Alcian Blue/PAS Assessment Criteria

Total Page:16

File Type:pdf, Size:1020Kb

Alcian Blue/PAS Assessment Criteria Staining Criteria Handbook General Pathology (Routine Histopathology) Neuropathology Edition 5 October 2017 UK NEQAS Cellular Pathology Technique Providing worldwide external quality assessment and proficiency testing for all aspects of tissue diagnostics NEQMANMA003 General Pathology and Neuropathology Staining Criteria Handbook Edition 005 2 Index Page Haematoxylin and Eosin Assessment Criteria 5 Special Stains A & B Assessment Criteria 9 Assessment Criteria Definitions 33 Haematoxylin and Eosin Special Stains Appendix 46 Haematoxylin and Eosin Model Description Scoring Guidelines Scoring Based on Criteria UK NEQAS CPT Stain Repertoire NEQMANMA003 General Pathology and Neuropathology Staining Criteria Handbook Edition 005 3 Haematoxylin and Eosin Assessment Criteria NEQMANMA003 General Pathology and Neuropathology Staining Criteria Handbook Edition 005 4 NEQMANMA003 General Pathology and Neuropathology Staining Criteria Handbook Edition 005 5 Haematoxylin and Eosin Assessment Criteria Pre Microtomy Insufficient cellular features for assessment Crush artefacts Foam inset artefact Red blood cell lysis Poor chromatin detail Cracking Nuclear bubbling Nuclear meltdown Incorrect orientation suspected Incorrect trimming suspected Microtomy Chatter / vibration Displacement Folds / creases Knife back debris Knife marks Lifting Position on slide Section too thick Section too thin Section thickness variable Squames / floaters / fibres Trimming artefacts Water bath bubbles Staining Haematoxylin intensity too strong Haematoxylin intensity too weak Haematoxylin colour Haematoxylin background staining Eosin intensity too strong Eosin intensity too weak Eosin colour Eosin not selective Uneven staining Stain deposit present Post Staining Air bubbles Air drying artefact Excessive mountant Mountant shrinkage Residual wax Section wiped / section off slide Tissue damage Tissue exposed Water present Contaminant on slide NEQMANMA003 General Pathology and Neuropathology Staining Criteria Handbook Edition 005 6 Description of Staining Results Nuclei must be stained purple blue with haematoxylin. The intensity must be strong enough allow clear demonstration of nuclear detail at a medium power, but not too strong to cause a loss of the chromatin granularity or excessive cytoplasmic or connective tissue staining. Where the haematoxylin has been differentiated out, minimal cytoplasmic or connective tissue background staining with haematoxylin must remain. This background if present must not reduce the effectiveness of the nuclear demonstration or affect the colour and selectiveness of the eosin. The eosin should be selective enough to demonstrate different cellular components such as collagen, cytoplasm, red blood cells, cellular granules, amyloid etc. The intensity must be appropriate to the section thickness and the haematoxylin intensity. Where the eosin is too weak it will fail to allow selective demonstration of different components at low power. If the eosin intensity is too strong the colour and detail of the nuclear stain will be obscured and selectivity will be reduced. For an extended description including pre Microtomy, Microtomy and post staining please see the model description in the appendix. NEQMANMA003 General Pathology and Neuropathology Staining Criteria Handbook Edition 005 7 Special Stains A & B Assessment Criteria NEQMANMA003 General Pathology and Neuropathology Staining Criteria Handbook Edition 005 8 NEQMANMA003 General Pathology and Neuropathology Staining Criteria Handbook Edition 005 9 Alcian Blue/PAS Assessment Criteria Primary Stain Alcian Blue intensity too strong Alcian Blue intensity too weak Alcian Blue colour PAS intensity too strong PAS intensity too weak PAS colour Not selective Uneven staining Background Deposit / precipitate present Counterstain Nuclear stain intensity too strong Nuclear stain intensity too weak Nuclear stain colour Not selective Uneven staining Deposit / precipitate present Post staining Air bubbles Air drying artefact Excessive mountant Mountant shrinkage Residual wax Section wiped / section off slide Tissue damage Tissue exposed Water present Contaminant on slide Description of Staining Results Acid mucins (also called mucopolysaccharides) should be coloured bright blue. Neutral mucins should be bright magenta. Mixed mucins should be purple. There should be a clear distinction between acid, neutral and mixed mucins. Background staining should be negligible. A counterstain (typically haematoxylin) is considered optional. If present, it should be light and even to assist location. It should not mask or alter the primary staining. Section quality and presentation should not impair the result. NEQMANMA003 General Pathology and Neuropathology Staining Criteria Handbook Edition 005 10 Amyloid (method for) Assessment Criteria Primary Stain - Bright field Intensity too strong Intensity too weak Not selective Stain colour Uneven Staining Background Deposit / precipitate present Primary Stain - Cross polarised light No green birefringence on cross polarisation Birefringence intensity too weak Birefringence colour Birefringence not selective Counterstain Nuclear stain intensity too strong Nuclear stain intensity too weak Nuclear stain colour Not selective Uneven staining Deposit / precipitate present Post staining Air bubbles Air drying artefact Excessive mountant Mountant shrinkage Residual wax Section wiped / section off slide Tissue damage Tissue exposed Water present Contaminant on slide NEQMANMA003 General Pathology and Neuropathology Staining Criteria Handbook Edition 005 11 Description of Staining Results Amyloid: There is no amyloid specific dye. However, Congo red is highly selective for amyloid when staining is performed stringently/correctly by the alkaline alcoholic Congo red method, and when sections are prepared at the appropriate thickness (~5 to 10µm). Use of other dyes or methods may produce sub-optimal or erroneous results. Assessment is conducted in brightfield and cross polarised light, with a 10x objective, on microscopes equipped with a high intensity light source, polarisation filters and colour corrected and strain free optics. Sections that are too thin or too thick may not show the green birefringence of amyloid-Congo red complexes in cross polarised light. Brightfield: Amyloid should stain pink to red (congophilic). Stain intensity is seldom homogeneous and may differ in different tissues reflecting the deposition, abundance and underlying organisation of the amyloid fibrils. Collagen and elastin may be weakly coloured. Background staining must be negligible. Haematoxylin counterstain should be light, even and not mask or alter the primary stain; it should assist location. Cross Polarised Light: Amyloid stained pink / red in brightfield microscopy must also exhibit a green colour in cross polarised light (strong green birefringence). Denser deposits of amyloid may exhibit yellow green or bright yellow birefringence. The colour and/or intensity of the primary stain must not mask the green birefringence of amyloid in cross polarised light. Collagen and elastin usually give pale yellow to bright white polarisation colours. NEQMANMA003 General Pathology and Neuropathology Staining Criteria Handbook Edition 005 12 Axonal Swelling (method for) Assessment Criteria Primary Stain Intensity too strong Intensity too weak Stain colour Axonal Swelling demonstration good Axonal Swelling demonstration poor Low power visibility Not selective Uneven staining Background Deposit / precipitate present Counterstain Nuclear intensity too strong Nuclear intensity too weak Nuclear stain colour Not selective Uneven staining Deposit / precipitate present Post staining Air bubbles Air drying artefact Excessive mountant Mountant shrinkage Residual wax Section wiped / section off slide Tissue damage Tissue exposed Water present Contaminant on slide Description of Staining Results Axonal swelling may be demonstrated by silver impregnation methods such as Bielschowsky or using antibodies such as amyloid precursor protein (APP). Swellings should be clearly stained, visible at low power, and discernible from other structures. Immunohistochemical methods require a light nuclear counterstain. Section quality and presentation should not impair the result. NEQMANMA003 General Pathology and Neuropathology Staining Criteria Handbook Edition 005 13 Copper Associated Protein (CAP) Assessment Criteria Primary Stain Intensity too strong Intensity too weak Stain colour Not selective Uneven staining Background Deposit / precipitate present Counterstain Intensity too strong Intensity too weak Stain colour Not selective Uneven staining Deposit / precipitate present Post staining Air bubbles Air drying artefact Excessive mountant Mountant shrinkage Residual wax Section wiped / section off slide Tissue damage Tissue exposed Water present Contaminant on slide Description of Staining Results All copper associated protein should be stained and clearly identifiable. Hepatitis B surface antigen and elastin, if stained, should be readily distinguishable from CAP. Background staining should be negligible. If a counterstain is used it should not mask or modify the primary stain, and should assist location. Section quality and presentation should not impair the result. NEQMANMA003 General Pathology and Neuropathology Staining Criteria Handbook Edition 005 14 Diastase/PAS Assessment Criteria Primary Stain Intensity too strong Intensity too weak Stain colour Not selective Uneven staining Background Deposit / precipitate present
Recommended publications
  • Non-Commercial Use Only
    Veins and Lymphatics 2012; volume 1:e6 Ulcerated hemosiderinic three months previous to this therapy. Significant improvement in these injuries, Correspondence: Eugenio Brizzio and Alberto dyschromia and iron deposits with a reduction in the dimensions of the Lazarowski, San Martín 965, 1st floor (Zip code within lower limbs treated brown spot (9 of 9) at Day 90, and complete 1004) Buenos Aires, Argentina. with a topical application scarring with a closure time ranging from 15 Tel. +54.11.4311.5559. to 180 days (7 of 9) were observed. The use of E-mail: [email protected]; of biological chelator [email protected]; topical lactoferrin is a non-invasive therapeu- [email protected]; tic tool that favors clearance of hemosiderinic 1 2 [email protected] Eugenio Brizzio, Marcelo Castro, dyschromia and scarring of the ulcer. The 3 2 Marina Narbaitz, Natalia Borda, success of this study was not influenced Key words: ulcerated haemosiderinic dyschro- Claudio Carbia,2 Laura Correa,4 either by the hemochromatosis genetics or mia, liposomal Lactoferrin, scarring, hemo- Roberto Mengarelli,5 Amalia Merelli,2 the iron metabolism profile observed. siderin-ferritin. Valeria Brizzio,2 Maria Sosa,6 Acknowledgments: the authors would like to Biagio Biancardi,7 Alberto Lazarowski2 thank P. Girimonte for her assistance with the statistical analysis of the results. We also wish to Introduction thank the patients who made this study possible. 1International Group of Compression and Conference presentation: part of the present Argentina Medical Association, Buenos Chronic venous insufficiency (CVI) is one of study has been presented at the following con- 2 Aires, Argentina; Department of Clinical the most significant health problems in devel- gresses: i) XX Argentine Congress of Hematology, Biochemistry, Institute of oped countries.
    [Show full text]
  • JB-4 Kit AGR1130
    Unit 7, M11 Business Link Parsonage Lane, Stansted Essex, UK CM24 8GF t: +44 (0)1279 813519 f: +44 (0)1279 815106 e: [email protected] w: www.agarscientific.com JB-4 Kit AGR1130 Introduction: JB-4 Embedding Kit is a unique polymer embedding material that gives a higher level of morphological detail than paraffin processed tissues. A water-soluble media, JB-4 does not require dehydration to absolute alcohol except for dense, bloody, or fatty tissue specimens. JB-4 is excellent for non-decalcified bone specimens, routine stains, special stains, and histochemical staining. Clearing agents such as xylene and chloroform are not required. The polymerization of JB-4 is exothermic, which is easily controlled by polymerizing on ice or by using refrigeration at 4°C. JB-4 Embedding Kits must be used under a chemical fume hood. Sections of JB-4 embedded material can be cut at 0.5 to 3.0 microns or thicker. Microtomes designed for plastic sectioning are required as are glass, Ralph, or tungsten carbide knives. Polysciences, Inc. has tungsten carbide knives available for most sectioning requirements. Sections can be stained for routine histological or histochemical procedures. Immunohistochemical procedures are not recommended for JB-4 as the glycol methacrylate cannot be removed from the section and may block antigen sites for most antibody reactions. As an alternative we recommend the Polysciences, Inc. Osteo-Bed Bone Embedding Kit. The Osteo-Bed formulation is a methyl methacrylate that is well suited for bone or for immunohistochemistry on routine histological specimens. NOTE: It is recommended that the Embedding Kit be used under a fume hood with appropriate gloves.
    [Show full text]
  • I. the Preparation and Morphology of a Quantified Urine Sediment
    Upsala J Med Sci 84: 67-74, 1979 The Effect of Short-term High-dose Treatment with Methenamine Hippurate of Urinary Infection in Geriatric Patients with Indwelling Catheters I. The preparation and morphology of a quantified urine sediment Bo Norberg, Astrid Norberg, Ulf Parkhede, Hans Gippert and MBns Akerman Departments of Internal Medicine, Pathology and Education, Univer.tity of Lund and the School of Nursing, Lund, Sweden. 3 A4 Riker Laboratories, Skurholmen, Swyden ABSTRACT A quantified sediment of the urine from patients with indwelling catheters was prepared by fixation of 0.1 ml urine in 0.9 ml 2% glutaraldehyde immediately after sampling. Slide preparations were then made from 0.2 ml of the glutaral- dehyde suspension by means of a cytocentrifuge. Bacteria and epithelial cells were properly contrasted by the May-Grunwald-Giemsa stain but haematoxylin- eosin and the Papanicolaou stain were superior as regards leukocyte morphology. It is suggested that glutaraldehyde-cytocentrifuge preparations of the urine cytology may be useful in the evaluation of urinary infection and in the evaluation of the therapy of urinary infection. INTRODUCTION The microscopic examination of urine sediments is a rapid and simple proce- dure which provides essential information in many cases of kidney disease or infections in the urinary tract. The conventional urinary sediment has, how- ever, serious pitfalls, e.g. low reproducibility, low precision and high vul- nerability to delay in transport and preparation (1-10). It nevertheless seemed desirable to make a quantified urine sediment from patients with indwelling catheters in order to evaluate urinary infection and the effects of therapy.
    [Show full text]
  • Mucin Histochemistry in Tumours of Colon, Ovaries and Lung
    ytology & f C H i o s l t a o n l o r g u y o Ali et al., J Cytol Histol 2012, 3:7 J Journal of Cytology & Histology DOI: 10.4172/2157-7099.1000163 ISSN: 2157-7099 ReviewResearch Article Article OpenOpen Access Access Mucin Histochemistry in Tumours of Colon, Ovaries and Lung Usman Ali*, Nagi AH, Nadia Naseem and Ehsan Ullah Department of Morbid Anatomy and Histopathology, University of Health Sciences, Lahore, Pakistan Abstract Introduction: Mucins implicated in cancers of various organs. The apical epithelial surfaces of mammalian respiratory, gastrointestinal, and reproductive tracts are coated by mucus, a mixture of water, ions, glycoproteins, proteins, and lipids. The purpose of this study was to confirm the presence of mucin production using Haematoxylin and Eosin (H&E) stain as the gold standard and to describe the types of mucins produced in tumors of lung, colon and ovaries using various types of histochemical techniques. Methods: The resection specimens and biopsies from tumours of colon (n=16), ovaries (n=13) and lung (n=5) were included and stained with H&E to determin the histological diagnosis for selecting tissues with mucin production. Slides were stained with PAS, Alcian blue, High iron diamine-Alcian blue, Meyer’s mucicarmine and Alcian blue-PAS to demonstrate the mucin production and to identify types of mucins. Results: In the present study we observed predominance of acid mucins over neutral mucins. In addition in these cases we observed sulphomucin predominating over sialomucin. Conclusion: Mucin histochemistry can effectively determine the types of mucins. Keywords: Haematoxylin and Eosin; Periodic acid schiff; High iron Materials and Methods diamine; Alcian blue Paraffin embedded sections were prepared using automatic tissue Introduction processor, followed by preparation of paraffin block using our embedding station.
    [Show full text]
  • T-Cell Brain Infiltration and Immature Antigen-Presenting Cells in Transgenic Models of Alzheimerв€™S Disease-Like Cerebral
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2016 T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer’s disease-like cerebral amyloidosis Ferretti, M T ; Merlini, M ; Späni, C ; Gericke, C ; Schweizer, N ; Enzmann, G ; Engelhardt, B ; Kulic, L ; Suter, T ; Nitsch, R M Abstract: Cerebral beta-amyloidosis, one of the pathological hallmarks of Alzheimer’s disease (AD), elicits a well-characterised, microglia-mediated local innate immune response. In contrast, it is not clear whether cells of the adaptive immune system, in particular T-cells, react to cerebral amyloidosis in AD. Even though parenchymal T-cells have been described in post-mortem brains of AD patients, it is not known whether infiltrating T-cells are specifically recruited to the extracellular deposits of beta-amyloid, and whether they are locally activated into proliferating, effector cells upon interaction with antigen- presenting cells (APCs). To address these issues we have analysed by confocal microscopy and flow- cytometry the localisation and activation status of both T-cells and APCs in transgenic (tg) mice models of AD-like cerebral amyloidosis. Increased numbers of infiltrating T-cells were found in amyloid-burdened brain regions of tg mice, with concomitant up-regulation of endothelial adhesion molecules ICAM-1 and VCAM-1, compared to non-tg littermates. The infiltrating T-cells in tg brains did not co-localise with amyloid plaques, produced less interferon-gamma than those in controls and did not proliferate locally. Bona-fide dendritic cells were virtually absent from the brain parenchyma of both non-tg andtgmice, and APCs from tg brains showed an immature phenotype, with accumulation of MHC-II in intracellular compartments.
    [Show full text]
  • Simple Technique to Identify Haemosiderin in Immunoperoxidase Stained Sections
    J Clin Pathol: first published as 10.1136/jcp.37.10.1190 on 1 October 1984. Downloaded from 1190 Technical methods Phosphate buffer at pH 8*0 gave the sharpest 2 Rozenszajn L, Leibovich M, Shoham D, Epstein J. The esterase staining reactions, although there was little differ- activity in megaloblasts, leukaemic and normal haemopoietic cells. Br J Haematol 1968; 14:605-19. ence at pH 7-0 or pH 7-5. As the buffer pH was 3Hayhoe FGJ, Quaglino D. Haematological cytochemistry. Edin- increased above pH 8-0 staining with both substrates burgh: Churchill Livingstone, 1980. became progressively weaker, especially above pH 4Li CY, Lam KW, Yam LT. Esterases in human leucocytes. J 9.0. Below pH 7-0 staining with a-naphthyl butyrate Histochem Cytochem 1973;21:1-12. Yam LT, Li CY, Crosby WH. Cytochemical identification of became weaker, and below pH 5*0 staining with monocytes and granulocytes. Am J Clin Pathol 1971;55:283- naphthol AS-D chloroacetate began to disappear. 90. 6 Armitage RJ, Linch DC, Worman CP, Cawley JC. The morphol- This work was supported by a Medical Research ogy and cytochemistry of human T-cell subpopulations defined by monoclonal antibodies and Fc receptors. Br J Haematol Council project grant. I thank Professor FGJ 1983;51:605-13. Hayhoe for valuable advice. References Requests for reprints to: Dr DM Swirsky, Department of Gomori G. Chloroacyl esters as histochemical substrates. J His- Haematological Medicine, University Clinical School, Hills tochem Cytochem 1953;1:469-70. Road, Cambridge CB2 2QL, England. Simple technique to identify identification of the two compounds on the same haemosiderin in slide.
    [Show full text]
  • New Tetrachromic VOF Stain (Type III-G.S) for Normal and Pathological Fish Tissues C
    ORIGINAL PAPER New Tetrachromic VOF Stain (Type III-G.S) for Normal and Pathological Fish Tissues C. Sarasquete,* M. Gutiérrez Instituto de Ciencias Marinas de Andalucía, CSIC Polígono Río San Pedro, Apdo oficial, Puerto Real, Cádiz, Spain richrome methods invariably use dyes in acid ©2005, European Journal of Histochemistry pH solvents, usually diluted in aqueous acetic Tacid, and the concentration of this acid A new VOF Type III-G.S stain was applied to histological sec- matches the concentration of dye. Staining depends tions of different organs and tissues of healthy and pathologi- largely on the attachment of dyes to proteins. The cal larvae, juvenile and adult fish species (Solea senegalensis; acid pH itself is necessary to maximise the amount Sparus aurata; Diplodus sargo; Pagrus auriga; Argyrosomus regius and Halobatrachus didactylus). In comparison to the of dye that will attach to tissue amino groups. original Gutiérrez´VOF stain, more acid dyes of contrasting Proteins have both positively (amino groups) and colours and polychromatic/metachromatic properties were negatively (carboxyl and hydroxyl) charged groups. incorporated as essential constituents of the tetrachromic VOF Usually one predominates and this will have an stain. This facilitates the selective staining of different basic tissues and improves the morphological analysis of histo- overall negative or positive charge (being an acid or chemical approaches of the cell components. The VOF-Type III a basic protein). These charges can, however, bal- G.S stain is composed of a mixture of several dyes of varying ance each other out to some degree. Phosphate size and molecular weight (Orange G< acid Fuchsin< Light green<Methyl Blue<Fast Green), which are used simultane- groups of DNA and binding-proteins are important ously, and it enables the individual tissues to be selectively dif- in nuclear staining.The ionisation of basic groups of ferentiated and stained.
    [Show full text]
  • Hito Oil Red O Optimstain™ Kit Manual and MSDS
    Simple Solution for Your Research Hito Oil Red O OptimStain™ Kit [Catalog Number: HTKLS0122] An easy to use Oil Red O staining system for the lipid and fat staining on frozen sections User Manual And Material Safety Data Sheet FOR IN VITRO RESEARCH USE ONLY Hitobiotec Corp. Simple solution for your research Hito Oil Red O OptimStain™ Kit [Catalog Number: HTKLS0122] An easy to use Oil Red O staining system for the lipid and fat staining on frozen sections User Manual And Material Safety Data Sheet FOR IN VITRO RESEARCH USE ONLY Hitobiotec Corp. © 2017 All Rights Reserved Index I. Introduction 2 II. Kit Contents 3 III. Tissue Preparation 4 IV. Staining Procedure 8 V. References 11 VI. Material Safety Data Sheet (MSDS) 12 1 I. Introduction Hito Oil Red O OptimStain™ Kit is designed based on the Oil Red O staining method. Oil Red O is a common staining technique for studying the morphology of lipids in adipose tissue. It allows localization and visualization of the lipids in the aortic sinus and aorta to determine the extent of atherosclerosis, and remains as one of the primary techniques for visualization of the atherosclerosis pattern at the aortic sinus. Accordingly, Oil Red O staining techniques are not only useful for tissue histology studies, but also widely used in cell biological studies examining intracellular lipid metabolism 1-5. Hito Oil Red O OptimStain™ Kit makes further improve- ment over the Oil Red O method and simplifies the staining technique. It offers high quality, rapid, reliable and easy to use staining of the lipids and fat.
    [Show full text]
  • Preclinical Studies of the First in Human Sarna Drug Candidate for Liver Cancer
    Oncogene (2018) 37:3216–3228 https://doi.org/10.1038/s41388-018-0126-2 ARTICLE Gene activation of CEBPA using saRNA: preclinical studies of the first in human saRNA drug candidate for liver cancer 1 2 2 3 4 1 Vikash Reebye ● Kai-Wen Huang ● Vivian Lin ● Sheba Jarvis ● Pedro Cutilas ● Stephanie Dorman ● 5 1 5 6,7 1 1 Simona Ciriello ● Pinelopi Andrikakou ● Jon Voutila ● Pal Saetrom ● Paul J. Mintz ● Isabella Reccia ● 8 9 5 10 5 1 John J. Rossi ● Hans Huber ● Robert Habib ● Nikos Kostomitsopoulos ● David C. Blakey ● Nagy A. Habib Received: 2 July 2017 / Revised: 2 December 2017 / Accepted: 12 December 2017 / Published online: 7 March 2018 © The Author(s) 2018. This article is published with open access Abstract Liver diseases are a growing epidemic worldwide. If unresolved, liver fibrosis develops and can lead to cirrhosis and clinical decompensation. Around 5% of cirrhotic liver diseased patients develop hepatocellular carcinoma (HCC), which in its advanced stages has limited therapeutic options and negative survival outcomes. CEPBA is a master regulator of hepatic function where its expression is known to be suppressed in many forms of liver disease including HCC. Injection of MTL-CEBPA, a small activating RNA oligonucleotide therapy (CEBPA-51) formulated in liposomal nanoparticles 1234567890();,: 1234567890();,: (NOV340- SMARTICLES) upregulates hepatic CEBPA expression. Here we show how MTL-CEBPA therapy promotes disease reversal in rodent models of cirrhosis, fibrosis, hepatosteatosis, and significantly reduces tumor burden in cirrhotic HCC. Restoration of liver function markers were observed in a carbon-tetrachloride-induced rat model of fibrosis following 2 weeks of MTL-CEBPA therapy.
    [Show full text]
  • Gomori Prussian Blue Iron Stain Histology Staining Procedure
    2505 Parview Road ● Middleton, WI 53562-2579 ● 800-383-7799 ● www.newcomersupply.com ● [email protected] July 2016 Gomori Prussian Blue Iron Stain - Technical Memo SOLUTIONS: 500 ml 1 Liter Hydrochloric Acid 20%, Aqueous Part 12087A Part 12087B Potassium Ferrocyanide 10%, Aqueous Part 13392A Additionally Needed: Iron Control Slides Part 4320 or Iron, Animal Control Slides Part 4321 Xylene, ACS Part 1445 Alcohol, Ethyl Denatured, 100% Part 10841 Alcohol, Ethyl Denatured, 95% Part 10842 Nuclear Fast Red Stain, Kernechtrot Part 1255 Hydrochloric Acid 5%, Aqueous Part 12086 (for acid cleaning glassware) For storage requirements and expiration date refer to individual product labels. APPLICATION: PROCEDURE NOTES: Newcomer Supply Gomori Prussian Blue Iron Stain is used to detect 1. Acid clean all glassware/plasticware (12086) and rinse thoroughly loosely bound ferric iron in tissue sections, bone marrow smears and in several changes of distilled water. Cleaning glassware with blood smears. This histochemical reaction is sensitive enough to bleach is not equivalent to acid washing. demonstrate even minute amounts of iron deposits in blood cells, bone 2. Drain staining rack/slides after each step to prevent solution carry marrow, spleen and liver. over. 3. Do not allow sections to dry out at any point during staining METHOD: procedure. Fixation: Formalin 10%, Phosphate Buffered (Part 1090) 4. Wash well after Nuclear Fast Red Stain, Kernechtrot to avoid a. Chromate fixatives should be avoided cloudiness in dehydration steps. b. Fix smears per laboratory protocol 5. If using a xylene substitute, closely follow the manufacturer’s Technique: Paraffin sections cut at 5 microns or prepared smears recommendations for deparaffinization and clearing steps Solutions: All solutions are manufactured by Newcomer Supply, Inc.
    [Show full text]
  • Orcein-Alcian Blue Staining: a New Technique for Demonstrating Acid Mucins in Gastrointestinal Epithelium
    J Clin Pathol: first published as 10.1136/jcp.42.8.881 on 1 August 1989. Downloaded from J Clin Pathol 1989;42:881-884 Orcein-alcian blue staining: a new technique for demonstrating acid mucins in gastrointestinal epithelium R SINGH, A W P GORTON Department ofHistopathology, Manor Hospital, Walsall, West Midlands SUMMARY Orcein-alcian blue staining, a new method for the simultaneous demonstration of sulphated and sialomucins in gastrointestinal epithelium was compared with the standard high iron diamine-alcian blue technique. Sections were oxidised with potassium permanagate and decolourised in oxalic acid. They were stained with orcein for four hours, differentiated for a few seconds in acid alcohol, and then counterstained with alcian blue for halfto one minute. There was a good correlation of results between the two methods. Orcein-alcian blue is a safer, cheaper, and quicker method than high iron diamine-alcian blue which can be safely introduced into routine laboratories for the study of acid mucins in the gastrointestinal diseases. Orcein, a naturally occurring vegetable dye, has been Table used for staining elastic fibres for many years. It is also used for the demonstration of hepatitis B antigen and Histological diagnosis No ofcases copper-associated proteins in chronic liver diseases.'2 copyright. Recently, the orcein technique has been studied for Normal mucosa (stomach, ileum, appendix, large bowel) 25 Intestinal metaplasia of stomach 5 showing the presence of sulphated mucin in gastroin- Adenomas (stomach, appendix, large bowel) 6 testinal epithelium.34 It has also been reported to be Adenocarcinomas (stomach, appendix, ileum, large bowel) II selectively positive for mucin-producing adenocarcin- Total 47 omas of the lower gastrointestinal tract; therefore, adenocarcinomas in sites other than the colon and rectum are negative for orcein staining.5 We report our BDH Poole, Dorset) in 100 ml 70% alcohol and then http://jcp.bmj.com/ findings of combining a modified orcein staining adding 1-0 ml concentrated hydrochloric acid.
    [Show full text]
  • Detection of Acute TLR-7 Agonist-Induced Hemorrhagic Myocarditis in Mice by Refined Multi-Parametric Quantitative Cardiac MRI
    bioRxiv preprint doi: https://doi.org/10.1101/502237; this version posted December 21, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. CMR imaging for hemorrhagic myocarditis in mice Baxan et al. 2018 Detection of acute TLR-7 agonist-induced hemorrhagic myocarditis in mice by refined multi-parametric quantitative cardiac MRI. Nicoleta Baxan1, Angelos Papanikolaou2, Isabelle Salles-Crawley2, Amrit Lota3, Rasheda Chowdhury2, Olivier Dubois1, Jane Branca4, Muneer G. Hasham4, Nadia Rosenthal2,4, Sanjay K. Prasad3, Lan Zhao1,2, Sian E. Harding2, Susanne Sattler2 Affiliations: 1Biological Imaging Centre, Department of Medicine, Imperial College London, London, 2National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK 3Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, UK 4The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA Abstract BACKGROUND: Hemorrhagic myocarditis is a potentially fatal complication of excessive levels of systemic inflammation. It has been reported in viral infection, but is also possible in systemic autoimmunity. Cardiac magnetic resonance (CMR) imaging is the current gold standard for non-invasive detection of suspected inflammatory damage to the heart and changes in T1 and T2 relaxation times are commonly used to detect edema associated with immune cell infiltration and fibrosis. These measurements also form the basis of the Lake Louise Criteria, which define a framework for the CMR-based diagnosis of myocarditis. However, they do not take into account the possibility of hemorrhage leading to tissue iron deposition which strongly influences T1 and T2 measurements and may complicate interpretation based on these two parameters only.
    [Show full text]