Molecular Basis for the Recruitment and Function of DDX6 and GIGYF2 for Post-Transcriptional Silencing by Mirnas

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Basis for the Recruitment and Function of DDX6 and GIGYF2 for Post-Transcriptional Silencing by Mirnas Molecular basis for the recruitment and function of DDX6 and GIGYF2 for post-transcriptional silencing by miRNAs By Christopher Rouya Department of Biochemistry McGill University Montreal, Quebec, Canada August 2015 A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Masters of Science. ©Christopher Rouya, 2015 Dedication This thesis is dedicated to my mother. I love you and thank you. You have made me who I am, and will always be what inspires me to move forward. 2 Abstract Dynamic and localized changes in the proteome are often engendered by post-transcriptional pathways which rapidly alter the rates of mRNA translation and degradation. Specifically, the microRNA (miRNA) class of non-coding RNAs silence target mRNA transcripts through sequential mRNA translation suppression and decay. Despite a deeper understanding of the manner by which miRNAs commit their targets to the 5‟-3‟ mRNA degradation pathway, the molecular basis for translation inhibition by miRNAs remains unclear. Here, we have endeavoured to identify microRNA-induced silencing complex (miRISC)-associated proteins that may impact mRNA translation, and assess the functional relevance of these proteins for miRNA function. First, we determine that the translation repressor and decapping activator, DDX6, interacts with the mammalian miRISC via binding to the CCR4-NOT deadenylase complex component, CNOT1. Disrupting complex formation affects miRISC-dependent gene silencing, thus revealing how DDX6 is recruited to, and important for, optimal miRISC activity. Moreover, we discover that the miRISC core protein, GW182, directly binds a component of a putative translation repressor complex, GIGYF2. Abrogating this interaction is accomplished through targeted mutation of conserved elements in both proteins, and establishes the groundwork for future functional studies of this complex for miRNA repression. Hence, factors recruited to miRISC are identified, and their potential contributions to miRNA-directed control of gene expression are elucidated. 3 Resume Des changements dynamiques et localisés du protéome sont souvent engendrés par des mécanismes post-transcriptionnels qui modifient rapidement les taux de traduction et de dégradation des ARNm. En particulier, les petits ARN non-codants de type microARN (miARN) inhibent l‟expression de leur ARNm cibles en induisant de manière séquentielle la suppression de la traduction de ces ARNm, puis leur dégradation par la voie 5‟-3‟. Bien que le mécanisme de dégradation par les miARN soit bien compris, les bases moléculaires de l'inhibition traductionnelle de ces cibles restent encore inconnues. Nous avons donc cherché à identifier les protéines associées au complexe effecteur de l‟activité des miARN (miRISC) qui sont responsables de la répression traductionnelle, et à confirmer la pertinence fonctionnelle de ces protéines pour l‟activité des miARN. Nous avons ainsi déterminé que la protéine DDX6, un répresseur traductionnel et activateur du décoiffage des ARNm, interagit avec le complexe miRISC via sa liaison à la sous-unité CNOT1 du complexe de déadénylation CCR4-NOT. L‟invalidation de l‟interaction DDX6-CNOT1 perturbe la répression par le complexe miRISC, confirmant donc que DDX6 est indispensable à l'activité optimale de miRISC. De plus, nous avons découvert que la protéine centrale de miRISC, GW182, se lie directement à la protéine GIGYF2, un composant d'un complexe répresseur putatif de la traduction. Des expériences de mutagénèse dirigée visant les résidus conservés sont actuellement en cours afin d‟inhiber l‟interaction GW182-GIGYF2. Ces données permettront d‟établir des bases expérimentales solides pour de futures études fonctionnelles du rôle de ce complexe dans la répression par les miRNA. Par conséquent, de nouveaux facteurs recrutés par le complexe miRISC ont été identifiés, et leurs contributions potentielles à la régulation de l‟expression génique par les miARN sont désormais mieux comprises. 4 Preface This thesis is a compilation of one published manuscript for which I am first author, and ongoing work for a manuscript that is in preparation. Chapter 2: Human DDX6 Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1. Christopher Rouya, Nadeem Siddiqui, Masahiro Morita, Thomas F. Duchaine, Marc R. Fabian, and Nahum Sonenberg. RNA 2014 Sep; 20(9): 1398-409 Chapter 3: Investigating the functional significance of a GW182-GIGYF2 interaction for post- transcriptional gene silencing by miRNAs. Christopher Rouya, Nadeem Siddiqui, Masahiro Morita, Nahum Sonenberg (In preparation) I would like to acknowledge the work of my co-authors for each chapter, and thank them for their collaboration. Chapter 2 Nadeem Siddiqui provided invaluable guidance in developing the project and preparing the manuscript. Masahiro Morita aided in the interpretation of RT-qPCR data. Marc R. Fabian gave critical insights on technical and conceptual aspects of the paper, and helped to direct the project. Thomas F. Duchaine provided expert comments on the manuscript. I performed all experiments and wrote the entire manuscript. Chapter 3 Masahiro Morita helped conceive the project, and provided a great deal of guidance along with Nadeem Siddiqui. I performed all experiments for this chapter. 5 Acknowledgements I would like to extend my sincerest gratitude towards Dr. Sonenberg for allowing me to work in his laboratory and benefit from his training. In this short time, your expectations, constant questioning, and passion for research have enabled me to grow dramatically as a young scientist, and have motivated me to continue investigating fundamental biological questions. I have learned invaluable lessons about how to survive and thrive in an incredibly competitive environment from our interactions, and I appreciate everything you have done for me. Being surrounded by talented and bright researchers has contributed greatly to my graduate studies, and I am grateful to all members of the laboratory for their support at one time or another. I am especially indebted to several of my colleagues who have been instrumental in forwarding the projects that I have been a part of, and who have been there for encouragement and experimental help along the way. To Nadeem Siddiqui, I “thank you very much” for everything: the wisdom, the discussions, the science, the help, and the laughs. I am not sure what this all would have been like without someone around who recognizes strangeness the way I do, so I am extremely happy to have shared this experience with you. To Marc Fabian, you taught me everything I know about how to practically approach science and writing. You were an excellent mentor, and consistently acted as an example for what an effective scientist should be. You showed me that balancing experiments, writing, presentations, and life can be possible, so long as you (presumably) never sleep. I will always remember your training, and deeply appreciate your influence on my growth as a scientist. To Masahiro Morita, I could not ask for a better desk mate. I remain convinced that you have done every experiment known to man, and I hope to become as capable and as brilliant of a scientist as you are. I thank you immensely for your patience in listening to my experimental issues, and for providing great ideas for my projects. I must thank Meena Vipparti and Sandra Perreault for their excellent technical assistance. Without them, our lab would cease to function. I would also like to acknowledge people who gave me general guidance and made the laboratory an enjoyable place to spend 60 hours a week. In particular, Evette Yassa, Johannes Ristau, Maayan Shapiro, Yuri Svitkin, Chadi Zakaria, Nathaniel Robichaud, Clement Chapat, Akiko Yanagiya, Tommy Alain‟s singing voice, Devon Merkley, and Soroush Tahmasebi have all contributed to an amazing laboratory atmosphere. 6 Table of Contents Dedication ....................................................................................................................................... 2 Abstract ........................................................................................................................................... 3 Resume ............................................................................................................................................ 4 Preface............................................................................................................................................. 5 Acknowledgements ......................................................................................................................... 6 Table of Contents ............................................................................................................................ 7 List of Figures ................................................................................................................................. 9 List of Tables .................................................................................................................................. 9 1 Chapter 1: Introduction .......................................................................................................... 10 1.1 Post-transcriptional control ............................................................................................ 10 1.2 Overview of Eukaryotic mRNA translation ................................................................... 12 1.3 The Eukaryotic Ribosome .............................................................................................
Recommended publications
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy
    cells Review DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy Lu Zhang 1,2 and Xiaogang Li 2,3,* 1 Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; [email protected] 2 Department of Internal Medicine, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55905, USA 3 Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55905, USA * Correspondence: [email protected]; Tel.: +1-507-266-0110 Abstract: Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regula- tion has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis.
    [Show full text]
  • Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins
    Biomolecules 2015, 5, 1441-1466; doi:10.3390/biom5031441 OPEN ACCESS biomolecules ISSN 2218-273X www.mdpi.com/journal/biomolecules/ Article Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins Rebecca Bish 1,†, Nerea Cuevas-Polo 1,†, Zhe Cheng 1, Dolores Hambardzumyan 2, Mathias Munschauer 3, Markus Landthaler 3 and Christine Vogel 1,* 1 Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA; E-Mails: [email protected] (R.B.); [email protected] (N.C.-P.); [email protected] (Z.C.) 2 The Cleveland Clinic, Department of Neurosciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA; E-Mail: [email protected] 3 RNA Biology and Post-Transcriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Str. 10, Berlin 13092, Germany; E-Mails: [email protected] (M.M.); [email protected] (M.L.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-212-998-3976; Fax: +1-212-995-4015. Academic Editor: André P. Gerber Received: 10 May 2015 / Accepted: 15 June 2015 / Published: 15 July 2015 Abstract: DDX6 (p54/RCK) is a human RNA helicase with central roles in mRNA decay and translation repression. To help our understanding of how DDX6 performs these multiple functions, we conducted the first unbiased, large-scale study to map the DDX6-centric protein-protein interactome using immunoprecipitation and mass spectrometry. Using DDX6 as bait, we identify a high-confidence and high-quality set of protein interaction partners which are enriched for functions in RNA metabolism and ribosomal proteins.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • Gene Expression During Normal and FSHD Myogenesis Tsumagari Et Al
    Gene expression during normal and FSHD myogenesis Tsumagari et al. Tsumagari et al. BMC Medical Genomics 2011, 4:67 http://www.biomedcentral.com/1755-8794/4/67 (27 September 2011) Tsumagari et al. BMC Medical Genomics 2011, 4:67 http://www.biomedcentral.com/1755-8794/4/67 RESEARCHARTICLE Open Access Gene expression during normal and FSHD myogenesis Koji Tsumagari1, Shao-Chi Chang1, Michelle Lacey2,3, Carl Baribault2,3, Sridar V Chittur4, Janet Sowden5, Rabi Tawil5, Gregory E Crawford6 and Melanie Ehrlich1,3* Abstract Background: Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35. Within each repeat unit is a gene, DUX4, that can encode a protein containing two homeodomains. A DUX4 transcript derived from the last repeat unit in a contracted array is associated with pathogenesis but it is unclear how. Methods: Using exon-based microarrays, the expression profiles of myogenic precursor cells were determined. Both undifferentiated myoblasts and myoblasts differentiated to myotubes derived from FSHD patients and controls were studied after immunocytochemical verification of the quality of the cultures. To further our understanding of FSHD and normal myogenesis, the expression profiles obtained were compared to those of 19 non-muscle cell types analyzed by identical methods. Results: Many of the ~17,000 examined genes were differentially expressed (> 2-fold, p < 0.01) in control myoblasts or myotubes vs. non-muscle cells (2185 and 3006, respectively) or in FSHD vs. control myoblasts or myotubes (295 and 797, respectively). Surprisingly, despite the morphologically normal differentiation of FSHD myoblasts to myotubes, most of the disease-related dysregulation was seen as dampening of normal myogenesis- specific expression changes, including in genes for muscle structure, mitochondrial function, stress responses, and signal transduction.
    [Show full text]
  • Dissertation
    Regulation of gene silencing: From microRNA biogenesis to post-translational modifications of TNRC6 complexes DISSERTATION zur Erlangung des DOKTORGRADES DER NATURWISSENSCHAFTEN (Dr. rer. nat.) der Fakultät Biologie und Vorklinische Medizin der Universität Regensburg vorgelegt von Johannes Danner aus Eggenfelden im Jahr 2017 Das Promotionsgesuch wurde eingereicht am: 12.09.2017 Die Arbeit wurde angeleitet von: Prof. Dr. Gunter Meister Johannes Danner Summary ‘From microRNA biogenesis to post-translational modifications of TNRC6 complexes’ summarizes the two main projects, beginning with the influence of specific RNA binding proteins on miRNA biogenesis processes. The fate of the mature miRNA is determined by the incorporation into Argonaute proteins followed by a complex formation with TNRC6 proteins as core molecules of gene silencing complexes. miRNAs are transcribed as stem-loop structured primary transcripts (pri-miRNA) by Pol II. The further nuclear processing is carried out by the microprocessor complex containing the RNase III enzyme Drosha, which cleaves the pri-miRNA to precursor-miRNA (pre-miRNA). After Exportin-5 mediated transport of the pre-miRNA to the cytoplasm, the RNase III enzyme Dicer cleaves off the terminal loop resulting in a 21-24 nt long double-stranded RNA. One of the strands is incorporated in the RNA-induced silencing complex (RISC), where it directly interacts with a member of the Argonaute protein family. The miRNA guides the mature RISC complex to partially complementary target sites on mRNAs leading to gene silencing. During this process TNRC6 proteins interact with Argonaute and recruit additional factors to mediate translational repression and target mRNA destabilization through deadenylation and decapping leading to mRNA decay.
    [Show full text]
  • Importance of the Conserved Carboxyl-Terminal CNOT1 Binding Domain to Tristetraprolin Activity in Vivo Wi S
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2019 Importance of the conserved carboxyl-terminal CNOT1 binding domain to tristetraprolin activity in vivo Wi S. Lai Deborah J. Stumpo Melissa L. Wells Artion Gruzdev Stephanie N. Hicks See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Authors Wi S. Lai, Deborah J. Stumpo, Melissa L. Wells, Artion Gruzdev, Stephanie N. Hicks, Cindo O. Nicholson, Zhengfeng Yang, Roberta Faccio, Michael W. Webster, Lori A. Passmore, and Perry J. Blackshear RESEARCH ARTICLE crossm Importance of the Conserved Carboxyl-Terminal CNOT1 Binding Domain to Tristetraprolin Activity In Vivo Wi S. Lai,a Deborah J. Stumpo,a Melissa L. Wells,a Artiom Gruzdev,b Stephanie N. Hicks,a Cindo O. Nicholson,a Zhengfeng Yang,c,f* Roberta Faccio,c,f Michael W. Webster,d* Lori A. Passmore,d Perry J. Blacksheara,e Downloaded from aSignal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA bReproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA cDepartment of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA dMRC Laboratory of Molecular Biology, Cambridge, United Kingdom eDepartments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA fShriners Hospitals for Children, St. Louis, Missouri, USA ABSTRACT Tristetraprolin (TTP) is an anti-inflammatory protein that modulates the sta- http://mcb.asm.org/ bility of certain cytokine/chemokine mRNAs. After initial high-affinity binding to AU-rich elements in 3= untranslated regions of target mRNAs, mediated through its tandem zinc finger (TZF) domain, TTP promotes the deadenylation and ultimate decay of target tran- scripts.
    [Show full text]
  • Importance of CNOT8 Deadenylase Subunit in DNA Damage Responses Following Ionizing Radiation (IR)
    Reports of Biochemistry & Molecular Biology Vol.9, No.1, July 2020 Original article www.RBMB.net Importance of CNOT8 Deadenylase Subunit in DNA Damage Responses Following Ionizing Radiation (IR) Samira Eskandarian1,2, Roger Grand2, Shiva Irani*1, Mohsen Saeedi3, Reza Mirfakhraie4 Abstract Background: The Ccr4-Not protein complex (CNOT complex) is a key regulator of gene expression in eukaryotic cells. Ccr4-Not Complex is composed of at least nine conserved subunits in mammalian cells with two main enzymatic activities. CNOT8 is a subunit of the complex with deadenylase activity that interacts transiently with the CNOT6 or CNOT6L subunits. Here, we focused on the role of the human CNOT8 subunit in the DNA damage response (DDR). Methods: Cell viability was assessed to measure ATP level using a Cell Titer-Glo Luminescence reagent up to 4 days’ post CNOT8 siRNA transfection. In addition, expression level of phosphorylated proteins in signalling pathways were detected by western blotting and immunofluorescence microscopy. CNOT8- depleted Hela cells post- 3 Gy ionizing radiation (IR) treatment were considered as a control. Results: Our results from cell viability assays indicated a significant reduction at 72-hour post CNOT8 siRNA transfection (p= 0.04). Western blot analysis showed slightly alteration in the phosphorylation of DNA damage response (DDR) proteins in CNOT8-depleted HeLa cells following treatment with ionizing radiation (IR). Increased foci formation of H2AX, RPA, 53BP1, and RAD51 foci was observed after IR in CNOT8-depleted cells compared to the control cells. Conclusions: We conclude that CNOT8 deadenylase subunit is involved in the cellular response to DNA damage. Keywords: CNOT complex, CNOT8, DNA damage response, SiRNA.
    [Show full text]
  • Transcriptional Regulator CNOT3 Defines an Aggressive Colorectal Cancer Subtype
    Published OnlineFirst November 29, 2016; DOI: 10.1158/0008-5472.CAN-16-1346 Cancer Tumor and Stem Cell Biology Research Transcriptional Regulator CNOT3 Defines an Aggressive Colorectal Cancer Subtype Paloma Cejas1,2,3, Alessia Cavazza1,2, C.N. Yandava1, Victor Moreno3, David Horst4, Juan Moreno-Rubio3, Emilio Burgos5, Marta Mendiola3,5, Len Taing1, Ajay Goel6, Jaime Feliu3, and Ramesh A. Shivdasani1,2 Abstract Cancer cells exhibit dramatic alterations of chromatin organi- primarily to genes whose expression was affected by CNOT3 loss, zation at cis-regulatory elements, but the molecular basis, extent, and also at sites modulated in certain types of colorectal cancers. and impact of these alterations are still being unraveled. Here, we These target genes were implicated in ESC and cancer self-renewal identify extensive genome-wide modification of sites bearing the and fell into two distinct groups: those dependent on CNOT3 and active histone mark H3K4me2 in primary human colorectal MYC for optimal transcription and those repressed by CNOT3 cancers, as compared with corresponding benign precursor ade- binding and promoter hypermethylation. Silencing CNOT3 in nomas. Modification of certain colorectal cancer sites highlighted colorectal cancer cells resulted in replication arrest. In clinical þ the activity of the transcription factor CNOT3, which is known to specimens, early-stage tumors that included >5% CNOT3 cells control self-renewal of embryonic stem cells (ESC). In primary exhibited a correlation to worse clinical outcomes compared with colorectal cancer cells, we observed a scattered pattern of CNOT3 tumors with little to no CNOT3 expression. Together, our findings expression, as might be expected for a tumor-initiating cell mark- implicate CNOT3 in the coordination of colonic epithelial cell er.
    [Show full text]
  • Inhibition of Notch Signaling Attenuates Pituitary Adenoma Growth in Nude Mice
    26 1 Endocrine-Related Z-B Lautaro et al. Notch inhibition and pituitary 26:1 13–29 Cancer tumor growth RESEARCH Inhibition of Notch signaling attenuates pituitary adenoma growth in Nude mice Lautaro Zubeldía-Brenner1, Catalina De Winne1, Sofía Perrone2, Santiago A Rodríguez-Seguí3,4, Christophe Willems5, Ana María Ornstein1, Isabel Lacau-Mengido1, Hugo Vankelecom5, Carolina Cristina2* and Damasia Becu-Villalobos1* 1Instituto de Biología y Medicina Experimental, IBYME-CONICET, Buenos Aires, Argentina 2Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA (UNNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Buenos Aires, Argentina 3Departamento de Fisiología y Biología Molecular y Celular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina 4CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina 5Department of Development and Regeneration, Cluster Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium Correspondence should be addressed to D Becu-Villalobos: [email protected] *(C Cristina and D Becu-Villalobos contributed equally) Abstract Preclinical and clinical studies support that Notch signaling may play an important Key Words oncogenic role in cancer, but there is scarce information for pituitary tumors. f DAPT We therefore undertook a functional study to evaluate Notch participation in f pituitary pituitary adenoma growth. Tumors generated in Nude mice by subcutaneous GH3 f angiogenesis somatolactotrope cell injection were treated in vivo with DAPT, a γ-secretase inhibitor, f prolactin thus inactivating Notch signaling. This treatment led to pituitary tumor reduction, lower f GH prolactin and GH tumor content and a decrease in angiogenesis.
    [Show full text]
  • POGLUT1, the Putative Effector Gene Driven by Rs2293370 in Primary
    www.nature.com/scientificreports OPEN POGLUT1, the putative efector gene driven by rs2293370 in primary biliary cholangitis susceptibility Received: 6 June 2018 Accepted: 13 November 2018 locus chromosome 3q13.33 Published: xx xx xxxx Yuki Hitomi 1, Kazuko Ueno2,3, Yosuke Kawai1, Nao Nishida4, Kaname Kojima2,3, Minae Kawashima5, Yoshihiro Aiba6, Hitomi Nakamura6, Hiroshi Kouno7, Hirotaka Kouno7, Hajime Ohta7, Kazuhiro Sugi7, Toshiki Nikami7, Tsutomu Yamashita7, Shinji Katsushima 7, Toshiki Komeda7, Keisuke Ario7, Atsushi Naganuma7, Masaaki Shimada7, Noboru Hirashima7, Kaname Yoshizawa7, Fujio Makita7, Kiyoshi Furuta7, Masahiro Kikuchi7, Noriaki Naeshiro7, Hironao Takahashi7, Yutaka Mano7, Haruhiro Yamashita7, Kouki Matsushita7, Seiji Tsunematsu7, Iwao Yabuuchi7, Hideo Nishimura7, Yusuke Shimada7, Kazuhiko Yamauchi7, Tatsuji Komatsu7, Rie Sugimoto7, Hironori Sakai7, Eiji Mita7, Masaharu Koda7, Yoko Nakamura7, Hiroshi Kamitsukasa7, Takeaki Sato7, Makoto Nakamuta7, Naohiko Masaki 7, Hajime Takikawa8, Atsushi Tanaka 8, Hiromasa Ohira9, Mikio Zeniya10, Masanori Abe11, Shuichi Kaneko12, Masao Honda12, Kuniaki Arai12, Teruko Arinaga-Hino13, Etsuko Hashimoto14, Makiko Taniai14, Takeji Umemura 15, Satoru Joshita 15, Kazuhiko Nakao16, Tatsuki Ichikawa16, Hidetaka Shibata16, Akinobu Takaki17, Satoshi Yamagiwa18, Masataka Seike19, Shotaro Sakisaka20, Yasuaki Takeyama 20, Masaru Harada21, Michio Senju21, Osamu Yokosuka22, Tatsuo Kanda 22, Yoshiyuki Ueno 23, Hirotoshi Ebinuma24, Takashi Himoto25, Kazumoto Murata4, Shinji Shimoda26, Shinya Nagaoka6, Seigo Abiru6, Atsumasa Komori6,27, Kiyoshi Migita6,27, Masahiro Ito6,27, Hiroshi Yatsuhashi6,27, Yoshihiko Maehara28, Shinji Uemoto29, Norihiro Kokudo30, Masao Nagasaki2,3,31, Katsushi Tokunaga1 & Minoru Nakamura6,7,27,32 Primary biliary cholangitis (PBC) is a chronic and cholestatic autoimmune liver disease caused by the destruction of intrahepatic small bile ducts. Our previous genome-wide association study (GWAS) identifed six susceptibility loci for PBC.
    [Show full text]