The Cosmic Microwave Background Past, Present and Future

Total Page:16

File Type:pdf, Size:1020Kb

The Cosmic Microwave Background Past, Present and Future TheThe CosmicCosmic MicrowaveMicrowave BackgroundBackground Past,Past, PresentPresent andand FutureFuture Martin White University of California, Berkeley Lawrence Berkeley National Laboratory The CMB C2CR07 • Feb 2007 1 Outline A brief history of cosmology from the cosmic microwave background. – Penzias & Wilson – COBE The current state-of-the-art and what we have learnt. – WMAP3 The near future. – Planck Possible future missions. – Secondary anisotropies, low-z structure – Polarization - the next frontier The CMB White 2 C2CR07 • Feb 2007 2 In the beginning was Bell Labs Penzias and Wilson shared half of the 1978 Nobel Prize for the discovery of the cosmic microwave background (CMB) radiation. Fluctuations are black-body, isotropic and not correlated with any (local) structure in the Universe. The CMB White 3 C2CR07 • Feb 2007 3 …then there was COBE … Nobel prize in Physics, 2006, awarded to Mather and Smoot “for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation” The CMB White 4 C2CR07 • Feb 2007 4 A revolution in our understanding of the Universe Existence of CMB – One of the pillars of the hot big-bang model. Measurement of the black-body spectrum – T = 2.725 ± 0.001 K, deviations < 10-4 – Sets the temperature scale of the Universe Only cosmological parameter known to better than 1%! – Rules out significant energy injection below z~107. Measurement of the anisotropy – Shrunk substantially the range of viable cosmological models. – Gravitational instability in a dark matter dominated Universe formed large-scale structure seen by e.g. 2dF or SDSS. – The fluctuations are of the form predicted by inflation. – The large-scale structure of space-time is “simple”. Precise normalization of large-scale structure. All right. But apart from the sanitation, the medicine, education, wine, public order, irrigation, roads, the fresh water system, and public health . What have the Romans ever done for us? Reg, spokesman for the People’s Front of Judea The CMB White 5 C2CR07 • Feb 2007 5 2003: WMAP reported 1st year data! This … Became this! Power Angular scale From lambda.gsfc.nasa.gov The CMB White 6 C2CR07 • Feb 2007 6 Current state-of-the-art From lambda.gsfc.nasa.gov The CMB White 7 C2CR07 • Feb 2007 7 Of the “dozen” parameters in our cosmological model: 1 parameter known to better than 1% (2 if you count peak angular scale) 5 parameters known to better than 10% (independently) from the CMB alone. The CMB White 8 C2CR07 • Feb 2007 8 Cosmological parameters 2 ωm= Ωmh = 0.1277 ± 0.008 -30 3 . ρm= (2.11 ± 0.13) x 10 g/cm 2 ωb= Ωbh = 0.02229 ± 0.0007 -31 3 . ρb= (4.19 ± 0.13) x 10 g/cm δΦ/c2 = (3 ± 0.1) x 10-5 o θA = 0.5952 ± 0.0021 s = (147.8 ± 2.6) Mpc = (4.56 ± 0.08) x 1026 cm 28 dLS = (14.2 ± 0.2) Gpc = (4.38 ± 0.08) x 10 cm The CMB White 9 C2CR07 • Feb 2007 9 Other inferences From the narrow first peak we know that whatever “rang the bell” was sharp and of short duration, not a continuous driving. The fluctuations are dominated by large-scale density perturbations (not vorticity modes or gravity waves). The universe was not “weird” at z~103. Inflation is in good shape. – Fluctuations are small, harmonic, Gaussian & adiabatic – Limits on specific models of inflation – e.g. λφ4 inflation is ruled out at ~ 2-3σ . – Tentative detection of departure from scale-invariance (maybe!). ns=0.958 ± 0.016 (no running; lambda.gsfc.nasa.gov) ns=0.970 ± 0.016 (no running; Huffenberger et al. 2007) ns=0.993 ± 0.030 (no running+r; Cortes, Liddle & Mukherjee 2007) ns=0.981 ± 0.034 (w/ running+r; Cortes, Liddle & Mukherjee 2007) See Erikson et al. (2007); Huffenberger et al. (2007) for revisions to the initially published WMAP ns results. The CMB White 10 C2CR07 • Feb 2007 10 Polarization In the presence of anisotropy we expect scattering to generate (linear) polarization. Consequence of electro-magnetic gauge invariance! Polarization provides a prediction, a cross-check and further information about conditions at last-scattering and reionization. Rees (1968) Kaiser (1983) Hu & White (1997) The CMB White 11 C2CR07 • Feb 2007 11 E- and B-modes Polarization is made up of two “modes”, referred to as E- and B- modes because of their global parity properties. E-modes B-modes Note that E-modes have no handedness, whereas B-modes do and thus cannot be generated by scalar (density) perturbations. The CMB White 12 C2CR07 • Feb 2007 12 Polarization: first detection by DASI Single shaped l-bin Five l-bins 100 6.3σ ) 50 E detection 2 K µ consistent ( 0 with theory. E -50 ) Consistent 2 50 K B µ with zero ( 0 (theory) B -50 ) 100 2.9σ 2 Leitch et al., 2005 K µ TE detection ( 0 consistent -100TE with theory 0 200 400 600 800 1000 l (angular scale) The CMB White 13 C2CR07 • Feb 2007 13 The world compilation Courtesy Lewis Hyatt Multipole The CMB White 14 C2CR07 • Feb 2007 14 The picture from WMAP3 Temperature Adiabatic / inflationary peak Polarization from z~103 Polarization from z~10 Page et al. 2006 Polarization from GWs from z~10?? (Not seen! Upper limit.) The CMB White 15 C2CR07 • Feb 2007 15 The near (!) future: Planck Planck is part of ESA’s “Cosmic Visions” program and is currently scheduled for launch in July 2008 along with the Herschel satellite. Planck will be the first sub-mm mission to map the entire sky with mJy sensitivity with resolution better than 10 arcminutes. The science enabled by such a mission spans many areas of astrophysics and cosmology. K) µ Brightness temperature ( 10 Frequency (GHz) 1000 The CMB White 16 C2CR07 • Feb 2007 16 Planck in cartoons The CMB White 17 C2CR07 • Feb 2007 17 Planck being assembled The CMB White 18 C2CR07 • Feb 2007 18 Real hardware!! Final assembly of the Planck satellite and payload in Europe is almost complete. The CMB White 19 C2CR07 • Feb 2007 19 The orbit Planck will make its measurements from the Earth-Sun L2 point. It makes a map of the full sky every 6 months. The CMB White 20 C2CR07 • Feb 2007 20 A full sky map of temperature and polarization The CMB White 21 C2CR07 • Feb 2007 21 What (we expect) Planck will add In addition to wider frequency coverage and better sensitivity than WMAP, Planck has the resolution needed to see into the damping tail. It will be the first experiment to make a cosmic variance limited measurement of the scales around the 3rd and 4th peaks. (4yr) (1yr) The CMB White 22 C2CR07 • Feb 2007 22 What (we hope) Planck will add A precise measurement of the E-mode polarization power spectrum and a highly sensitive search for B-modes (from inflation?). The CMB White 23 C2CR07 • Feb 2007 23 A dramatic advance Planck will essentially clean up the primary temperature anisotropies and make great inroads on polarization. Many of the most important book cosmological parameters will blue be known much better after Planck flies. Planck Projected WMAP likelihood Projected Planck likelihood on Hubble constant The CMB White 24 C2CR07 • Feb 2007 24 CMB science An inroad to inflation – COBE defined the amplitude of the fluctuations: δ ~10-5 – To constrain models need to measure ns and running Expect δns~0.03 → 0.007 and δα~0.04 → 0.003 – c.f. WMAP: longer level arm, more spectra – Also break (accidental n-τ) degeneracy with EE – May be the first measurement of ns<1 – Rule out [?] isocurvature contribution, P(k) features … – Find GW signal [?] and constrain the energy scale of inflation. 2 – Non-Gaussianity (limits on fNL~100 drop to fNL~1: δtot~δlin+fNLδlin ) Constraining dark energy, Ωm, h, etc. – CMB gives: ωm, ωb, θA. Improve constraints by 5-10. – Currently δD(z=1100) ~ 3% limited by ωm (δωm~ 6%) – Planck should get δωm~ 0.9%. – In principle δD(z=1100) ~ 0.2%! Secondary Anisotropies – Highly significant detection of gravitational lensing – Constraints on how the Universe reionized (large & small scales) – Catalog of the most massive clusters of galaxies, anywhere in the Universe – Cross-correlation for the clustering of dark energy, massive neutrinos, … The CMB White 25 C2CR07 • Feb 2007 25 The CMB “prior” With WMAP, and certainly after Planck, we will have very precise knowledge of the universe at z~1000. We will have tightly constrained the physical densities of matter and baryons, the amplitude of the fluctuations in the linear phase over 3 decades in length scale and the shape of the primordial power spectrum. Our knowledge of physical conditions and large-scale structure at z~103 will be better than our knowledge of such quantities at z~0! If dark energy is a recent phenomenon, then we can translate this knowledge reliably to intermediate redshifts which are currently at the observational frontier. The CMB White 26 C2CR07 • Feb 2007 26 The real-space z~3 power spectrum CMB enables us to constrain the high-z matter power spectrum (with lengths measured in meters!) Example: using the WMAP 3yr data constrains Δ2(k) to 7% 7% measurement near near k~0.01/Mpc acoustic peak scale. assuming a basic ΛCDM model. This drops to 3% if τ is controlled for. With Planck this will White ‘06 be a percent level measurement! The CMB White 27 C2CR07 • Feb 2007 27 Making it to z=0 The uncertainty in large-scale structure formation thus comes from the extrapolation to z=0 and to redshift space. – Growth of fluctuations between z~3 and z=0 depends on dark energy and massive neutrinos (vertical shifts).
Recommended publications
  • The Silk Damping Tail of the CMB
    The Silk Damping Tail of the CMB 100 K) µ ( T ∆ 10 10 100 1000 l Wayne Hu Oxford, December 2002 Outline • Damping tail of temperature power spectrum and its use as a standard ruler • Generation of polarization through damping • Unveiling of gravitational lensing from features in the damping tail Outline • Damping tail of temperature power spectrum and its use as a standard ruler • Generation of polarization through damping • Unveiling of gravitational lensing from features in the damping tail • Collaborators: Matt Hedman Takemi Okamoto Joe Silk Martin White Matias Zaldarriaga Outline • Damping tail of temperature power spectrum and its use as a standard ruler • Generation of polarization through damping • Unveiling of gravitational lensing from features in the damping tail • Collaborators: Matt Hedman Takemi Okamoto Joe Silk Microsoft Martin White Matias Zaldarriaga http://background.uchicago.edu ("Presentations" in PDF) Damping Tail Photon-Baryon Plasma • Before z~1000 when the CMB had T>3000K, hydrogen ionized • Free electrons act as "glue" between photons and baryons by Compton scattering and Coulomb interactions • Nearly perfect fluid Anisotropy Power Spectrum Damping • Perfect fluid: no anisotropic stresses due to scattering isotropization; baryons and photons move as single fluid Damping • Perfect fluid: no anisotropic stresses due to scattering isotropization; baryons and photons move as single fluid • Fluid imperfections are related to the mean free path of the photons in the baryons −1 λC = τ˙ where τ˙ = neσT a istheconformalopacitytoThomsonscattering
    [Show full text]
  • A Study of John Leslie's Infinite Minds, a Philosophical Cosmology
    Document généré le 1 oct. 2021 09:18 Laval théologique et philosophique Infinite Minds, Determinism & Evil A Study of John Leslie’s Infinite Minds, A Philosophical Cosmology Leslie Armour La question de Dieu Volume 58, numéro 3, octobre 2002 URI : https://id.erudit.org/iderudit/000634ar DOI : https://doi.org/10.7202/000634ar Aller au sommaire du numéro Éditeur(s) Faculté de philosophie, Université Laval Faculté de théologie et de sciences religieuses, Université Laval ISSN 0023-9054 (imprimé) 1703-8804 (numérique) Découvrir la revue Citer cette note Armour, L. (2002). Infinite Minds, Determinism & Evil: A Study of John Leslie’s Infinite Minds, A Philosophical Cosmology. Laval théologique et philosophique, 58(3), 597–603. https://doi.org/10.7202/000634ar Tous droits réservés © Laval théologique et philosophique, Université Laval, Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des 2002 services d’Érudit (y compris la reproduction) est assujettie à sa politique d’utilisation que vous pouvez consulter en ligne. https://apropos.erudit.org/fr/usagers/politique-dutilisation/ Cet article est diffusé et préservé par Érudit. Érudit est un consortium interuniversitaire sans but lucratif composé de l’Université de Montréal, l’Université Laval et l’Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche. https://www.erudit.org/fr/ Laval théologique et philosophique, 58, 3 (octobre 2002) : 597-603 ◆ note critique INFINITE MINDS, DETERMINISM & EVIL A STUDY OF JOHN LESLIE’S INFINITE MINDS, A PHILOSOPHICAL COSMOLOGY * Leslie Armour The Dominican College of Philosophy and Theology Ottawa ohn Leslie’s Infinite Minds is a refreshingly daring book.
    [Show full text]
  • Science and Religion in the Face of the Environmental Crisis
    Roger S. Gottlieb, ed., The Oxford Handbook of Religion and Ecology. New York and Oxford: Oxford University Press, 2006. Pages 376-397. CHAPTER 17 .................................................................................................. SCIENCE AND RELIGION IN THE FACE OF THE ENVIRONMENTAL CRISIS ..................................................................................................... HOLMES ROLSTON III BOTH science and religion are challenged by the environmental crisis, both to reevaluate the natural world and to reevaluate their dialogue with each other. Both are thrown into researching fundamental theory and practice in the face of an upheaval unprecedented in human history, indeed in planetary history. Life on Earth is in jeopardy owing to the behavior of one species, the only species that is either scientific or religious, the only species claiming privilege as the "wise spe- cies," Homo sapiens. Nature and the human relation to nature must be evaluated within cultures, classically by their religions, currently also by the sciences so eminent in Western culture. Ample numbers of theologians and ethicists have become persuaded that religion needs to pay more attention to ecology, and many ecologists recognize religious dimensions to caring for nature and to addressing the ecological crisis. Somewhat ironically, just when humans, with their increasing industry and technology, seemed further and further from nature, having more knowledge about natural processes and more power to manage them, just when humans were more and more rebuilding their environments, thinking perhaps to escape nature, the natural world has emerged as a focus of concern. Nature remains the milieu of 376 SCIENCE AND RELIGION 377 culture—so both science and religion have discovered. In a currently popular vocabulary, humans need to get themselves "naturalized." Using another meta- phor, nature is the "womb" of culture, but a womb that humans never entirely leave.
    [Show full text]
  • The Q/U Imaging Experiment (QUIET): the Q-Band Receiver Array Instrument and Observations by Laura Newburgh Advisor: Professor Amber Miller
    The Q/U Imaging ExperimenT (QUIET): The Q-band Receiver Array Instrument and Observations by Laura Newburgh Advisor: Professor Amber Miller Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2010 c 2010 Laura Newburgh All Rights Reserved Abstract The Q/U Imaging ExperimenT (QUIET): The Q-band Receiver Array Instrument and Observations by Laura Newburgh Phase I of the Q/U Imaging ExperimenT (QUIET) measures the Cosmic Microwave Background polarization anisotropy spectrum at angular scales 25 1000. QUIET has deployed two independent receiver arrays. The 40-GHz array took data between October 2008 and June 2009 in the Atacama Desert in northern Chile. The 90-GHz array was deployed in June 2009 and observations are ongoing. Both receivers observe four 15◦ 15◦ regions of the sky in the southern hemisphere that are expected × to have low or negligible levels of polarized foreground contamination. This thesis will describe the 40 GHz (Q-band) QUIET Phase I instrument, instrument testing, observations, analysis procedures, and preliminary power spectra. Contents 1 Cosmology with the Cosmic Microwave Background 1 1.1 The Cosmic Microwave Background . 1 1.2 Inflation . 2 1.2.1 Single Field Slow Roll Inflation . 3 1.2.2 Observables . 4 1.3 CMB Anisotropies . 6 1.3.1 Temperature . 6 1.3.2 Polarization . 7 1.3.3 Angular Power Spectrum Decomposition . 8 1.4 Foregrounds . 14 1.5 CMB Science with QUIET . 15 2 The Q/U Imaging ExperimenT Q-band Instrument 19 2.1 QUIET Q-band Instrument Overview .
    [Show full text]
  • The Reionization of Cosmic Hydrogen by the First Galaxies Abstract 1
    David Goodstein’s Cosmology Book The Reionization of Cosmic Hydrogen by the First Galaxies Abraham Loeb Department of Astronomy, Harvard University, 60 Garden St., Cambridge MA, 02138 Abstract Cosmology is by now a mature experimental science. We are privileged to live at a time when the story of genesis (how the Universe started and developed) can be critically explored by direct observations. Looking deep into the Universe through powerful telescopes, we can see images of the Universe when it was younger because of the finite time it takes light to travel to us from distant sources. Existing data sets include an image of the Universe when it was 0.4 million years old (in the form of the cosmic microwave background), as well as images of individual galaxies when the Universe was older than a billion years. But there is a serious challenge: in between these two epochs was a period when the Universe was dark, stars had not yet formed, and the cosmic microwave background no longer traced the distribution of matter. And this is precisely the most interesting period, when the primordial soup evolved into the rich zoo of objects we now see. The observers are moving ahead along several fronts. The first involves the construction of large infrared telescopes on the ground and in space, that will provide us with new photos of the first galaxies. Current plans include ground-based telescopes which are 24-42 meter in diameter, and NASA’s successor to the Hubble Space Telescope, called the James Webb Space Telescope. In addition, several observational groups around the globe are constructing radio arrays that will be capable of mapping the three-dimensional distribution of cosmic hydrogen in the infant Universe.
    [Show full text]
  • Constraining Stochastic Gravitational Wave Background from Weak Lensing of CMB B-Modes
    Prepared for submission to JCAP Constraining stochastic gravitational wave background from weak lensing of CMB B-modes Shabbir Shaikh,y Suvodip Mukherjee,y Aditya Rotti,z and Tarun Souradeepy yInter University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune- 411007, India zDepartment of Physics, Florida State University, Tallahassee, FL 32304, USA E-mail: [email protected], [email protected], [email protected], [email protected] Abstract. A stochastic gravitational wave background (SGWB) will affect the CMB anisotropies via weak lensing. Unlike weak lensing due to large scale structure which only deflects pho- ton trajectories, a SGWB has an additional effect of rotating the polarization vector along the trajectory. We study the relative importance of these two effects, deflection & rotation, specifically in the context of E-mode to B-mode power transfer caused by weak lensing due to SGWB. Using weak lensing distortion of the CMB as a probe, we derive constraints on the spectral energy density (ΩGW ) of the SGWB, sourced at different redshifts, without assuming any particular model for its origin. We present these bounds on ΩGW for different power-law models characterizing the SGWB, indicating the threshold above which observable imprints of SGWB must be present in CMB. arXiv:1606.08862v2 [astro-ph.CO] 20 Sep 2016 Contents 1 Introduction1 2 Weak lensing of CMB by gravitational waves2 3 Method 6 4 Results 8 5 Conclusion9 6 Acknowledgements 10 1 Introduction The Cosmic Microwave Background (CMB) is an exquisite tool to study the universe. It is being used to probe the early universe scenarios as well as the physics of processes happening in between the surface of last scattering and the observer.
    [Show full text]
  • Physical Cosmology Physics 6010, Fall 2017 Lam Hui
    Physical Cosmology Physics 6010, Fall 2017 Lam Hui My coordinates. Pupin 902. Phone: 854-7241. Email: [email protected]. URL: http://www.astro.columbia.edu/∼lhui. Teaching assistant. Xinyu Li. Email: [email protected] Office hours. Wednesday 2:30 { 3:30 pm, or by appointment. Class Meeting Time/Place. Wednesday, Friday 1 - 2:30 pm (Rabi Room), Mon- day 1 - 2 pm for the first 4 weeks (TBC). Prerequisites. No permission is required if you are an Astronomy or Physics graduate student { however, it will be assumed you have a background in sta- tistical mechanics, quantum mechanics and electromagnetism at the undergrad- uate level. Knowledge of general relativity is not required. If you are an undergraduate student, you must obtain explicit permission from me. Requirements. Problem sets. The last problem set will serve as a take-home final. Topics covered. Basics of hot big bang standard model. Newtonian cosmology. Geometry and general relativity. Thermal history of the universe. Primordial nucleosynthesis. Recombination. Microwave background. Dark matter and dark energy. Spatial statistics. Inflation and structure formation. Perturba- tion theory. Large scale structure. Non-linear clustering. Galaxy formation. Intergalactic medium. Gravitational lensing. Texts. The main text is Modern Cosmology, by Scott Dodelson, Academic Press, available at Book Culture on W. 112th Street. The website is http://www.bookculture.com. Other recommended references include: • Cosmology, S. Weinberg, Oxford University Press. • http://pancake.uchicago.edu/∼carroll/notes/grtiny.ps or http://pancake.uchicago.edu/∼carroll/notes/grtinypdf.pdf is a nice quick introduction to general relativity by Sean Carroll. • A First Course in General Relativity, B.
    [Show full text]
  • Cosmic Microwave Background
    1 29. Cosmic Microwave Background 29. Cosmic Microwave Background Revised August 2019 by D. Scott (U. of British Columbia) and G.F. Smoot (HKUST; Paris U.; UC Berkeley; LBNL). 29.1 Introduction The energy content in electromagnetic radiation from beyond our Galaxy is dominated by the cosmic microwave background (CMB), discovered in 1965 [1]. The spectrum of the CMB is well described by a blackbody function with T = 2.7255 K. This spectral form is a main supporting pillar of the hot Big Bang model for the Universe. The lack of any observed deviations from a 7 blackbody spectrum constrains physical processes over cosmic history at redshifts z ∼< 10 (see earlier versions of this review). Currently the key CMB observable is the angular variation in temperature (or intensity) corre- lations, and to a growing extent polarization [2–4]. Since the first detection of these anisotropies by the Cosmic Background Explorer (COBE) satellite [5], there has been intense activity to map the sky at increasing levels of sensitivity and angular resolution by ground-based and balloon-borne measurements. These were joined in 2003 by the first results from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP)[6], which were improved upon by analyses of data added every 2 years, culminating in the 9-year results [7]. In 2013 we had the first results [8] from the third generation CMB satellite, ESA’s Planck mission [9,10], which were enhanced by results from the 2015 Planck data release [11, 12], and then the final 2018 Planck data release [13, 14]. Additionally, CMB an- isotropies have been extended to smaller angular scales by ground-based experiments, particularly the Atacama Cosmology Telescope (ACT) [15] and the South Pole Telescope (SPT) [16].
    [Show full text]
  • 9. the Cosmic Microwave Background
    A5682: Introduction to Cosmology Course Notes 9. The Cosmic Microwave Background Reading: Chapter 8, sections 8.0-8.3. (We will cover 8.4 and 8.5 later.) “Re”combination After Big Bang Nucleosynthesis, the universe was still much too hot for the formation of neutral atoms. As expansion continued, the background radiation photons redshifted and the temperature dropped. Naively, one would expect p + e− → H when kT ∼ 13.6eV. Just as with deuterium synthesis, however, the high value of nγ/nb implies that the exponential tail of the photon distribution can dissociate hydrogen atoms. Less naively, we expect p + e− → H when kT ∼ 13.6eV/(− ln η) ∼ 0.65eV, corresponding to (1 + z) ≈ 2700. A more accurate version of this argument given in the textbook (section 9.3) yields a predicted redshift of (1 + z) ≈ 1370 for hydrogen formation. In practice, there are several complicating factors, e.g., any recombination direct to the ground state produces a photon that can immediately ionize another neutral atom unless the photon survives long enough to be redshifted below 13.6 eV. A proper, somewhat tricky calculation of cosmic recombination shows that there is a fairly rapid transition from a free electron fraction xe ≈ 1 to xe ≈ 0 at z ≈ 1100, with most of the transition occuring over a redshift range ∆z ≈ 80. In the laboratory, or in regions ionized by hot stars or quasars or shocks, the process p + e− → H is usually referred to as “recombination.” In the early universe, the protons and electrons were never in the form of hydrogen to begin with, so this process should arguably be called “combination” rather than “recombination.” But “combination” sounds rather silly, so “recombination” is still the standard term for this tran- sition.
    [Show full text]
  • Secondary Cosmic Microwave Background Anisotropies in A
    THE ASTROPHYSICAL JOURNAL, 508:435È439, 1998 December 1 ( 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES IN A UNIVERSE REIONIZED IN PATCHES ANDREIGRUZINOV AND WAYNE HU1 Institute for Advanced Study, School of Natural Sciences, Princeton, NJ 08540 Received 1998 March 17; accepted 1998 July 2 ABSTRACT In a universe reionized in patches, the Doppler e†ect from Thomson scattering o† free electrons gener- ates secondary cosmic microwave background (CMB) anisotropies. For a simple model with small patches and late reionization, we analytically calculate the anisotropy power spectrum. Patchy reioniza- tion can, in principle, be the main source of anisotropies on arcminute scales. On larger angular scales, its contribution to the CMB power spectrum is a small fraction of the primary signal and is only barely detectable in the power spectrum with even an ideal, i.e., cosmic variance limited, experiment and an extreme model of reionization. Consequently, patchy reionization is unlikely to a†ect cosmological parameter estimation from the acoustic peaks in the CMB. Its detection on small angles would help determine the ionization history of the universe, in particular, the typical size of the ionized region and the duration of the reionization process. Subject headings: cosmic microwave background È cosmology: theory È intergalactic medium È large-scale structure of universe 1. INTRODUCTION tion below the degree scale. Such e†ects rely on modulating the Doppler e†ect with spatial variations in the optical It is widely believed that the cosmic microwave back- depth. Incarnations of this general mechanism include the ground (CMB) will become the premier laboratory for the Vishniac e†ect from linear density variations (Vishniac study of the early universe and classical cosmology.
    [Show full text]
  • Muse: a Novel Experiment for CMB Polarization Measurement Using Highly Multimoded Bolometers
    The Atacama B-mode Search Status and Prospect CMB 2013 June 11th, 2013, Okinawa, Japan Akito Kusaka (Princeton University) for ABS Collaboration Before starting my talk… Atmosphere is unpolarized ABS (Atacama B-mode Search) Princeton, Johns Hopkins, NIST, UBC, U. Chile What is ABS? Ground based CMB polarization (with T sensitivity) Angular scale: l~100(~2), B-mode from GW TES bolometer at 150 GHz › 240 pixel / 480 bolometers › ~80% of channels are regularly functional › NEQ ~ 30 mKs (w/ dead channels, pol. efficiency included) Unique Systematic error mitigation › Cold optics › Continuously rotating half-wave plate Site Chile, Cerro Toco › ~5150 m. › Extremely low moisture › Year-round access › Observing throughout the year › And day and night ACT, ABS, PolarBear, CLASS Cerro Chajnantor 5612 m (5150 m) Cerro Toco 5600 m TAO, CCAT Google Earth / Google Map / Google Earth 1 km APEX QUIET, CBI ALMA (5050 m) ASTE & NANTEN2 (4800 m) Possible combined analysis among CMB experiments Many figures / pictures are from theses of ABS instrument T. Essinger-Hileman and J. W. Appel (+ K. Visnjic and L. P. Parker soon) Optics 4 K cooled side-fed Dragone dual reflector. ~60 cm diameter mirrors. 25 cm aperture diameter. Optics Aperture The optics maximize throughput for small aperture 12 radius field of view Good image quality across the wide field of view ABS focal plane Feedhorn coupled Focal plane ~300 mK Polarization sensitive TES Ex TES Inline filter OMT Ey TES 1.6 mm 5 mm ~30 cm Fabricated at NIST Focal Plane Elements Individually machined
    [Show full text]
  • Music and Environment: Registering Contemporary Convergences
    JOURNAL OF OF RESEARCH ONLINE MusicA JOURNALA JOURNALOF THE MUSIC OF MUSICAUSTRALIA COUNCIL OF AUSTRALIA ■ Music and Environment: Registering Contemporary Convergences Introduction H O L L I S T A Y L O R & From the ancient Greek’s harmony of the spheres (Pont 2004) to a first millennium ANDREW HURLEY Babylonian treatise on birdsong (Lambert 1970), from the thirteenth-century round ‘Sumer Is Icumen In’ to Handel’s Water Music (Suites HWV 348–50, 1717), and ■ Faculty of Arts Macquarie University from Beethoven’s Pastoral Symphony (No. 6 in F major, Op. 68, 1808) to Randy North Ryde 2109 Newman’s ‘Burn On’ (Newman 1972), musicians of all stripes have long linked ‘music’ New South Wales Australia and ‘environment’. However, this gloss fails to capture the scope of recent activity by musicians and musicologists who are engaging with topics, concepts, and issues [email protected] ■ relating to the environment. Faculty of Arts and Social Sciences University of Technology Sydney Despite musicology’s historical preoccupation with autonomy, our register of musico- PO Box 123 Broadway 2007 environmental convergences indicates that the discipline is undergoing a sea change — New South Wales one underpinned in particular by the1980s and early 1990s work of New Musicologists Australia like Joseph Kerman, Susan McClary, Lawrence Kramer, and Philip Bohlman. Their [email protected] challenges to the belief that music is essentially self-referential provoked a shift in the discipline, prompting interdisciplinary partnerships to be struck and methodologies to be rethought. Much initial activity focused on the role that politics, gender, and identity play in music.
    [Show full text]