Congress Cataloging-in-Publication Data Melia, Fulvio. Cracking the Einstein code: relativity and the birth of black hole physics, with an afterword by Roy Kerr / Fulvio Melia. p. cm. Includes bibliographical references and index. isbn-13: 978-0-226-51951-7 (cloth: alk. paper) isbn-10: 0-226-51951-1 (cloth: alk. paper) 1. Einstein field equations. 2. Kerr, R. P. (Roy P.). 3. Kerr black holes—Mathematical models. 4. Black holes (Astronomy)—Mathematical models. I. Title. qc173.6.m434 2009 530.11—dc22 2008044006 To natalina panaia and cesare melia, in loving memory CONTENTS preface ix 1 Einstein’s Code 1 2 Space and Time 5 3 Gravity 15 4 Four Pillars and a Prayer 24 5 An Unbreakable Code 39 6 Roy Kerr 54 7 The Kerr Solution 69 8 Black Hole 82 9 The Tower 100 10 New Zealand 105 11 Kerr in the Cosmos 111 12 Future Breakthrough 121 afterword 125 references 129 index 133 PREFACE Something quite remarkable arrived in my mail during the summer of 2004.
    [Show full text]
  • Signorini Conditions for Inviscid Fluids
    Signorini conditions for inviscid fluids by Yu Gu A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Science in Computer Science Waterloo, Ontario, Canada, 2021 c Yu Gu 2021 Author's Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract In this thesis, we present a new type of boundary condition for the simulation of invis- cid fluids { the Signorini boundary condition. The new condition models the non-sticky contact of a fluid with other fluids or solids. Euler equations with Signorini boundary conditions are analyzed using variational inequalities. We derived the weak form of the PDEs, as well as an equivalent optimization based formulation. We proposed a finite el- ement method to numerically solve the Signorini problems. Our method is based on a staggered grid and a level set representation of the fluid surfaces, which may be plugged into an existing fluid solver. We implemented our algorithm and tested it with some 2D fluid simulations. Our results show that the Signorini boundary condition successfully models some interesting contact behavior of fluids, such as the hydrophobic contact and the non-coalescence phenomenon. iii Acknowledgements I would like to thank my supervisor professor Christopher Batty. During my study at University of Waterloo, I was able to freely explore any idea that interests me and always get his support and helpful guidance.
    [Show full text]
  • (Ott. 1998) 479-500. Imbedding Theorems of Sobolev
    Bollettino UMI s. VIII, v. 1-B, n.3 (ott. 1998) 479-500. Imbedding theorems of Sobolev spaces into Lorentz spaces Luc TARTAR CARNEGIE-MELLON University, Pittsburgh 15213, U.S.A. Dedicated to Jacques-Louis LIONS When I was a student at Ecole Polytechnique, which was still in Paris on the “Montagne Sainte Genevi`eve” at the time (1965 to 1967), I had the chance of having two great teachers in Mathematics, Laurent SCHWARTZ and Jacques-Louis LIONS. Apart from a lecture on Calculus of Variations that he taught in place of Laurent SCHWARTZ, Jacques-Louis LIONS taught the Numerical Analysis course, which then meant mostly classical algorithms; partial differential equations only occured in one dimension, and were treated by finite difference schemes, and it was only in a seminar for interested students that I first heard about Sobolev spaces. Later, I heard Jacques-Louis LIONS teach about various technical properties of Sobolev spaces, but although he often used Sobolev imbedding theorem, I do not remember hearing him give a proof. I had read the original proof of SOBOLEV [So], which I had first seen mentioned in Laurent SCHWARTZ’s book on distributions [Sc], and the proof that Jacques-Louis LIONS had taught in Montr´eal[Li], based on the ideas of Emilio GAGLIARDO [Ga]. While I was working for my thesis under the guidance of Jacques-Louis LIONS, I had the pleasure of being invited a few times in a restaurant near the “Halles aux Vins” (the term “Jussieu” was not yet in use). These dinners usually followed talks by famous mathematicians at the seminar which Jacques-Louis LIONS and Laurent SCHWARTZ were organizing every Friday at the Institut Henri POINCARE´ (abbreviated as IHP).
    [Show full text]
  • 1 Santo Spirito in Florence: Brunelleschi, the Opera, the Quartiere and the Cantiere Submitted by Rocky Ruggiero to the Universi
    Santo Spirito in Florence: Brunelleschi, the Opera, the Quartiere and the Cantiere Submitted by Rocky Ruggiero to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Art History and Visual Culture In March 2017. This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature)…………………………………………………………………………….. 1 Abstract The church of Santo Spirito in Florence is universally accepted as one of the architectural works of Filippo Brunelleschi (1377-1446). It is nevertheless surprising that contrary to such buildings as San Lorenzo or the Old Sacristy, the church has received relatively little scholarly attention. Most scholarship continues to rely upon the testimony of Brunelleschi’s earliest biographer, Antonio di Tuccio Manetti, to establish an administrative and artistic initiation date for the project in the middle of Brunelleschi’s career, around 1428. Through an exhaustive analysis of the biographer’s account, and subsequent comparison to the extant documentary evidence from the period, I have been able to establish that construction actually began at a considerably later date, around 1440. It is specifically during the two and half decades after Brunelleschi’s death in 1446 that very little is known about the proceedings of the project. A largely unpublished archival source which records the machinations of the Opera (works committee) of Santo Spirito from 1446-1461, sheds considerable light on the progress of construction during this period, as well as on the role of the Opera in the realization of the church.
    [Show full text]
  • The Scientific Life and Influence of Clifford Ambrose Truesdell
    Arch. Rational Mech. Anal. 161 (2002) 1–26 Digital Object Identifier (DOI) 10.1007/s002050100178 The Scientific Life and Influence of Clifford Ambrose Truesdell III J. M. Ball & R. D. James Editors 1. Introduction Clifford Truesdell was an extraordinary figure of 20th century science. Through his own contributions and an unparalleled ability to absorb and organize the work of previous generations, he became pre-eminent in the development of continuum mechanics in the decades following the Second World War. A prolific and scholarly writer, whose lucid and pungent style attracted many talented young people to the field, he forcefully articulated a view of the importance and philosophy of ‘rational mechanics’ that became identified with his name. He was born on 18 February 1919 in Los Angeles, graduating from Polytechnic High School in 1936. Before going to university he spent two years at Oxford and traveling elsewhere in Europe. There he improved his knowledge of Latin and Ancient Greek and became proficient in German, French and Italian.These language skills would later prove valuable in his mathematical and historical research. Truesdell was an undergraduate at the California Institute of Technology, where he obtained B.S. degrees in Physics and Mathematics in 1941 and an M.S. in Math- ematics in 1942. He obtained a Certificate in Mechanics from Brown University in 1942, and a Ph.D. in Mathematics from Princeton in 1943. From 1944–1946 he was a Staff Member of the Radiation Laboratory at MIT, moving to become Chief of the Theoretical Mechanics Subdivision of the U.S. Naval Ordnance Labo- ratory in White Oak, Maryland, from 1946–1948, and then Head of the Theoretical Mechanics Section of the U.S.
    [Show full text]
  • A Life in Statistical Mechanics Part 1: from Chedar in Taceva to Yeshiva University in New York
    Eur. Phys. J. H 42, 1–21 (2017) DOI: 10.1140/epjh/e2017-80006-9 THE EUROPEAN PHYSICAL JOURNAL H Oral history interview A life in statistical mechanics Part 1: From Chedar in Taceva to Yeshiva University in New York Joel L. Lebowitz1,a and Luisa Bonolis2,b 1 Departments of Mathematics and Physics, Rutgers, The State University, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA 2 Max Planck Institute for the History of Science, Boltzmannstrasse 22, 14195 Berlin, Germany Received 10 February 2017 / Accepted 10 February 2017 Published online 4 April 2017 c The Author(s) 2017. This article is published with open access at Springerlink.com Abstract. This is the first part of an oral history interview on the life- long involvement of Joel Lebowitz in the development of statistical mechanics. Here the covered topics include the formative years, which overlapped the tragic period of Nazi power and World War II in Eu- rope, the emigration to the United States in 1946 and the schooling there. It also includes the beginnings and early scientific works with Peter Bergmann, Oliver Penrose and many others. The second part will appear in a forthcoming issue of Eur. Phys. J. H. 1 From war ravaged Europe to New York L. B. Let’s start from the very beginning. Where were you born? J. L. I was born in Taceva, a small town in the Carpathian mountains, in an area which was at that time part of Czechoslovakia, on the border of Romania and about a hundred kilometers from Poland. That was in 1930, and the town then had a population of about ten thousand people, a small town, but fairly advanced.
    [Show full text]
  • Harry Bateman Papers
    http://oac.cdlib.org/findaid/ark:/13030/kt4f59q9jr No online items Finding Aid for the Harry Bateman Papers 1906-1947 Processed by Carolyn K. Harding. Caltech Archives Archives California Institute of Technology 1200 East California Blvd. Mail Code 015A-74 Pasadena, CA 91125 Phone: (626) 395-2704 Fax: (626) 793-8756 Email: [email protected] URL: http://archives.caltech.edu/ ©2006 California Institute of Technology. All rights reserved. Finding Aid for the Harry 10018-MS 1 Bateman Papers 1906-1947 Descriptive Summary Title: Harry Bateman Papers, Date (inclusive): 1906-1947 Collection number: 10018-MS Creator: Bateman, Harry 1882-1946 Extent: 3.5 linear feet Repository: California Institute of Technology, Caltech Archives Pasadena, California 91125 Abstract: Harry Bateman was a mathematical physicist and professor of physics, mathematics and aeronautics at the California Institute of Technology (Caltech, originally Throop College), 1917-1946. The collection includes his manuscripts on binomial coefficients, notes on integrals and related material (much of which was later published by Arthur Erdélyi); and a small amount of personal correspondence. Also included are teaching materials and reprints. Physical location: Archives, California Institute of Technology. Language of Material: Languages represented in the collection: EnglishFrenchGerman Access The collection is open for research. Researchers must apply in writing for access. Publication Rights Copyright may not have been assigned to the California Institute of Technology Archives. All requests for permission to publish or quote from manuscripts must be submitted in writing to the Caltech Archivist. Permission for publication is given on behalf of the California Institute of Technology Archives as the owner of the physical items and, unless explicitly stated otherwise, is not intended to include or imply permission of the copyright holder, which must also be obtained by the reader.
    [Show full text]
  • Levi-Civita,Tullio Francesco Dell’Isola, Emilio Barchiesi, Luca Placidi
    Levi-Civita,Tullio Francesco Dell’Isola, Emilio Barchiesi, Luca Placidi To cite this version: Francesco Dell’Isola, Emilio Barchiesi, Luca Placidi. Levi-Civita,Tullio. Encyclopedia of Continuum Mechanics, 2019, 11 p. hal-02099661 HAL Id: hal-02099661 https://hal.archives-ouvertes.fr/hal-02099661 Submitted on 15 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2 Levi-Civita, Tullio dating back to the fourteenth century. Giacomo the publication of one of his best known results Levi-Civita had also been a counselor of the in the field of analytical mechanics. We refer to municipality of Padua from 1877, the mayor of the Memoir “On the transformations of dynamic Padua between 1904 and 1910, and a senator equations” which, due to the importance of the of the Kingdom of Italy since 1908. A bust of results and the originality of the proceedings, as him by the Paduan sculptor Augusto Sanavio well as to its possible further developments, has has been placed in the council chamber of the remained a classical paper. In 1897, being only municipality of Padua after his death. According 24, Levi-Civita became in Padua full professor to Ugo Amaldi, Tullio Levi-Civita drew from in rational mechanics, a discipline to which he his father firmness of character, tenacity, and his made important scientific original contributions.
    [Show full text]
  • A Contextual Analysis of the Early Work of Andrzej Trautman and Ivor
    A contextual analysis of the early work of Andrzej Trautman and Ivor Robinson on equations of motion and gravitational radiation Donald Salisbury1,2 1Austin College, 900 North Grand Ave, Sherman, Texas 75090, USA 2Max Planck Institute for the History of Science, Boltzmannstrasse 22, 14195 Berlin, Germany October 10, 2019 Abstract In a series of papers published in the course of his dissertation work in the mid 1950’s, Andrzej Trautman drew upon the slow motion approximation developed by his advisor Infeld, the general covariance based strong conservation laws enunciated by Bergmann and Goldberg, the Riemann tensor attributes explored by Goldberg and related geodesic deviation exploited by Pirani, the permissible metric discontinuities identified by Lich- nerowicz, O’Brien and Synge, and finally Petrov’s classification of vacuum spacetimes. With several significant additions he produced a comprehensive overview of the state of research in equations of motion and gravitational waves that was presented in a widely cited series of lectures at King’s College, London, in 1958. Fundamental new contribu- tions were the formulation of boundary conditions representing outgoing gravitational radiation the deduction of its Petrov type, a covariant expression for null wave fronts, and a derivation of the correct mass loss formula due to radiation emission. Ivor Robin- son had already in 1956 developed a bi-vector based technique that had resulted in his rediscovery of exact plane gravitational wave solutions of Einstein’s equations. He was the first to characterize shear-free null geodesic congruences. He and Trautman met in London in 1958, and there resulted a long-term collaboration whose initial fruits were the Robinson-Trautman metric, examples of which were exact spherical gravitational waves.
    [Show full text]