Hot Spots Tackling Environmental Challenges in the Barents Region

Total Page:16

File Type:pdf, Size:1020Kb

Hot Spots Tackling Environmental Challenges in the Barents Region Hot Spots Tackling environmental challenges in the Barents Region The unique and highly Contents 3 Case studies Preface sensitive natural ‘environmental hot spots’, was prepared by Preface environment of the Barents Region is ex- the Arctic Monitoring and Assessment Pro- 16 posed to a multitude of threats that need to gramme of the Arctic Council (AMAP) and 4 It all depends be addressed through extensive internation- NEFCO. Over the years, the report has served Co-operation on Lake Onega al efforts. The accelerating climate change is as a frame of reference and compass for on Barents already visible in the Barents region; moreo- tangible projects and measures to address environmental 22 ver, airborne emissions and discharges from environmental issues.. hot spots More heat with less energy industrial facilities have an impact on the As we gather in Inari, Finland, for a meet- 6 ecosystem and cause health problems. En- ing of the BEAC Ministers of Environment Fund Manager’s 26 vironmental pollution transcends national in December 2013, it is time to bring it all Overview Towards a borders and therefore it is important that together and draw conclusions. What envi- 01 cleaner Komi environmental initiatives are addressed by ronmental problems have been attended to ER G 8 international co-operation. and what remains to be done to achieve a Chair’s 30 This year marks the 20th anniversary of cleaner environment in the Barents Region? ASTENBER Overview The hunt the establishment of the Barents Euro-Arctic We will approach these issues partly by pre- R for clean water Council and the Kirkenes Declaration signed senting tangible examples in this brochure atrik P 10 by Norway, Sweden, Denmark, Finland, Ice- of successful environmental projects imple- Environmental 34 land, Russia and the EU. Environmental is- mented in the Barents Region with local ef- hot spots in Arctic Russia sues were at the core of the international co- forts and within the framework of interna- the Barents being cleaned up Thanks to operation from the very beginning. tional co-operation. In addition to this bro- Region In 1994, the Barents Region Environment chure, we will also issue a special assess- 38 joint efforts, Fresh winds in environmental Action Programme was adopted by the Min- ment providing a detailed analysis of the Archangel isters of the Environment of the countries 42 hot spots singled out in 2003. issues are today involved. In 2003, a report was released iden- International environmental co-operation 42 high on the tifying 42 acute environmental problems in in the Barents Region is not only about in- Energy out of political agenda the Barents Region requiring urgent action. vestments, statistics, emission reductions pesticides The report, which introduced the concept of and project portfolios. Thanks to joint ef- forts, environmental issues are today high on the political agenda. The inventory of hot spots carried out in the Barents Region has prompted similar surveys elsewhere in Russia, showing the power of leading by ex- ample. apankki MNRE RF MNRE It is our sincere hope that the examples in this brochure will encourage further en- / YHA KUV YHA / vironmental improvements in order to up- grade the living conditions and the state of OKKANEN H the environment in the Barents Region. entti P 01 Sergey Donskoy Ville Niinistö The city centre Minister of Natural Minister of of Archangel with Novodvinsk Resources and the Environment, paper mill on Environment of the Finland the horizon. Russian Federation 2 Barents Hot Spots Barents Hot Spots 3 01 01 KNP Co-operation Orthodox wooden chapel on Barents in the Kenozero environmental National Park. hot spots The Barents Euro-Arctic Council The Barents Foreign (BEAC) is the forum for inter- and Environment governmental and interregional Ministers have called for the implementa- co-operation in the Barents region. tion of environmental measures at all hot It gathers together the countries spots by 2013. To estimate the achievement and regional authorities in Northern of this goal, the WGE ordered an assessment Europe to promote stability and report in order to collect comprehensive in- sustainable development in the formation on the status of each of the orig- Barents Region. inal 42 hot spots. The Consultancy Agency Akvaplan-Niva carried out the assessment based on reports provided by the Regional The Working Group on Environment (WGE) Hot Spot Exclusion Groups in the Russian of the Barents Euro-Arctic Council started to Barents Region. work on environmental ‘hot spots’ in 1995 The assessment report and presented a hot spot list for the Minis- concludes that ters of the Environment in the region. Hot measures aimed at solving environmental spots are sites which are polluted and pose problems have been taken at all 42 hot spots both environmental and health risks. The identified by the original report from 2003. WGE commissioned the Nordic Environ- However, the measures are on different lev- ment Finance Corporation (NEFCO) and els. Three hot spots have been entirely ex- the Arctic Monitoring and Assessment Pro- cluded from the list to date. Additional hot gramme (AMAP) to update the list of hot spots are expected to be excluded from the spots in 2003. This report evaluated the pro- list by the end of 2013. gress of the work performed during the first years and the updated list. 4 Barents Hot Spots Barents Hot Spots 5 Since the early days, the Nordic Fund Environment Finance Corporation and projects at the hot spots. Over EUR 4 Manager’s (NEFCO) has played a central role million has been set off for around 70 var- in international and regional co- ious initiatives. There are also other dedi- Overview operation in the Barents Region. cated trust funds such as the Swedish Bar- ents Window. The Project Support Instru- ment (PSI) that NEFCO manages for the Arc- NEFCO is in a unique 01 position for such a task, tic Council will also be pivotal for the Bar- V acting as an observer not only in the BEAC it- ents Region. REHANO self but also having similar roles in the Arctic Besides general institutional support to . K . E Council, the Nordic Council of Ministers, the the exclusion process, the BHSF has contrib- Northern Dimension Environmental Part- uted to sector studies, inventories, feasibility nership and many other fora for environ- studies, business plans and other measures mental and clean energy co-operation. related to different hot spots. They range As a Nordic financial institution, NEFCO in size and scope from small demonstra- has over 20 years’ experience in develop- tion projects, such as water and wastewa- ing and financing environmental projects ter schemes in the Kenozero National Park, in Russia and neighbouring countries. Co- to multifaceted industrial challenges – as ordinating and promoting synergies be- seen at the Vorkuta Cement Plant – and ma- tween international initiatives and the jor municipal infrastructure investments funding that comes with them is a natural like the water and wastewater projects in part of NEFCO’s activities. Petrozavodsk. Already in the early 1990s, NEFCO was In order to promote visibility and en- involved in the first inventories and reports hance the experience gained, the BHSF has in the Barents Region. In 2003, they were financed the Barents Hot Spot Information followed up by the NEFCO-AMAP Report, System that will be available at the Barents which defined 42 environmental ‘hot spots’. website (beac.st). NEFCO is the leading co- NEFCO chaired the Ad-hoc Task Force that financier for the Adviser at the Internation- developed the Criteria & Procedures for the al Barents Secretariat in Kirkenes that will exclusion of hot spots that were adopted by facilitate the hot spot progress in co-ordi- the Ministers in Tromsø in 2010. nation with the BEAC’s broader priorities Since it was set up in 2004, the Barents for climate change and the environment. Hot Spot Facility (BHSF) has been NEFCO’s NEFCO is proud to have been an instru- ÄÄ main tool for promoting progress, actions mental part of the environmental co-oper- ation in the Barents over the last 20 years, ANKAANP K LI and is still looking forward to tackling the -TUU I challenges that lie ahead in this northern- SUV most part of Europe. Henrik G. Forsström 01 Senior Adviser, Folk dance perfor- Barents Hot Spots mance in the Kenozero Facility, NEFCO National Park. 6 Barents Hot Spots Barents Hot Spots 7 01 A This publication illustrates V Chair’s the practical main municipal point sources of pollution. aro Z NA results of environmental protection in the There are also success stories of the improve- Overview ‘hot spots’ in the Russian Barents Region. ments achieved via bilateral co -operation IRINA Promoting environmental improvements programmes. Also in these cases, the lo- and excluding hot spots from the list have cal funding and commitment has been the been among the main activities of the Bar- main driver for success in the projects. ents Euro-Arctic Council’s Working Group Our work, however, is not yet accom- on Environment (WGE). We note that dur- plished. The principle of environmental ing the last ten years, environmental mod- management is to aim towards continu- ernisation is on-going in many places such ous improvements. Companies have set tar- as in the pulp and paper sector and in the gets on emission and discharge reductions. wastewater treatment of some major towns. In addition, further efforts are needed, for In some places, the heating systems have example, to improve the quality of drink- been switched from oil or coal to natural ing water, develop environmentally sound gas. The first steps to develop comprehen- waste management, and to ensure the safe, sive waste management plans have been final destruction of hazardous wastes.
Recommended publications
  • Strengthening Protected Area System of the Komi Republic to Conserve Virgin Forest Biodiversity in the Pechora Headwaters Region
    Strengthening Protected Area System of the Komi Republic to Conserve Virgin Forest Biodiversity in the Pechora Headwaters Region PIMS 2496, Atlas Award 00048772, Atlas Project No: 00059042 Terminal Evaluation, Volume I November 2014 Russian Federation GEF SO1: Catalysing the Sustainability of Protected Areas SP3: Strengthened National Terrestrial Protected Area Networks Russian Federation, Ministry of Natural Resources Komi Republic, Ministry of Natural Resources United National Development Program Stuart Williams KOMI REPUBLIC PAS PROJECT - TE Acknowledgements The mission to the Komi Republic was well organised and smoothly executed. For this, I would like to thank everyone involved starting with Irina Bredneva and Elena Bazhenova of the UNDP-CO for making all the travel arrangements so smooth and easy, and making me welcome in Moscow. In the Komi Republic, the project team ensured that I met the right stakeholders, showed me the results of the project efforts in remote and beautiful areas of the republic, and accompanying me. Special thanks are due to Alexander Popov (the National Project Director) and Vasily Ponomarev (the Project Manager) for the connections, arrangements, for accompanying me and for many fruitful discussions. Other team members who accompanied the mission included Svetlana Zagirova, Andrei Melnichuk and Anastasiya Tentyukova. I am also grateful to all the other stakeholders who gave freely of their time and answered my questions patiently (please see Annex III for a list of all the people met over the course of the mission to the Komi Republic). I am also particularly grateful for the tireless efforts of Alexander Oshis, my interpreter over the course of the mission even when he was not well, for the clear and accurate interpretation.
    [Show full text]
  • Determination Report
    DETERMINATION REPORT CLIMATE CHANGE GLOBAL SERVICES (CCGS) Determination Report on JI Project “Evaporation System Modernization at OJSC “Ilim Group” Branch in Koryazhma” RUSSIAN FEDERATION BUREAU VERITAS CERTIFICATION REPORT NO. RUSSIA /0023/2009, REV . 01 Report Template Revision 4, 28/09/2007 BUREAU VERITAS CERTIFICATION Report No: RUSSIA/0023-1/2009 rev. 01 DETERMINATION REPORT Date of first issue: Organizational unit: 18/05/2009 Bureau Veritas Certification Holding SAS Client: Client ref.: CCGS Ltd. Mr. Dmitry Potashev Summary: Bureau Veritas Certification has made the determination of the project “Evapor ation System modernization at OJSC “Ilim Group” Branch in Koryazhma”, on the basis of UNFCCC criteria for the JI, as well as criteria given to provide for consistent project operations, monitoring and reporting. UNFCCC criteria refer to Article 6 of the Kyoto Protocol, the JI guidelines and the subsequent decisions by the JI Supervisory Committee, as well as the host country criteria. The determination is carried out under Track 1 as per Glossary of JI terms, in line with paragraph 23 of the JI guidelines. The determination scope is defined as an independent and objective review of the project design document, the project’s baseline, monitoring plan and other relevant documents, and consists of the following three phases: i) desk review of the project design document and particularly the baseline and monitoring plan; ii) follow-up interviews with project stakeholders; iii) resolution of outstanding issues and the issuance of the final determination report and opinion. The overall determination, from Contract Review to Determination Report & Opinion, was conducted using Bureau Veritas Certification internal procedures.
    [Show full text]
  • Russian Connections
    Kennebec Valley Community College Russian Connections ANNUAL LYNX SUPPLEME N T M A R C H 2 0 1 2 K O T L A S TIMELINE Fall 1983 Peter Garrett writes to Ground Zero Pairing Project April 1989 First Waterville contingent goes to Kotlas June 1990 First Kotlas group arrives in Waterville (1st KVCC visit), Sister City agreement signed May 1994 second Russian visit to KVCC takes place March 2007 third and most recent visit by Russian teacher, “Nadya” Kotlas, Sister City It may not be well-known that the Greater sister city connection became stalled. This did Waterville Area has a sister city in Russia, but not stop citizens from both sides from the project that brought about this connection continuing to promote the idea. A number of dates back to the early 1980s. As the Cold War pen-pals were initiated and many are still began to heat up once again, one particular actively writing today. Garrett added to this Winslow resident felt that if people were given flurry of written correspondences by sending an opportunity to better understand one another a letters to a variety of Soviet Officials includ- lot of the tensions between the US and the Soviet ing Mikhail Gorbachev in 1986. Even though Union would be alleviated. It was with this goal a formal agreement had still not been reached, in mind that in the Fall of 1983 Peter Garrett a small delegation of Waterville Area contacted the Ground Zero Pairing Project, A Portland OR based nonprofit that specialized in matching US cities with Soviet counterparts.
    [Show full text]
  • Development of Forest Sector in the Arkhangelsk Oblast During the Transition Period of the 1990S
    Development of forest sector in the Arkhangelsk oblast during the transition period of the 1990s ALBINA PASHKEVICH Pashkevich Albina (2003). Development of forest sector in the Arkhangelsk oblast during the transition period of the 1990s. Fennia 181: 1, pp. 13–24. Helsinki. ISSN 0015-0010. The Arkhangelsk oblast has long been one of Russia’s most important forest industrial regions. This paper analyses the changes in accessibility of forest resources and forest commodity production during the transition period in the 1990s. Special attention is given to firm restructuring, active roles of domestic capital and the different survival strategies that have been developed by in- dustries in the region. Further analysis deals with signs of economic recovery in the forest sector due to the processes of restructuring, modernisation and self-organisation. Albina Pashkevich, Spatial Modelling Centre (SMC), Department of Social and Economic Geography, Umeå University, Box 839, SE-98128 Kiruna, Sweden. E-mail: [email protected]. MS received 12 August 2002. Introduction adoption of a new. Some suggest that this proc- ess has been deeply embedded in the nature of The shift from central planning to a market-based the socialist system (Dingsdale 1999; Hamilton economy in Russia culminated with the dramatic 1999) and that the legacy of the communism has economic and political reorientation that began been only partly removed, and instead has mere- in the 1990s. This transition towards a market-ori- ly been reworked in a complex way (Smith 1997). ented and outward-looking economic system led Others say that reforms have actually ended the by private sector has created new challenges and old ‘command economy’ but have instead suc- opportunities.
    [Show full text]
  • OSU Working Papers in Linguistics 52, 77-88 Etymology of 'Volga'
    OSU Working Papers in Linguistics 52, 77-88 Etymology of 'volga' James Weller 0. INTRODUCTION The Volga river area in the northwest of Russia has been inhabited by different groups of people throughout the millennia. Finno-Ugric tribes were among the earliest to settle the region stretching from the Volga to the Oka River before the first millenium BCE. By the beginning of the first millennium BCE the Finno-Ugrians had come into contact with East Baits who spread out thinly beyond the upper reac_hes of the Volga and more heavily into the Volga-Oka interriver region. The next arrivals were the Slavs (chiefly the Krivichians) who began settling the upper reaches ofthe Volga in the eighth century CE. (Tret'jakov 1966: 286, 297) In the latter half of the eighth century CE Scandinavians extended their presence from Lake Ladoga: as far. south as the Volga-Oka interriver region along what would come to be known_as the Baltic-Volgaic Route 1, an important route in the silver trade. (Nosov 1992: 103) By the advent of written records, the name of this important waterway had come to be 'Volga'. 0.1 DISPUTED ETYMOLOGY OF 'VOLGA' As is often the case with the names of places inhabited by successive waves of people, the etymology of the name Volga is disputed. Most linguists point to four possible sources: Slavic *vl'.lga 'moist, wet' (Vasmer 1986: vol. 1, 337), East Baltic *ilga 'long' (Gimbutas 1963: 33), Volga-Finnie *jiily 'river' (Mikkola 1929: 27), and Baltic Finnie *valga 'white'. (Preobrazhenskij 1959:91) Although in general great care has been taken to show how, via certain sound changes, the name Volga derives from a given -source, I fo~nd that most of the etymologies operate without sufficient consideration for 1 I take responsibility for translating 'Baltijsko-volzhskij put' as 'The Baltic-Volgaic Route." 78 ETYMOLOGY OF 'VOLGA' the chronology of the sound changes or their conditioning environments.
    [Show full text]
  • Introduction. Komi Folklore Studies: Connecting Points1
    https://doi.org/10.7592/FEJF2019.76.introduction INTRODUCTION. KOMI FOLKLORE STUDIES: CONNECTING POINTS1 Liudmila Lobanova Researcher Department of Folklore, Institute of Language, Literature, and History Komi Science Centre, Russian Academy of Sciences, Russia Email: [email protected] Nikolay Kuznetsov Lecturer in Finno-Ugric Languages Department of Finno-Ugric Studies University of Tartu Email: [email protected] The special edition of Folklore: Electronic Journal of Folklore is dedicated to Komi2 folklore and folklore studies. The issue was prepared within the frame- work of cooperation between the Department of Folkloristics of the Estonian Literary Museum and the Folklore Department of the Komi Science Centre by Komi and Estonian folklore researchers. Prior to this, the authors published one of the issues (vol. 17, 2016) of the Sator periodical, which was also dedi- cated to Komi folklore studies. The goal of this issue is to present some of the results of recent Komi folklore studies to wider academic circles, overcoming the natural linguistic obstacles. The majority of articles are written within the research project “Local Folklore Traditions of the European Northeast of Russia: Mechanisms of Development and Adaptation, System of Genres, Ethnocultural Folklore Interaction” (№ AAAA-A17-117021310066-4). The history of Komi folklore studies reveals processes typical for the Rus- sian, Soviet, and post-Soviet research dealing with folklore (the research field extended and became more limited over time), as well as studying the Komi language and culture as part of the general development of Finno-Ugric stud- ies. Traditionally, academician Andreas Sjögren (1794–1855) is considered to have discovered Komi folklore – in 1827, he transcribed folklore texts and published them as examples of the Komi language.
    [Show full text]
  • The SIS Limits and Related Proglacial Events in the Severnaya Dvina Basin, Northwestern Russia: Review and New Data
    Bulletin of the Geological Society of Finland, Vol. 90, 2018, pp 301–313, https://doi.org/10.17741/bgsf/90.2.012 The SIS limits and related proglacial events in the Severnaya Dvina basin, northwestern Russia: review and new data Nataliya E. Zaretskaya1*, Andrei V. Panin2,3 and Natalia V. Karpukhina2 1 Geological Institute of RAS, Pyzhesky per. 7, Moscow, 119017, RUSSIA 2 Institute of Geography of RAS, Staromonetny per. 29, Moscow, 119017, RUSSIA 3 Lomonsov Moscow State University, Vorobiovy Gory 1, Moscow, 119991, RUSSIA Abstract Two underlying problems of the Late Quaternary history of the Scandinavian Ice Sheet (SIS) are reviewed in the paper: the position of the southeastern SIS boundary at the Late Glacial Maximum (LGM), which is still widely “migrating” depending on authors’ concepts, and the formation of associated proglacial lakes (i.e. their dimensions, drainage and chronology) in the valleys of Severnaya Dvina River basin. The position of maximum ice limit in the northwest of the Russian Plain remains debatable and is the least reliable compared to the other SIS sectors. Most of the recent reconstructions concerning ice-dammed lakes (water overflows, restructuring of river valleys etc.) exploited the geological survey results of mid-20th century: since then no geological studies have been conducted of the proposed spillways, their filling sediments and age using the modern sedimentological and geochronological techniques. As a result, the majority of the above-mentioned reconstructions have to be considered hypothetical. Here we present new results on two valley sites that allow to suggest that: 1) the SIS did not advance through the lower and middle Vychegda valley at LGM as suggested in some recent publications; 2) the LGM glacier-dammed lake had a very limited extension in the Severnaya Dvina valley and did not exceed to the Vychegda River mouth.
    [Show full text]
  • River Channel Response to Runoff Variability
    Adv. Geosci., 14, 309–316, 2008 www.adv-geosci.net/14/309/2008/ Advances in © Author(s) 2008. This work is licensed Geosciences under a Creative Commons License. River channel response to runoff variability I. Kargapolova Faculty of Geography, Moscow State University, Russia Received: 16 June 2007 – Revised: 7 April 2008 – Accepted: 10 April 2008 – Published: 6 May 2008 Abstract. The focus of this study was to determine river 2 Background runoff impacts on channel evolution during the last centuries. Comparing a number of maps from the 18th–21th centuries We studied three river systems from different Russian re- and space images in concert with hydrological data we esti- gions: the Oka and Moscow rivers in Russian central plain, mated natural trends, cycles and the intensity of channel for- the Severnaya Dvina and Vychegda rivers in the Russian mation for periods of high and low runoff. Our analysis for a north plain, and the Ob’ and Tom rivers in the West Siberian long period of time enable us assessing mean and maximum Plain. The selected rivers have different discharge regimes rates of erosion and accumulation of river channels and bank and types of river channels (Table 1) and have been subjected dynamics under different conditions. Using links between to anthropogenic impacts in recent decades. For example, the runoff values and meander size we predict and reconstruct Moscow and Ob’ rivers are regulated by hydropower plants. these for several Russian rivers. For forecast validation we Due to runoff regulation, intra-annual hydrograph changes use cases of high scale runoff change – water transfer from and channel formative discharge decreases.
    [Show full text]
  • Analysis and Prediction of Changes in the Temperature of the Pure Freshwater Ice Column in the Antarctic and the Arctic
    Analysis and prediction of changes in the temperature of the pure freshwater ice column in the Antarctic and the Arctic A.A. Fedotov, V.V. Kaniber, P.V. Khrapov Abstract – This paper investigates the initial boundary value problem for a non-stationary one-dimensional heat equation that simulates the temperature distribution in freshwater ice near the Earth's poles. The mathematical model has been constructed taking into account solid-liquid phase transitions. Data from meteorological stations were used to determine the model parameters, with the help of which the necessary physical and thermophysical characteristics of the computational domain were obtained. For the numerical solution of the problem, the finite volume method (FVM) was used. In order to analyze changes in the temperature field of ice and determine the time required to reach a non-stationary periodic regime, graphs of temperature versus depth were plotted for January at two stations. The study of the results showed that it takes about 50 years of modeling with constant initial data for the temperature of an ice layer up to 20 m deep to reach the periodic regime. For the obtained periodic regime, the temperature versus depth dependences for each month were plotted, and the depth of the active layer, as well as the depth of zero annual amplitudes were found for each meteorological station. A forecast of the ice temperature regime for 2100 was modeled for three Representative Concentration Pathway (RCP) scenarios of global warming: moderate RCP2.6, corresponding to the current emissions of RCP7 and adopted at the Paris Agreement in 2015 RCP1.9.
    [Show full text]
  • Late Pleistocene Geochronology of European Russia
    [RADIOCARBON, VOL. 35, No. 3, 1993, P. 421-427] LATE PLEISTOCENE GEOCHRONOLOGY OF EUROPEAN RUSSIA KU. A. ARSLANOV Geographical Research Institute, St. Petersburg State University, St. Petersburg 199004 Russia 14C ABSTRACT. I constructed a Late Pleistocene geochronological scale for European Russia employing dating and paleo- botanical studies of several reference sections. MIKULIN0 (RISS-WURM) INTERGLACIAL AND EARLY VALDAI (EARLY WURM) STAGES AND INTERSTADIALS 230Th/ I employed a modified 4U dating method (Arslanov et al. 1976, 1978, 1981) to determine shell ages. I learned that 232Th is present only in the outer layer of shells; thus, it is not necessary to correct for 230Th if the surface (-30% by weight) is removed. A great many shells were parallel- dated by 14C and 23°Th/234U methods; results corresponded well for young shells (to 13-14 ka). Older shells appear to be younger due to recent carbonate contamination. Shells from transgression sediments of the Barents, White and Black Seas were chosen as most suitable for dating, based on appearance. Table 1 presents measured ages for these shells. The data show that the inner fractions of shells sampled from Boreal (Eem) transgression deposits of the Barents and White Seas date to 86-114 ka. Shells from sediments of the Black Sea Karangat transgression, which correlates to the Boreal, date to 95-115 ka. 23°Th/234U dating of shells and coral show that shells have younger ages than corals; this appears to result from later uranium penetration into shells (Arslanov et a1.1976). Boreal transgression sediments on the Kola peninsula can be placed in the Mikulino interglacial based on shell, microfauna, diatom and pollen studies (Arslanov et at.
    [Show full text]
  • Transport and Infrastructural Basis of the Tourism Development Strategy in the Arkhangelsk Oblast © Aleksandr Yu
    Aleksandr Yu. TSVETKOV. Transport and infrastructural basis … 35 UDC [338.48+332.14](470.11)(045) DOI: 10.37482/issn2221-2698.2020.38.44 Transport and infrastructural basis of the tourism development strategy in the Arkhangelsk Oblast © Aleksandr Yu. TSVETKOV, Cand. Sci. (Econ.), associate professor E-mail: [email protected] Department of Management, Higher School of Economics, Management and Law, Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russia Abstract. The article, devoted to the analysis of transport and geographical locations, describes possible strategies for the development of tourism in the Arkhangelsk Oblast. The main goal of the research was the development of logistic schemes of the transportation of tourists from the places of formation of tourist flows to the Arkhangelsk Oblast. The methodological basis of the article is to determine the economic dis- tances between potential tourist distribution centers and their places of interest in the area. Moscow, St. Petersburg, and Arkhangelsk were considered as the main towns of departure. Kargopol, Solvychegodsk, Kholmogory and Lomonosovo, Solovki, Kenozersky National Park, and Pinega caves are regarded as the main sites of tourist interest in the Arkhangelsk Oblast. It was determined that Kargopol is the most acces- sible for tourists, and Kenozersky National Park is the most recognizable by tourists but the least accessible. The object of world cultural heritage, the Monastery of the Transfiguration of the Saviour on Solovki is the most accessible for tourists from the territory of Karelia. It is recommended to optimize the schedule and to synchronize the work of transport for tourists to improve the transport accessibility of recreational facili- ties in the area.
    [Show full text]
  • NATIONAL REPORT by RUSSIA – SEPTEMBER 2015 Enhanced Black Carbon and Methane Emissions Reductions– an Arctic Council Framework for Action
    NATIONAL REPORT BY RUSSIA – SEPTEMBER 2015 Enhanced Black Carbon and Methane Emissions Reductions– an Arctic Council Framework for Action Ministry of Natural Resources and Environment of the Russian Federation NATIONAL REPORT ON THE ACTIONS ON BLACK CARBON AND METHANE EMISSIONS REDUCTION in accordance with the Framework for Action on Enhanced Black Carbon and Methane Emissions Reductions (April 24, 2015, Iqaluit, Canada) Moscow, 2015 2 Table of Contents 1. Introduction 3 2. Black Carbon Emissions 4 3. Methane Emissions 9 4. National Actions on Emissions Reduction 14 5. Best Practices and International Cooperation 17 6. Activities Aimed at the Improvement of the Situation in the Arctic 19 Region 7. Conclusion 21 3 Introduction The Arctic is one of the most sensitive regions of the planet in terms of climate change. Changes in the climate and environment of the Arctic have widespread effects on societies and the whole ecosystem, as well as repercussions around the world. This makes evident the need to undertake urgent measures both nationally and globally for climate change mitigation and adaptation. Climate change and technological breakthroughs are opening the Arctic, its riches and resources, to commercial development. We welcome the adoption of the Framework for Action on Enhanced Black Carbon and Methane Emissions Reductions by the Arctic Council. From our perspective, it is a timely step towards dealing with climate and environmental challenges in the Arctic region. The Arctic Zone of the Russian Federation is the largest in the world; no other country has such vast territories above the Arctic Circle. 2.4 million people live in the Arctic.
    [Show full text]