Molecular Characterization of Methanotrophic and Chemoautotrophic Communities at Cold Seeps
Total Page:16
File Type:pdf, Size:1020Kb
Molecular Characterization of Methanotrophic and Chemoautotrophic Communities at Cold Seeps Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften - Dr. rer. nat. - dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Tina Lösekann Bremen März 2006 Die Untersuchungen zur vorliegenden Doktorarbeit wurden in der Zeit von September 2002 bis März 2006 am Max-Planck-Institut für Marine Mikrobiologie in Bremen durchgeführt. 1. Gutachterin: Prof. Dr. A. Boetius 2. Gutachter: Prof. Dr. R. Amann Weitere Prüfer: Prof. Dr. U. Fischer Dr. K. Knittel Tag des Promotionskolloquiums: 30. März 2006 Table of Contents Summary ................................................................................................................................... 1 Zusammenfassung..................................................................................................................... 2 Part I: Combined Presentation of Results A Introduction .............................................................................................................. 5 1 Reducing Habitats in the Ocean............................................................................. 6 1.1 Oxygen Minimum Zones............................................................................. 7 1.2 Large Organic Falls..................................................................................... 7 1.3 Hydrothermal Vents..................................................................................... 8 1.4 Cold Seeps................................................................................................... 8 2 Key Biogeochemical Processes in Reducing Habitats .......................................... 10 2.1 Methanogenesis ........................................................................................... 10 2.2 Anaerobic Oxidation of Methane................................................................. 11 2.3 Sulfate Reduction......................................................................................... 14 2.4 Oxidation of Sulfide..................................................................................... 14 2.5 Aerobic Oxidation of Methane .................................................................... 16 2.6 Oxidation of Other Reduced Elements ........................................................ 18 3 Key Players in Reducing Habitats ......................................................................... 18 3.1 Anaerobic Methane-Oxidizing Archaea...................................................... 18 3.2 Sulfate-Reducing Bacteria........................................................................... 21 3.3 Sulfide-Oxidizing Bacteria.......................................................................... 22 3.4 Aerobic Methane-Oxidizing Bacteria.......................................................... 23 3.5 Symbiont-Bearing Marine Invertebrates...................................................... 24 4 Cultivation-Independent Methods for the Identification of Microorganisms........ 27 4.1 The Full Cycle rRNA Approach.................................................................. 27 4.2 Lipid Biomarkers ......................................................................................... 28 4.3 Metagenomics.............................................................................................. 28 5 Thesis Outline........................................................................................................ 29 B Results and Discussion............................................................................................. 31 1 Haakon Mosby Mud Volcano (Barents Sea) ......................................................... 31 1.1 Methanotrophic Communities in Surface Sediments .................................. 31 1.2 Microbial Communities in Subsurface Sediments....................................... 35 1.3 Microbial Communities in Mats of Sulfur-Oxidizing Bacteria ................... 36 1.4 Symbioses between Bacteria and Siboglinid Tubeworms ........................... 38 1.5 Diversity of mcrA Genes.............................................................................. 39 2 Cascadia Margin (Hydrate Ridge, coast off Oregon) ............................................ 41 2.1 Detection and Quantification of ANME-2 Subgroups in Surface Sediments........................................................................................ 42 2.2 Detection of ANME-3 in Surface Sediments............................................... 43 2.3 Methanotrophic Communities in Shallow Subsurface Sediments and Gas Hydrates................................................................................................ 43 3 Final Discussion..................................................................................................... 44 3.1 Key Microbial Players and Their Distribution............................................. 44 3.2 Difference between Surface and Subsurface Communities......................... 47 3.3 Interspecies Associations............................................................................. 48 3.4 Environmental Selection of ANME Groups................................................ 49 3.5 Outlook ........................................................................................................ 53 C References ................................................................................................................. 55 Part II: Publications A List of Publications................................................................................................... 65 B Publications............................................................................................................... 69 1 Fluid Flow Controls Distribution of Methanotrophic Microorganisms at Submarine Cold Seeps....................................................................................... 69 2 Novel Clusters of Aerobic and Anaerobic Methane Oxidizers at an Arctic Cold Seep (Haakon Mosby Mud Volcano, Barents Sea)....................... 87 3 Endosymbioses between Bacteria and Deep-Sea Siboglinid Tubeworms from an Arctic Cold Seep (Haakon Mosby Mud Volcano, Barents Sea).............. 117 4 Microbial Diversity and Community Composition in Gas Hydrates and Hydrate-Bearing Sediments of the Cascadia Margin (Hydrate Ridge) ................. 145 5 Diversity and Distribution of Methanotrophic Archaea at Cold Seeps............................................................................................................. 177 Part III: Appendix A List of Clones ............................................................................................................ 191 Acknowledgement..................................................................................................................... 197 Summary Summary Cold seeps are complex ecosystems based on chemosynthesis. Sulfide and methane are available in high concentrations and support a variety of highly adapted microorganisms and symbiont-bearing invertebrates. The anaerobic oxidation of methane (AOM) is a key biogeochemical process at cold seeps and is assumed to be mediated by a consortium of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria. In this thesis I used 16S rRNA-based molecular methods to identify and quantify methanotrophic and chemoautotrophic, sulfur-oxidizing communities at two cold seeps and collaborated with scientists from other disciplines to correlate the molecular results with biogeochemical, geological, and physical data sets. Two types of cold seeps were studied, the Arctic Haakon Mosby Mud Volcano (HMMV; 1250 m water depth) and the Hydrate Ridge at the Cascadia Margin (700 m water depth) off the coast of Oregon. The actively methane-seeping HMMV hosts novel clades of aerobic and anaerobic methanotrophs. The distribution of the methanotrophic guilds is controlled by fluid flow and bioirrigation activities of marine invertebrates. The center of the volcano is characterized by high upward fluid flow. High numbers of novel aerobic methanotrophs were detected in the upper millimeters of the sediment. These dominated the microbial community in surface sediments of HMMV. At sites with decreased upward fluid flow, a new group of ANME archaea (ANME-3) was identified, dominating the zone of AOM in 1-4 cm sediment depth. In this zone, the microbial biomass was almost entirely comprised by ANME-3 archaea which form consortia with sulfate-reducing bacteria of the Desulfobulbus branch. In bioirrigated sediments populated by siboglinid tubeworms, sulfate is transported deeper into the sediment and here the AOM consortia were found at the base of the tubeworm roots. The symbioses between bacteria and the tubeworms at HMMV were characterized. Two species of tubeworms coexist at the same site and represent the dominant megafauna at HMMV. The symbionts of Sclerolinum contortum were identified as chemoautotrophic sulfur oxidizers and are closely related to symbionts of vestimentiferan tubeworms. The symbionts of Oligobrachia haakonmosbiensis represent a novel symbiont lineage. The molecular results in combination with stable carbon isotope analysis suggest that this species may harbor both chemoautotrophic sulfur-oxidizing and methane-oxidizing symbionts. Another focus of the thesis was to compare microbial communities in gas hydrate bearing shallow subsurface sediments with surface communities at Hydrate Ridge. The microbial diversity in these