Low Energy-Consuming Load Sensing Truck Cab Suspension
Total Page:16
File Type:pdf, Size:1020Kb
Low energy-consuming load sensing truck cab suspension Master of Science Thesis TRITA-ITM-EX 2019:721 KTH , Industrial Engineering and Management Machine Design SE-100 44 , STOCKHOLM Intentional left blank 1 Examensarbete TRITA-ITM-EX 2019:721 Energieffektiv lastkännande fjädring för lastbilshytter Teodor Hidén Godkänt Examinator Handledare 2019-12-18 Ulf Sellgren Ulf Sellgren Uppdragsgivare Kontaktperson Scania, RCCB Fredrik Aldebert Sammanfattning I utvecklingen av el- och batteridrivna lastbilar är en stor del av utmaning att minimera energianvändningen hos lastbilens alla olika delsystem, där ibland hyttfjädringen. Dagens lastkännande (aktiva) fjädringssystem på lastbilshytter drivs med tryckluft och arbetar kontinuerligt med att hålla lastbilshytten på rätt höjd. Tryckluften kommer ifrån en stor och tung kompressor som ständigt arbetar för att komprimera luft till lastbilens alla olika delsystem. Alternativet till den aktiva lastkännande hyttfjädringen är att använda en icke lastkännande (passiv) fjädring. Detta begränsar dock lastbilens komfort och utseende, men förbrukar heller ingen energi. Målet med detta examensarbete var att finna en fjädringslösning som både är lastkännande och energieffektiv. För att hitta en lämplig lastkännande lösning gjordes en grundlig undersökning av hyttfjädringslösningar på andra tunga fordon, samt olika fjädringssystem överlag. Det visade sig att användandet av hydraulik ger en tillfredsställande justerbarhet, utan att förbruka någon energi när systemet är i vila (inte aktivt justerar). Systemet skulle även kunna göras mycket kompakt. Det är lätt att anpassa dagens befintliga fjädringskomponenter för att kunna fungera ihop med justerbara hydraulcylindrar, och fjädringens hydraulsystem skulle kunna drivas ihop med övriga hydraulsystem på lastbilen. Nyckelord: Anpassning, Energieffektiv, Fjädring, Komfort, Justerbar 2 Intentional left blank 3 Master of Science Thesis TRITA-ITM-EX 2019:721 Low energy-consuming load sensing truck cab suspension Teodor Hidén Approved Examiner Supervisor 2019-12-18 Ulf Sellgren Ulf Sellgren Commissioner Contact person Scania, RCCB Fredrik Aldebert Abstract In the development of battery electric trucks is one of the main concerns how to minimize the energy consumption of all the different subsystems on the truck. One of these energy- consuming systems is the active cab suspension. The load sensing (active) cab systems used today is using pressurized air, pneumatics, to keep the cab at correct ride height. Currently is this pressurized air produced with a big, bulky and heavy compressor that continuously is running to compress air for multiple different subsystems. The alternative to the load sensing active cab suspension is to use non-load sensing (passive) suspension. This option is limiting the comfort and appearance of the cab but is neither using any energy. The goal of this master thesis is to find a suspension solution that is both load sensing and energy-efficient. To find a suitable load sensing solution was cab suspension system on other types of heavy machines inspected, together with suspension systems overall. There could be seen that the use of hydraulics gave the adjustability needed, without consuming any energy when the adjustments had been done. The system could also be very compact. It is easy to adapt the existing suspension components to work together with the hydraulic cylinders, and the hydraulic suspension systems have the possibility to be merged with other hydraulic systems on the truck Keywords: Adjustability, Comfort, Energy, Spring, Suspension 4 Intentional left blank 5 Acknowledgments and Foreword I would like to thank Scania with all the employees that have been helping and supporting me both through my summer job and this thesis. It has been a very interesting, learning and pleasant time. Especially thanks to the people at RCCB, the department where I have been based since June 2019. I would also like to thank Ulf Sellgren at KTH for the support but also the responsibilities and trust that have been given to me. Teodor Hidén, Stockholm, Autumn, 2019 6 Intentional left blank 7 Table of Content Sammanfattning .................................................................................................................... 2 Abstract................................................................................................................................. 4 Acknowledgments and Foreword .......................................................................................... 6 Table of Content ................................................................................................................... 8 Introduction ......................................................................................................................... 10 Background and Problem Description.............................................................................. 10 Purpose and Definitions .................................................................................................. 11 Delimitations .................................................................................................................... 11 Methodology .................................................................................................................... 12 Frame of Reference and State of the Art ............................................................................. 14 Suspension Components ................................................................................................ 14 Suspension System Types .............................................................................................. 15 Cab Suspension Types on Heavy Machines.................................................................... 19 Aftermarket Solutions ...................................................................................................... 31 Implementation ................................................................................................................... 36 Requirements .................................................................................................................. 36 Different Concepts ........................................................................................................... 37 Concept Evaluation ......................................................................................................... 37 Chosen Concepts ............................................................................................................ 38 Existing Solutions ............................................................................................................ 40 Further Design of the Chosen Concept............................................................................ 46 Results ................................................................................................................................ 50 Conclusion .......................................................................................................................... 50 Discussion .......................................................................................................................... 52 Future work ......................................................................................................................... 54 About Chosen Concept ................................................................................................... 54 About Other Areas ........................................................................................................... 55 References ......................................................................................................................... 56 Appendix ............................................................................................................................. 64 Appendix 1, Search Keywords ......................................................................................... 64 Appendix 2, Gantt schedule ............................................................................................. 65 Appendix 3, Pugh Weighted Matrix .................................................................................. 66 Appendix 4, Risks and Risk Analysis ............................................................................... 67 Appendix 5, MATLAB Calculations .................................................................................. 68 8 Intentional left blank 9 Introduction Today is more and more transportations happen in urban areas. This means that noise and exhaust gases are more critical than ever. A more quiet and “clean” transport solutions is requested. One solution for this task is to use electrified trucks. Electrified vehicles fit well in due to the political regulations of exhaust and noise regulations and have a positive association with sustainability among people. Background and Problem Description Choosing a fully electric driveline on a truck instead of a conventional diesel engine highly affects the cruising range, due to the limitation of the power storage capacity in the batteries. This means that every chance to minimize the power consumption of all the trucks subsystems must be taken. One subsystem that continuously consumes energy is the pneumatic cab suspension. A set of air bellows sets the ride height and the dampers set the stiffness/comfort of the ride. A compressor must be running more or less continuously to provide the suspension system with pressurized air so the