Intestinal Trematodes Infecting Humans in Korea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Synopsis of the Parasites of Medaka (Oryzias Latipes) of Japan (1929-2017)
生物圏科学 Biosphere Sci. 56:71-85 (2017) A synopsis of the parasites of medaka (Oryzias latipes) of Japan (1929-2017) Kazuya NAGASAWA Graduate School of Biosphere Science, Hiroshima University 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan Published by The Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528, Japan November 2017 生物圏科学 Biosphere Sci. 56:71-85 (2017) REVIEW A synopsis of the parasites of medaka (Oryzias latipes) of Japan (1929-2017) Kazuya NAGASAWA* Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan Abstract Information on the protistan and metazoan parasites of medaka, Oryzias latipes (Temminck and Schlegel, 1846), from Japan is summarized based on the literature published for 89 years between 1929 and 2017. This is a revised and updated checklist of the parasites of medaka published in Japanese in 2012. The parasites, including 27 nominal species and those not identified to species level, are listed by higher taxa as follows: Ciliophora (no. of nominal species: 6), Cestoda (1), Monogenea (1), Trematoda (9), Nematoda (3), Bivalvia (5), Acari (0), Copepoda (1), and Branchiura (1). For each parasite species listed, the following information is given: its currently recognized scientific name, any original combination, synonym(s), or other previous identification used for the parasite from medaka; site(s) of infection within or on the host; known geographical distribution in Japanese waters; and the published source of each record. A skin monogenean, Gyrodatylus sp., has been encountered in research facilities and can be regarded as one of the most important parasites of laboratory-reared medaka in Japan. -
Hung:Makieta 1.Qxd
DOI: 10.2478/s11686-013-0155-5 © W. Stefan´ski Institute of Parasitology, PAS Acta Parasitologica, 2013, 58(3), 231–258; ISSN 1230-2821 INVITED REVIEW Global status of fish-borne zoonotic trematodiasis in humans Nguyen Manh Hung1, Henry Madsen2* and Bernard Fried3 1Department of Parasitology, Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam; 2Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871 Frederiksberg C, Denmark; 3Department of Biology, Lafayette College, Easton, PA 18042, United States Abstract Fishborne zoonotic trematodes (FZT), infecting humans and mammals worldwide, are reviewed and options for control dis- cussed. Fifty nine species belonging to 4 families, i.e. Opisthorchiidae (12 species), Echinostomatidae (10 species), Hetero- phyidae (36 species) and Nanophyetidae (1 species) are listed. Some trematodes, which are highly pathogenic for humans such as Clonorchis sinensis, Opisthorchis viverrini, O. felineus are discussed in detail, i.e. infection status in humans in endemic areas, clinical aspects, symptoms and pathology of disease caused by these flukes. Other liver fluke species of the Opisthorchiidae are briefly mentioned with information about their infection rate and geographical distribution. Intestinal flukes are reviewed at the family level. We also present information on the first and second intermediate hosts as well as on reservoir hosts and on habits of human eating raw or undercooked fish. Keywords Clonorchis, Opisthorchis, intestinal trematodes, liver trematodes, risk factors Fish-borne zoonotic trematodes with feces of their host and the eggs may reach water sources such as ponds, lakes, streams or rivers. -
Molecular Detection of Human Parasitic Pathogens
MOLECULAR DETECTION OF HUMAN PARASITIC PATHOGENS MOLECULAR DETECTION OF HUMAN PARASITIC PATHOGENS EDITED BY DONGYOU LIU Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20120608 International Standard Book Number-13: 978-1-4398-1243-3 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. -
The Trematode Parasites of Marine Mammals
THE TREMATODE PARASITES OF MARINE MAMMALS By Emmett W. Pkice Parasitologist, Zoological Division, Bureau of Animal Industry United States Department of Agriculture The internal parasites of marine mammals have not been exten- sively studied, although a fairly large number of species have been described. In attempting to identify the trematodes from mammals of the orders Cetacea, Pinnipedia, and Sirenia, as represented by specimens in the United States National Museum helminthological collection, it was necessary to review the greater part of the litera- ture dealing with this group of parasitic worms. In view of the fact that there is not in existence a single comprehensive paper on the trematodes of these mammals, and that many of the descrip- tions of species have appeared in publications having more or less limited circulation, the writer has undertaken to assemble descriptions of all trematodes reported from these hosts, with the hope that such a paper may serve a useful purpose in aiding other workers in de- termining specimens at their disposal. In addition to compiling the descriptions of species not available to the writer, two new species, one of which represents a new genus, have been described. Specimens representing 10 of the previously described species have been studied and emendations or additions have been made to the existing descriptions; in a few instances the species have been completely reclescribed. Three species, Distoinwni pallassil Poirier, D. vaUdwim von Lin- stow, and D. am/pidlacewni Buttel-Reepen, have been omitted from this paper despite the fact that they have been reported from ceta- ceans. These species belong in the family Hemiuridae, and since all species of this family are parasites of fishes, the writer feels that their reported occurrence in mammals may be regarded as either errors of some sort or cases of accidental parasitism in which fishes have been eaten by mammals and the fish parasites found in the mammal post-mortem. -
The Complete Mitochondrial Genome of Echinostoma Miyagawai
Infection, Genetics and Evolution 75 (2019) 103961 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Research paper The complete mitochondrial genome of Echinostoma miyagawai: Comparisons with closely related species and phylogenetic implications T Ye Lia, Yang-Yuan Qiua, Min-Hao Zenga, Pei-Wen Diaoa, Qiao-Cheng Changa, Yuan Gaoa, ⁎ Yan Zhanga, Chun-Ren Wanga,b, a College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China b College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China ARTICLE INFO ABSTRACT Keywords: Echinostoma miyagawai (Trematoda: Echinostomatidae) is a common parasite of poultry that also infects humans. Echinostoma miyagawai Es. miyagawai belongs to the “37 collar-spined” or “revolutum” group, which is very difficult to identify and Echinostomatidae classify based only on morphological characters. Molecular techniques can resolve this problem. The present Mitochondrial genome study, for the first time, determined, and presented the complete Es. miyagawai mitochondrial genome. A Comparative analysis comparative analysis of closely related species, and a reconstruction of Echinostomatidae phylogeny among the Phylogenetic analysis trematodes, is also presented. The Es. miyagawai mitochondrial genome is 14,416 bp in size, and contains 12 protein-coding genes (cox1–3, nad1–6, nad4L, cytb, and atp6), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and one non-coding region (NCR). All Es. miyagawai genes are transcribed in the same direction, and gene arrangement in Es. miyagawai is identical to six other Echinostomatidae and Echinochasmidae species. The complete Es. miyagawai mitochondrial genome A + T content is 65.3%, and full- length, pair-wise nucleotide sequence identity between the six species within the two families range from 64.2–84.6%. -
Updated Molecular Phylogenetic Data for Opisthorchis Spp
Dao et al. Parasites & Vectors (2017) 10:575 DOI 10.1186/s13071-017-2514-9 RESEARCH Open Access Updated molecular phylogenetic data for Opisthorchis spp. (Trematoda: Opisthorchioidea) from ducks in Vietnam Thanh Thi Ha Dao1,2,3, Thanh Thi Giang Nguyen1,2, Sarah Gabriël4, Khanh Linh Bui5, Pierre Dorny2,3* and Thanh Hoa Le6 Abstract Background: An opisthorchiid liver fluke was recently reported from ducks (Anas platyrhynchos) in Binh Dinh Province of Central Vietnam, and referred to as “Opisthorchis viverrini-like”. This species uses common cyprinoid fishes as second intermediate hosts as does Opisthorchis viverrini, with which it is sympatric in this province. In this study, we refer to the liver fluke from ducks as “Opisthorchis sp. BD2013”, and provide new sequence data from the mitochondrial (mt) genome and the nuclear ribosomal transcription unit. A phylogenetic analysis was conducted to clarify the basal taxonomic position of this species from ducks within the genus Opisthorchis (Digenea: Opisthorchiidae). Methods: Adults and eggs of liver flukes were collected from ducks, metacercariae from fishes (Puntius brevis, Rasbora aurotaenia, Esomus metallicus) and cercariae from snails (Bithynia funiculata) in different localities in Binh Dinh Province. From four developmental life stage samples (adults, eggs, metacercariae and cercariae), the complete cytochrome b (cob), nicotinamide dehydrogenase subunit 1 (nad1) and cytochrome c oxidase subunit 1 (cox1) genes, and near-complete 18S and partial 28S ribosomal DNA (rDNA) sequences were obtained by PCR-coupled sequencing. The alignments of nucleotide sequences of concatenated cob + nad1+cox1, and of concatenated 18S + 28S were separately subjected to phylogenetic analyses. Homologous sequences from other trematode species were included in each alignment. -
Diplomarbeit
DIPLOMARBEIT Titel der Diplomarbeit „Microscopic and molecular analyses on digenean trematodes in red deer (Cervus elaphus)“ Verfasserin Kerstin Liesinger angestrebter akademischer Grad Magistra der Naturwissenschaften (Mag.rer.nat.) Wien, 2011 Studienkennzahl lt. Studienblatt: A 442 Studienrichtung lt. Studienblatt: Diplomstudium Anthropologie Betreuerin / Betreuer: Univ.-Doz. Mag. Dr. Julia Walochnik Contents 1 ABBREVIATIONS ......................................................................................................................... 7 2 INTRODUCTION ........................................................................................................................... 9 2.1 History ..................................................................................................................................... 9 2.1.1 History of helminths ........................................................................................................ 9 2.1.2 History of trematodes .................................................................................................... 11 2.1.2.1 Fasciolidae ................................................................................................................. 12 2.1.2.2 Paramphistomidae ..................................................................................................... 13 2.1.2.3 Dicrocoeliidae ........................................................................................................... 14 2.1.3 Nomenclature ............................................................................................................... -
Complete Mitochondrial Genome of Haplorchis Taichui and Comparative Analysis with Other Trematodes
ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 51, No. 6: 719-726, December 2013 ▣ ORIGINAL ARTICLE http://dx.doi.org/10.3347/kjp.2013.51.6.719 Complete Mitochondrial Genome of Haplorchis taichui and Comparative Analysis with Other Trematodes Dongmin Lee1, Seongjun Choe1, Hansol Park1, Hyeong-Kyu Jeon1, Jong-Yil Chai2, Woon-Mok Sohn3, 4 5 6 1, Tai-Soon Yong , Duk-Young Min , Han-Jong Rim and Keeseon S. Eom * 1Department of Parasitology, Medical Research Institute and Parasite Resource Bank, Chungbuk National University School of Medicine, Cheongju 361-763, Korea; 2Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea; 3Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-70-51, Korea; 4Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 120-752, Korea; 5Department of Immunology and Microbiology, Eulji University School of Medicine, Daejeon 301-746, Korea; 6Department of Parasitology, Korea University College of Medicine, Seoul 136-705, Korea Abstract: Mitochondrial genomes have been extensively studied for phylogenetic purposes and to investigate intra- and interspecific genetic variations. In recent years, numerous groups have undertaken sequencing of platyhelminth mitochon- drial genomes. Haplorchis taichui (family Heterophyidae) is a trematode that infects humans and animals mainly in Asia, including the Mekong River basin. We sequenced and determined the organization of the complete mitochondrial genome of H. taichui. The mitochondrial genome is 15,130 bp long, containing 12 protein-coding genes, 2 ribosomal RNAs (rRNAs, a small and a large subunit), and 22 transfer RNAs (tRNAs). -
Heterophyid (Trematoda) Parasites of Cats in North Thailand, with Notes on a Human Case Found at Necropsy
HETEROPHYID (TREMATODA) PARASITES OF CATS IN NORTH THAILAND, WITH NOTES ON A HUMAN CASE FOUND AT NECROPSY MICHAEL KUKS and TAVIPAN TANTACHAMRDN Department of Parasitology and Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. INTRODUCTION man in the Asian Pacific region, the Middle East and Australia (Noda, 1959; Alicata, Due to their tolerence of a broad range of 1964; Pearson, 1964) and were first described hosts, heterophyid flukes not uncommonly from man by Africa and Garcia (1935) in the are able to develop to maturity in man. Little Philippines and later by Alicata and Schat is known of the life histories of most hetero ten burg (1938) in Hawaii. Ching (1961) phyids in their snail hosts. Most undergo the examined stools of 1,380 persons in Hawaii metacercarial stage in marine and fresh-water and found 7.6% of Filipinos and native Ha fish which are ingested by the definitive hosts, waiians to be infected with S. falcatus. As the a variety of birds and mammals (Yamaguti, ova of heterophyid flukes superficially resem 1958; Pearson, 1964). Human infection can ble those of Opisthorchis, and ClonorchiS, occur wherever fish are eaten raw or partially many heterophyid infections have been as cooked. In Thailand, Manning et al., (1971) signed erroneously to the common liver reported finding Haplorchis yokogawai and flukes. Despite numerous stool surveys, S. H. taichui adults in several human autopsies falcatus has not been previously detected in in Northeast Thailand. The intermediate Thailand in man or animals. The present hosts were not determined. There are no paper reports the finding of S. -
Environmental Conservation Online System
U.S. Fish and Wildlife Service Southeast Region Inventory and Monitoring Branch FY2015 NRPC Final Report Documenting freshwater snail and trematode parasite diversity in the Wheeler Refuge Complex: baseline inventories and implications for animal health. Lori Tolley-Jordan Prepared by: Lori Tolley-Jordan Project ID: Grant Agreement Award# F15AP00921 1 Report Date: April, 2017 U.S. Fish and Wildlife Service Southeast Region Inventory and Monitoring Branch FY2015 NRPC Final Report Title: Documenting freshwater snail and trematode parasite diversity in the Wheeler Refuge Complex: baseline inventories and implications for animal health. Principal Investigator: Lori Tolley-Jordan, Jacksonville State University, Jacksonville, AL. ______________________________________________________________________________ ABSTRACT The Wheeler National Wildlife Refuge (NWR) Complex includes: Wheeler, Sauta Cave, Fern Cave, Mountain Longleaf, Cahaba, and Watercress Darter Refuges that provide freshwater habitat for many rare, endangered, endemic, or migratory species of animals. To date, no systematic, baseline surveys of freshwater snails have been conducted in these refuges. Documenting the diversity of freshwater snails in this complex is important as many snails are the primary intermediate hosts of flatworm parasites (Trematoda: Digenea), whose infection in subsequent aquatic and terrestrial vertebrates may lead to their impaired health. In Fall 2015 and Summer 2016, snails were collected from a variety of aquatic habitats at all Refuges, except at Mountain Longleaf and Cahaba Refuges. All collected snails were transported live to the lab where they were identified to species and dissected to determine parasite presence. Trematode parasites infecting snails in the refuges were identified to the lowest taxonomic level by sequencing the DNA barcoding gene, 18s rDNA. Gene sequences from Refuge parasites were matched with published sequences of identified trematodes accessioned in the NCBI GenBank database. -
Praziquantel Treatment in Trematode and Cestode Infections: an Update
Review Article Infection & http://dx.doi.org/10.3947/ic.2013.45.1.32 Infect Chemother 2013;45(1):32-43 Chemotherapy pISSN 2093-2340 · eISSN 2092-6448 Praziquantel Treatment in Trematode and Cestode Infections: An Update Jong-Yil Chai Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul, Korea Status and emerging issues in the use of praziquantel for treatment of human trematode and cestode infections are briefly reviewed. Since praziquantel was first introduced as a broadspectrum anthelmintic in 1975, innumerable articles describ- ing its successful use in the treatment of the majority of human-infecting trematodes and cestodes have been published. The target trematode and cestode diseases include schistosomiasis, clonorchiasis and opisthorchiasis, paragonimiasis, het- erophyidiasis, echinostomiasis, fasciolopsiasis, neodiplostomiasis, gymnophalloidiasis, taeniases, diphyllobothriasis, hyme- nolepiasis, and cysticercosis. However, Fasciola hepatica and Fasciola gigantica infections are refractory to praziquantel, for which triclabendazole, an alternative drug, is necessary. In addition, larval cestode infections, particularly hydatid disease and sparganosis, are not successfully treated by praziquantel. The precise mechanism of action of praziquantel is still poorly understood. There are also emerging problems with praziquantel treatment, which include the appearance of drug resis- tance in the treatment of Schistosoma mansoni and possibly Schistosoma japonicum, along with allergic or hypersensitivity -
Mitochondrial Genome Sequence of Echinostoma Revolutum from Red-Crowned Crane (Grus Japonensis)
ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 58, No. 1: 73-79, February 2020 ▣ BRIEF COMMUNICATION https://doi.org/10.3347/kjp.2020.58.1.73 Mitochondrial Genome Sequence of Echinostoma revolutum from Red-Crowned Crane (Grus japonensis) Rongkun Ran, Qi Zhao, Asmaa M. I. Abuzeid, Yue Huang, Yunqiu Liu, Yongxiang Sun, Long He, Xiu Li, Jumei Liu, Guoqing Li* Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People’s Republic of China Abstract: Echinostoma revolutum is a zoonotic food-borne intestinal trematode that can cause intestinal bleeding, enteri- tis, and diarrhea in human and birds. To identify a suspected E. revolutum trematode from a red-crowned crane (Grus japonensis) and to reveal the genetic characteristics of its mitochondrial (mt) genome, the internal transcribed spacer (ITS) and complete mt genome sequence of this trematode were amplified. The results identified the trematode as E. revolu- tum. Its entire mt genome sequence was 15,714 bp in length, including 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and one non-coding region (NCR), with 61.73% A+T base content and a significant AT prefer- ence. The length of the 22 tRNA genes ranged from 59 bp to 70 bp, and their secondary structure showed the typical cloverleaf and D-loop structure. The length of the large subunit of rRNA (rrnL) and the small subunit of rRNA (rrnS) gene was 1,011 bp and 742 bp, respectively. Phylogenetic trees showed that E. revolutum and E.