A Survey of Karin Cluster Asteroids with the Spitzer Space Telescope Alan W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Detection of the Yarkovsky Effect for Main-Belt Asteroids
Icarus 170 (2004) 324–342 www.elsevier.com/locate/icarus Detection of the Yarkovsky effect for main-belt asteroids David Nesvorný ∗, William F. Bottke Department of Space Studies, Southwest Research Institute, 1050 Walnut St., Suite 400, Boulder, CO 80302, USA Received 19 February 2004; revised 1 April 2004 Available online 9 June 2004 Abstract The Yarkovsky effect, a non-gravitational acceleration produced by the anisotropic emission of thermal energy (Öpik, 1951, Proc. Roy. Irish Acad. 54, 165–199), plays an important role in the dynamical evolution of asteroids. Current theoretical models of the Yarkovsky effect, however, rely on a number of poorly known parameters that can only approximate how real asteroids respond to solar heating. To improve this situation, we investigated whether the orbital distribution of the Karin cluster, a 5.8 ± 0.2 Myr old S-type asteroid family (Nesvorný et al., 2002a, Nature 417, 720–722), could be used to determine the rate at which multikilometer main-belt asteroids spread in semimajor axis due to the Yarkovsky effect. Our results indicate that the orbital histories of individual Karin cluster members bear clear signatures of having drifted in semimajor axis drift since their formation. Using numerical methods, we determined the drift speed of ≈ 70 Karin cluster members (asteroids 1–6 km in diameter). This is the first time the speed that main-belt asteroids evolve in the semimajor axis due to the non-gravitational effects have been measured. The magnitude of measured speeds is similar to those predicted by theoretical models of the Yarkovsky force. Taken together, our results represent the first direct detection of the Yarkovsky effect for main-belt asteroids, and they validate in significant ways the asteroid thermal models described in the recent literature (e.g., Vokrouhlický, 1999, Astron. -
Initial Velocity V-Shapes of Young Asteroid Families
MNRAS 473, 3949–3968 (2018) doi:10.1093/mnras/stx2546 Advance Access publication 2017 September 28 Initial velocity V-shapes of young asteroid families Bryce T. Bolin,1,2‹ Kevin J. Walsh,3 Alessandro Morbidelli1 and Marco Delbo´1 1Laboratoire Lagrange, UniversiteC´ oteˆ d’Azur, Observatoire de la Coteˆ d’Azur, CNRS, Blvd. de l’Observatoire, CS 34229, F-06304 Nice cedex 4, France 2B612 Asteroid Institute, 20 Sunnyside Ave, Suite 427, Mill Valley, CA, 94941, USA 3Southwest Research Institute, 1050 Walnut St. Suite 300, Boulder, CO 80302, USA Accepted 2017 September 26. Received 2017 September 25; in original form 2017 August 11 ABSTRACT Ejection velocity fields of asteroid families are largely unconstrained due to the fact that mem- bers disperse relatively quickly on Myr time-scales by secular resonances and the Yarkovsky effect. The spreading of fragments in a by the Yarkovsky effect is indistinguishable from the spreading caused by the initial ejection of fragments. By examining families <20 Myr old, we can use the V-shape identification technique to separate family shapes that are due to the initial ejection velocity field and those that are due to the Yarkovsky effect. Asteroid families that are <20 Myr old provide an opportunity to study the velocity field of family fragments before they become too dispersed. Only the Karin family’s initial velocity field has been determined and scales inversely with diameter, D−1. We have applied the V-shape identification technique to constrain young families’ initial ejection velocity fields by measuring the curvature of their fragments’ V-shape correlation in semimajor axis, a, versus D−1 space. -
Simultaneous Spectroscopic and Photometric Observations of Binary Asteroids
Simultaneous spectroscopic and photometric observations of binary asteroids Item Type Article; text Authors Polishook, D.; Brosch, N.; Prialnik, D.; Kaspi, S. Citation Polishook, D., Brosch, N., Prialnik, D., & Kaspi, S. (2009). Simultaneous spectroscopic and photometric observations of binary asteroids. Meteoritics & Planetary Science, 44(12), 1955-1966. DOI 10.1111/j.1945-5100.2009.tb02005.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 02/10/2021 17:33:49 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656659 Meteoritics & Planetary Science 44, Nr 12, 1955–1966 (2009) Abstract available online at http://meteoritics.org Simultaneous spectroscopic and photometric observations of binary asteroids D. POLISHOOK1, 2*, N. BROSCH2, D. PRIALNIK1, and S. KASPI2 1Department of Geophysics and Planetary Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel 2The Wise Observatory and the Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel *Corresponding author. E-mail: [email protected] (Received 27 November 2008; revision accepted 30 August 2009) Abstract–We present results of visible wavelengths spectroscopic measurements (0.45 to 0.72 microns) of two binary asteroids, obtained with the 1-m telescope at the Wise Observatory on January 2008. The asteroids 90 Antiope and 1509 Esclangona were observed to search for spectroscopic variations correlated with their rotation while presenting different regions of their surface to the viewer. Simultaneous photometric observations were performed with the Wise Observatory’s 0.46 m telescope, to investigate the rotational phase behavior and possible eclipse events. -