A Mini-Introduction to Convexity

Total Page:16

File Type:pdf, Size:1020Kb

A Mini-Introduction to Convexity A mini-introduction to convexity Geir Dahl∗ January 20, 2014 1 Introduction Convexity, or convex analysis, is an area of mathematics where one studies questions related to two basic objects, namely convex sets and convex func- tions. Triangles, rectangles and “certain” polygons are examples of convex sets in the plane, and the quadratic function f(x) = ax2 + bx + c is convex provided that a ≥ 0. Actually, the points in the plane on or above the graph of this quadratic function is another example of a convex set. But one may also consider convex sets in IRn for any n, and convex functions of several variables. Convexity is the mathematical core of optimization, and it plays an im- portant role in many other mathematical areas as statistics, approximation theory, differential equations and mathematical economics. This short note is meant for a short (probably too short) introduction to some concepts and results in convexity. The focus is on convexity in connection with linear optimization. This notes are meant for two (or three) lectures in the course MAT-INF3100 Linear Optimization where the main project is to study linear programming, but where some knowledge to convexity is useful. Due to this limited scope of these notes we do not discuss convex functions, except for a few remarks a couple of places. Example 1. (Optimization and convex functions) A basic optimization prob- lem is to minimize a real-valued function f of n variables, say f(x) where x = (x1,...,xn) ∈ A and A is the domain of f. (Such problems arise in all sorts of applications: economics, statistics (estimation, regression, curve fitting), approximation problems, scheduling and planning problems, image ∗University of Oslo, Dept. of Mathematics ([email protected]) 1 f(x1, x2) f(x) f(x) x2 x x x1 Figure 1: Some convex functions analysis, medical imaging, engineering applications etc.). A global minimum of f is a point x∗ with f(x∗) ≤ f(x) for all x ∈ A where A is the domain of f. Often it is hard to find a global minimum so one settles with a local minimum point which satisfies f(x∗) ≤ f(x) for all x in A that are sufficiently close to x∗. There are several optimization algorithms that are able to locate a local minimium of f. Unfortunaly, the function value in a local minimum may be much larger than the global minimum value. This raises the question: Are there functions where a local minimum point is also a global minimum? The main answer to this question is: If f is a convex function, and the domain A is a convex set, then a local minimum point is also a global minimum point ! Thus, one can find the global minimum of convex functions whereas this may be hard (or even impossible) in other situations. Some convex functions are illustrated in Figure 1. In linear optimization (= linear programming) we minimize a linear func- tion f subject to linear constraints; more precicely these constraints are lin- ear inequalities and linear equations. The feasible set in this case (the set of points satisfying the constraints) is always a convex set, in fact it is a special convex set called a polyhedron. Example 2. (Convex set) Loosely speaking a convex set in IR2 (or IRn) is a set “with no holes”. More accurately, a convex set C has the following property: whenever we choose two points in the set, say x, y ∈ C, then all 2 Figure 2: Some convex sets in the plane. points on the line segment between x and y also lie in C. Some examples of convex sets in the plane are: a sphere (ball), an ellipsoid, a point, a line, a line segment, a rectangle, a triangle, see Fig. 2. But, for instance, a set with a finite number p of points is only convex when p = 1. The union of two disjoint (closed) triangles is also nonconvex. Example 3. (Approximation) A basic approximation problem, with several applications, may be presented in the following way: given some closed set S ⊂ IRn and a vector a 6∈ S, find a nearest point defined as a point (vector) x ∈ S which is as close to a as possible among elements in S. Let us measure the distance between vectors using the Euclidean norm, so(kx−yk = n 2 1/2 n ( j=1(xj − yj) ) for x, y ∈ IR . One can show that there is always at least one nearest point provided that S is nonempty and closed (contains its boundary).P Now, if S is a convex set, then there is a unique nearest point. 2 The definitions You will now see three basic definitions: 1. A set C ⊆ IRn is called convex if (1 − λ)x1 + λx2 ∈ C whenever x1, x2 ∈ C and 0 ≤ λ ≤ 1. Geometrically, this means that C contains the line segment between each pair of points in C. 2. Let C ⊆ IRn be a convex set and consider a real-valued function f de- fined on C. The function f is called convex if the inequality f((1 − λ)x + λy) ≤ (1 − λ)f(x)+ λf(y) (1) holds for every x, y ∈ C and every 0 ≤ λ ≤ 1. 3 3. A polyhedron P ⊆ IRn is defined a the solution set of a system of linear inequalities. Thus, P has the form P = {x ∈ IRn : Ax ≤ b} (2) where A is a real m×n matrix, b ∈ IRm and where the vector inequality means it holds for every component. Here are some important comments to these definitions: • In part 1 of the definition above the point (1 − λ)x1 + λx2 is called a convex combination of x1 and x2. So the definition of a convex set says that it is closed under taking convex combination of pairs of points. Actually, one can show that when C is convex it also contains every convex combination of any (finite) set of its points. A convex combi- nation of points x1, x2,...,xm is a linear combination m λjxj j=1 X where the coefficients λ1,λ2,...,λm are nonnegative and sum to 1. • In the definition of a convex function we actually use that the domain C is a convex set: this assures that the point (1 − λ)x + λy lies in C so the defining inequality for f makes sense. • In the definition of a polyhedron we consider systems of linear inequal- ities. Since a linear equation aT x = α may be written as two linear inequalities, namely aT x ≤ α and −aT x ≤ −α, one may also say that a polyhedron is the solution set of a system of linear equations and inequalities. Proposition 1. Every polyhedron is a convex set. n Proof. Consider a polyhedron P = {x ∈ IR : Ax ≤ b} and let x1, x2 ∈ P and 0 ≤ λ ≤ 1. Then A((1 − λ)x1 + λx2)=(1 − λ)Ax1 + λAx2 ≤ (1 − λ)b + λb = b which shows that (1 − λ)x1 + λx2 ∈ P and the convexity of P follows. 4 3 Linear optimization and convexity Recall that a linear programming problem may be written as maximize c1x1 + ... +cnxn subject to a11x1 + ... +a1nxn ≤ b1; . (3) . am1x1 + ... +amnxn ≤ bm; x1,...,xn ≥ 0. or more compactly in matrix form maximize cT x subject to (4) Ax ≤ b x ≥ O. Here A = [ai,j] is the m × n coefficient matrix with (i, j)th element being m ai,j, b ∈ IR (column vector) and O denotes a zero vector (here of dimension n). Again vector inequalities should be interpreted componentwise. Thus, the LP feasible set {x ∈ IRn : Ax ≤ b, x ≥ O} is a polyhedron and therefore a convex set. (Actually, LP may be defined as minimizing or maximizing a linear function over a polyhedron). As a consequence we have that if x1 and x2 are two feasible points, then every convex combination of these points is also feasible. But what can be said about the set of optimal solutions? Proposition 2. In an LP problem with finite optimal value the set P ∗ of optimal solutions is a convex set, actually P ∗ is a polyhedron. Proof. Let v∗ denote the optimal value. Then P ∗ = {x ∈ IRn : Ax ≤ b, x ≥ O, cT x = v∗} which is a polyhedron. So, if you have different optimal solutions of an LP problem every convex combination of these will also be optimal. An attempt to illustrate the geometry of linear programming is given in Fig. 3 (where the feasible region is the solution set of five linear inequalities). 5 c b ∗ b x cT x = const. b feasible set cT x : maximum value b b Figure 3: Linear programming . 4 The convex hull Given a (possibly nonconvex) set S it is natural to ask for the smallest convex set containing S. This question is what we consider in this section. Let S ⊆ IRn be any set. Define the convex hull of S, denoted by conv(S) as the set of all convex combinations of points in S (see Fig. 4). The convex hull of two points x1 and x2 is the line segment between the two points An important fact is that conv(S) is a convex set, whatever the set S might be. Thus, taking the convex hull becomes a way of producing new convex sets. The following proposition tells us that the convex hull of a set S is the smallest convex set containing S. Recall that the intersection of an arbitrary family of sets consists of the points that lie in all of these sets. Proposition 3. Let S ⊆ IRn. Then conv(S) is equal to the intersection of all convex sets containing S.
Recommended publications
  • Locally Solid Riesz Spaces with Applications to Economics / Charalambos D
    http://dx.doi.org/10.1090/surv/105 alambos D. Alipr Lie University \ Burkinshaw na University-Purdue EDITORIAL COMMITTEE Jerry L. Bona Michael P. Loss Peter S. Landweber, Chair Tudor Stefan Ratiu J. T. Stafford 2000 Mathematics Subject Classification. Primary 46A40, 46B40, 47B60, 47B65, 91B50; Secondary 28A33. Selected excerpts in this Second Edition are reprinted with the permissions of Cambridge University Press, the Canadian Mathematical Bulletin, Elsevier Science/Academic Press, and the Illinois Journal of Mathematics. For additional information and updates on this book, visit www.ams.org/bookpages/surv-105 Library of Congress Cataloging-in-Publication Data Aliprantis, Charalambos D. Locally solid Riesz spaces with applications to economics / Charalambos D. Aliprantis, Owen Burkinshaw.—2nd ed. p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 105) Rev. ed. of: Locally solid Riesz spaces. 1978. Includes bibliographical references and index. ISBN 0-8218-3408-8 (alk. paper) 1. Riesz spaces. 2. Economics, Mathematical. I. Burkinshaw, Owen. II. Aliprantis, Char­ alambos D. III. Locally solid Riesz spaces. IV. Title. V. Mathematical surveys and mono­ graphs ; no. 105. QA322 .A39 2003 bib'.73—dc22 2003057948 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society.
    [Show full text]
  • Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations
    Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations Jean Gallier and Jocelyn Quaintance Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: [email protected] April 20, 2017 2 3 Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations Jean Gallier Abstract: Some basic mathematical tools such as convex sets, polytopes and combinatorial topology, are used quite heavily in applied fields such as geometric modeling, meshing, com- puter vision, medical imaging and robotics. This report may be viewed as a tutorial and a set of notes on convex sets, polytopes, polyhedra, combinatorial topology, Voronoi Diagrams and Delaunay Triangulations. It is intended for a broad audience of mathematically inclined readers. One of my (selfish!) motivations in writing these notes was to understand the concept of shelling and how it is used to prove the famous Euler-Poincar´eformula (Poincar´e,1899) and the more recent Upper Bound Theorem (McMullen, 1970) for polytopes. Another of my motivations was to give a \correct" account of Delaunay triangulations and Voronoi diagrams in terms of (direct and inverse) stereographic projections onto a sphere and prove rigorously that the projective map that sends the (projective) sphere to the (projective) paraboloid works correctly, that is, maps the Delaunay triangulation and Voronoi diagram w.r.t. the lifting onto the sphere to the Delaunay diagram and Voronoi diagrams w.r.t. the traditional lifting onto the paraboloid. Here, the problem is that this map is only well defined (total) in projective space and we are forced to define the notion of convex polyhedron in projective space.
    [Show full text]
  • Convex Sets and Convex Functions 1 Convex Sets
    Convex Sets and Convex Functions 1 Convex Sets, In this section, we introduce one of the most important ideas in economic modelling, in the theory of optimization and, indeed in much of modern analysis and computatyional mathematics: that of a convex set. Almost every situation we will meet will depend on this geometric idea. As an independent idea, the notion of convexity appeared at the end of the 19th century, particularly in the works of Minkowski who is supposed to have said: \Everything that is convex interests me." We discuss other ideas which stem from the basic definition, and in particular, the notion of a convex and concave functions which which are so prevalent in economic models. The geometric definition, as we will see, makes sense in any vector space. Since, for the most of our work we deal only with Rn, the definitions will be stated in that context. The interested student may, however, reformulate the definitions either, in an ab stract setting or in some concrete vector space as, for example, C([0; 1]; R)1. Intuitively if we think of R2 or R3, a convex set of vectors is a set that contains all the points of any line segment joining two points of the set (see the next figure). Here is the definition. Definition 1.1 Let u; v 2 V . Then the set of all convex combinations of u and v is the set of points fwλ 2 V : wλ = (1 − λ)u + λv; 0 ≤ λ ≤ 1g: (1.1) In, say, R2 or R3, this set is exactly the line segment joining the two points u and v.
    [Show full text]
  • OPTIMIZATION METHODS: CLASS 3 Linearity, Convexity, ANity
    OPTIMIZATION METHODS: CLASS 3 Linearity, convexity, anity The exercises are on the opposite side. D: A set A ⊆ Rd is an ane space, if A is of the form L + v for some linear space L and a shift vector v 2 Rd. By A is of the form L + v we mean a bijection between vectors of L and vectors of A given as b(u) = u + v. Each ane space has a dimension, dened as the dimension of its associated linear space L. D: A vector is an ane combination of a nite set of vectors if Pn , where x a1; a2; : : : an x = i=1 αiai are real number satisfying Pn . αi i=1 αi = 1 A set of vectors V ⊆ Rd is anely independent if it holds that no vector v 2 V is an ane combination of the rest. D: GIven a set of vectors V ⊆ Rd, we can think of its ane span, which is a set of vectors A that are all possible ane combinations of any nite subset of V . Similar to the linear spaces, ane spaces have a nite basis, so we do not need to consider all nite subsets of V , but we can generate the ane span as ane combinations of the base. D: A hyperplane is any ane space in Rd of dimension d − 1. Thus, on a 2D plane, any line is a hyperplane. In the 3D space, any plane is a hyperplane, and so on. A hyperplane splits the space Rd into two halfspaces. We count the hyperplane itself as a part of both halfspaces.
    [Show full text]
  • Vector Space and Affine Space
    Preliminary Mathematics of Geometric Modeling (1) Hongxin Zhang & Jieqing Feng State Key Lab of CAD&CG Zhejiang University Contents Coordinate Systems Vector and Affine Spaces Vector Spaces Points and Vectors Affine Combinations, Barycentric Coordinates and Convex Combinations Frames 11/20/2006 State Key Lab of CAD&CG 2 Coordinate Systems Cartesian coordinate system 11/20/2006 State Key Lab of CAD&CG 3 Coordinate Systems Frame Origin O Three Linear-Independent r rur Vectors ( uvw ,, ) 11/20/2006 State Key Lab of CAD&CG 4 Vector Spaces Definition A nonempty set ς of elements is called a vector space if in ς there are two algebraic operations, namely addition and scalar multiplication Examples of vector space Linear Independence and Bases 11/20/2006 State Key Lab of CAD&CG 5 Vector Spaces Addition Addition associates with every pair of vectors and a unique vector which is called the sum of and and is written For 2D vectors, the summation is componentwise, i.e., if and , then 11/20/2006 State Key Lab of CAD&CG 6 Vector Spaces Addition parallelogram illustration 11/20/2006 State Key Lab of CAD&CG 7 Addition Properties Commutativity Associativity Zero Vector Additive Inverse Vector Subtraction 11/20/2006 State Key Lab of CAD&CG 8 Commutativity for any two vectors and in ς , 11/20/2006 State Key Lab of CAD&CG 9 Associativity for any three vectors , and in ς, 11/20/2006 State Key Lab of CAD&CG 10 Zero Vector There is a unique vector in ς called the zero vector and denoted such that for every vector 11/20/2006 State Key Lab of CAD&CG 11 Additive
    [Show full text]
  • Convex Sets and Convex Functions (Part I)
    Convex Sets and Convex Functions (part I) Prof. Dan A. Simovici UMB 1 / 79 Outline 1 Convex and Affine Sets 2 The Convex and Affine Closures 3 Operations on Convex Sets 4 Cones 5 Extreme Points 2 / 79 Convex and Affine Sets n Special Subsets in R Let L be a real linear space and let x; y 2 L. The closed segment determined by x and y is the set [x; y] = f(1 − a)x + ay j 0 6 a 6 1g: The half-closed segments determined by x and y are the sets [x; y) = f(1 − a)x + ay j 0 6 a < 1g; and (x; y] = f(1 − a)x + ay j 0 < a 6 1g: The open segment determined by x and y is (x; y) = f(1 − a)x + ay j 0 < a < 1g: The line determined by x and y is the set `x;y = f(1 − a)x + ay j a 2 Rg: 3 / 79 Convex and Affine Sets Definition A subset C of L is convex if we have [x; y] ⊆ C for all x; y 2 C. Note that the empty subset and every singleton fxg of L are convex. 4 / 79 Convex and Affine Sets Convex vs. Non-convex x3 x4 x2 x4 x x y x2 x3 y x1 x1 (a) (b) 5 / 79 Convex and Affine Sets Example The set n of all vectors of n having non-negative components is a R>0 R n convex set called the non-negative orthant of R . 6 / 79 Convex and Affine Sets Example The convex subsets of (R; +; ·) are the intervals of R.
    [Show full text]
  • Lecture 2 - Introduction to Polytopes
    Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions n Pm Let x1; : : : ; xm be points in R and λ1; : : : ; λm be real numbers. Then x = i=1 λixi is said to be a: • Linear combination (of x1; : : : ; xm) if the λi are arbitrary scalars. • Conic combination if λi ≥ 0 for every i. Pm • Convex combination if i=1 λi = 1 and λi ≥ 0 for every i. In the following, λ will still denote a scalar (since we consider in real spaces, λ is a real number). The linear space spanned by X = fx1; : : : ; xmg (also called the span of X), denoted by Span(X), is the set of n n points x of R which can be expressed as linear combinations of x1; : : : ; xm. Given a set X of R , the span of X is the smallest vectorial space containing the set X. In the following we will consider a little bit further the other types of combinations. Pm A set x1; : : : ; xm of vectors are linearly independent if i=1 λixi = 0 implies that for every i ≤ m, λi = 0. The dimension of the space spanned by x1; : : : ; xm is the cardinality of a maximum subfamily of x1; : : : ; xm which is linearly independent. The points x0; : : : ; x` of an affine space are said to be affinely independent if the vectors x1−x0; : : : ; x`− x0 are linearly independent. In other words, if we consider the space to be “centered” on x0 then the vectors corresponding to the other points in the vectorial space are independent.
    [Show full text]
  • An Introduction to Convex Polytopes
    Graduate Texts in Mathematics Arne Brondsted An Introduction to Convex Polytopes 9, New YorkHefdelbergBerlin Graduate Texts in Mathematics90 Editorial Board F. W. GehringP. R. Halmos (Managing Editor) C. C. Moore Arne Brondsted An Introduction to Convex Polytopes Springer-Verlag New York Heidelberg Berlin Arne Brondsted K, benhavns Universitets Matematiske Institut Universitetsparken 5 2100 Kobenhavn 0 Danmark Editorial Board P. R. Halmos F. W. Gehring C. C. Moore Managing Editor University of Michigan University of California Indiana University Department of at Berkeley Department of Mathematics Department of Mathematics Ann Arbor, MI 48104 Mathematics Bloomington, IN 47405 U.S.A. Berkeley, CA 94720 U.S.A. U.S.A. AMS Subject Classifications (1980): 52-01, 52A25 Library of Congress Cataloging in Publication Data Brondsted, Arne. An introduction to convex polytopes. (Graduate texts in mathematics; 90) Bibliography : p. 1. Convex polytopes.I. Title.II. Series. QA64.0.3.B76 1982 514'.223 82-10585 With 3 Illustrations. © 1983 by Springer-Verlag New York Inc. All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, U.S.A. Typeset by Composition House Ltd., Salisbury, England. Printed and bound by R. R. Donnelley & Sons, Harrisonburg, VA. Printed in the United States of America. 987654321 ISBN 0-387-90722-X Springer-Verlag New York Heidelberg Berlin ISBN 3-540-90722-X Springer-Verlag Berlin Heidelberg New York Preface The aim of this book is to introduce the reader to the fascinating world of convex polytopes. The highlights of the book are three main theorems in the combinatorial theory of convex polytopes, known as the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem.
    [Show full text]
  • Weak Matrix Majorization Francisco D
    Linear Algebra and its Applications 403 (2005) 343–368 www.elsevier.com/locate/laa Weak matrix majorization Francisco D. Martínez Pería a,∗, Pedro G. Massey a, Luis E. Silvestre b aDepartamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 172, La Plata, Argentina bDepartment of Mathematics, University of Texas at Austin, Austin, USA Received 19 May 2004; accepted 10 February 2005 Available online 31 March 2005 Submitted by R.A. Brualdi Abstract × Given X, Y ∈ Rn m we introduce the following notion of matrix majorization, called weak matrix majorization, n×n X w Y if there exists a row-stochastic matrix A ∈ R such that AX = Y, and consider the relations between this concept, strong majorization (s) and directional maj- orization (). It is verified that s⇒⇒w, but none of the reciprocal implications is true. Nevertheless, we study the implications w⇒s and ⇒s under additional hypotheses. We give characterizations of strong, directional and weak matrix majorization in terms of convexity. We also introduce definitions for majorization between Abelian families of selfadjoint matrices, called joint majorizations. They are induced by the previously mentioned matrix majorizations. We obtain descriptions of these relations using convexity arguments. © 2005 Elsevier Inc. All rights reserved. AMS classification: Primary 15A51; 15A60; 15A45 Keywords: Multivariate and directional matrix majorizations; Row stochastic matrices; Mutually com- muting selfadjoint matrices; Convex sets and functions ∗ Corresponding author. E-mail addresses: [email protected] (F.D. Mart´ınez Per´ıa), [email protected] (P.G. Massey), [email protected] (L.E. Silvestre).
    [Show full text]
  • Lecture 2: Convex Sets
    Lecture 2: Convex sets August 28, 2008 Lecture 2 Outline • Review basic topology in Rn • Open Set and Interior • Closed Set and Closure • Dual Cone • Convex set • Cones • Affine sets • Half-Spaces, Hyperplanes, Polyhedra • Ellipsoids and Norm Cones • Convex, Conical, and Affine Hulls • Simplex • Verifying Convexity Convex Optimization 1 Lecture 2 Topology Review n Let {xk} be a sequence of vectors in R n n Def. The sequence {xk} ⊆ R converges to a vector xˆ ∈ R when kxk − xˆk tends to 0 as k → ∞ • Notation: When {xk} converges to a vector xˆ, we write xk → xˆ n • The sequence {xk} converges xˆ ∈ R if and only if for each component i: the i-th components of xk converge to the i-th component of xˆ i i |xk − xˆ | tends to 0 as k → ∞ Convex Optimization 2 Lecture 2 Open Set and Interior Let X ⊆ Rn be a nonempty set Def. The set X is open if for every x ∈ X there is an open ball B(x, r) that entirely lies in the set X, i.e., for each x ∈ X there is r > 0 s.th. for all z with kz − xk < r, we have z ∈ X Def. A vector x0 is an interior point of the set X, if there is a ball B(x0, r) contained entirely in the set X Def. The interior of the set X is the set of all interior points of X, denoted by R (X) • How is R (X) related to X? 2 • Example X = {x ∈ R | x1 ≥ 0, x2 > 0} R 2 (X) = {x ∈ R | x1 > 0, x2 > 0} R n 0 (S) of a probability simplex S = {x ∈ R | x 0, e x = 1} Th.
    [Show full text]
  • Lecture 3 Convex Functions
    Lecture 3 Convex functions (Basic properties; Calculus; Closed functions; Continuity of convex functions; Subgradients; Optimality conditions) 3.1 First acquaintance Definition 3.1.1 [Convex function] A function f : M ! R defined on a nonempty subset M of Rn and taking real values is called convex, if • the domain M of the function is convex; • for any x; y 2 M and every λ 2 [0; 1] one has f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y): (3.1.1) If the above inequality is strict whenever x 6= y and 0 < λ < 1, f is called strictly convex. A function f such that −f is convex is called concave; the domain M of a concave function should be convex, and the function itself should satisfy the inequality opposite to (3.1.1): f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y); x; y 2 M; λ 2 [0; 1]: The simplest example of a convex function is an affine function f(x) = aT x + b { the sum of a linear form and a constant. This function clearly is convex on the entire space, and the \convexity inequality" for it is equality; the affine function is also concave. It is easily seen that the function which is both convex and concave on the entire space is an affine function. Here are several elementary examples of \nonlinear" convex functions of one variable: 53 54 LECTURE 3. CONVEX FUNCTIONS • functions convex on the whole axis: x2p, p being positive integer; expfxg; • functions convex on the nonnegative ray: xp, 1 ≤ p; −xp, 0 ≤ p ≤ 1; x ln x; • functions convex on the positive ray: 1=xp, p > 0; − ln x.
    [Show full text]
  • Proquest Dissertations
    u Ottawa L'Universitd canadienne Canada's university FACULTE DES ETUDES SUPERIEURES l==I FACULTY OF GRADUATE AND ET POSTOCTORALES U Ottawa POSDOCTORAL STUDIES L'Universit6 canadienne Canada's university Guy Beaulieu "MEWDE"UATH£S17XUTHORWTHE"STS" Ph.D. (Mathematics) GRADE/DEGREE Department of Mathematics and Statistics 7ACulTirfc6L17bT^ Probabilistic Completion of Nondeterministic Models TITRE DE LA THESE / TITLE OF THESIS Philip Scott DIREWEURlbTRECTRicirDE'iSTHESE"/ THESIS SUPERVISOR EXAMINATEURS (EXAMINATRICES) DE LA THESE /THESIS EXAMINERS Richard Blute _ _ Paul-Eugene Parent Michael Mislove Benjamin Steinberg G ^y.W:.Slater.. Le Doyen de la Faculte des etudes superieures et postdoctorales / Dean of the Faculty of Graduate and Postdoctoral Studies PROBABILISTIC COMPLETION OF NONDETERMINISTIC MODELS By Guy Beaulieu, B.Sc, M.S. Thesis submitted to the Faculty of Graduate and Postdoctoral Studies University of Ottawa in partial fulfillment of the requirements for the PhD degree in the Ottawa-Carleton Institute for Graduate Studies and Research in Mathematics and Statistics ©2008 Guy Beaulieu, B.Sc, M.S. Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-48387-9 Our file Notre reference ISBN: 978-0-494-48387-9 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library
    [Show full text]