Wild Oats (Avena Spp.)

Total Page:16

File Type:pdf, Size:1020Kb

Wild Oats (Avena Spp.) BB Beeesssttt MMMaaannnaaagggeeemmmeeennnttt PPPrrraaaccctttiiiccceeesss fffooorrr DDDrrryyylllaaannnddd CCCrrroooppppppiiinnnggg SSSyyysssttteeemmmsss Wild Oats (Avena spp.) Wild oats are one of Australia’s most widespread and grass (Bromus spp.) however Brome grass has a costly weeds of dryland cropping systems (Figure 1). It tubular leaf sheath and hairy leaves whereas wild oats infests two thirds of all cereal growing properties in have a rolled leaf sheath with few hairs on the leaves. southern Australia and is ranked second only to annual ryegrass as the most problematic weed Origin and Introduction species (Kirby 2000). Infestations can cause yield losses of greater than 80% in wheat, contaminate Wild oats originated in Asia or the Mediterranean grain and host cereal diseases (Nugent, Storrie & region and were most likely introduced into Australia as Medd 1999). It is estimated wild oats cost Australian a contaminant of small grains (Nugent, Storrie & Medd grain growers in excess of $150 million every year in 1999; Kirby 2000). lost production, cost of control and contamination of grain (Anderson 2003). Distribution Wild oats are found throughout the winter grain growing regions of Australia. Most wild oat populations (about 80%) contain both A.fatua and A.ludoviciana (Cousens 2003) however Avena fatua is the dominant species in southern Australia, Avena ludoviciana is the dominant species in northern New South Wales and southern Queensland and Avena barbata is found predominantly on roadsides and in non-agricultural areas (Nugent, Storrie & Medd 1999). BIOLOGY AND ECOLOGY Wild oats are one of the most competitive grass weeds Figure 1. A mature Photo: J.D. Dodd and are near equal competitors with wheat. Avena fatua plant Competition with the crop begins soon after emergence with most of the yield loss occurring in the first 6 weeks. It has been estimated that an infestation KEY POINTS 2 as small as 20 plants/m can cause a yield loss of 10% • Use an integrated weed management (IWM) in a wheat crop yielding 2t/ha (Anderson 2003). program Yield losses are strongly influenced by the density of • Be vigilant with record keeping and paddock the infestation and the vigour of the crop, and are monitoring greatest when the wild oats emerge at the same time • Be aware of the new mode of action groups for as the crop. Wheat yield, tiller number and dry matter certain herbicides reduce in a linear pattern proportional to the length of time in which wild oats compete with the wheat crop. Therefore maximum yield benefits will be obtained when controlled early as early as possible even though Legislation small yield increases can occur after removal later in Wild oats are not declared noxious in the the season. Murrumbidgee catchment. Wild oats host a number of cereal pests and diseases Taxonomy including cereal cyst nematode (Heterodera avenae), root lesion nematode (Pratylenchus neglectus and P. Wild oats belong to the Poaceae family along with thornei), rhizoctonia (Rhizoctonia solani) and crown rot wheat (Triticum aestivum), barley (Hordeum vulgare) (Fusarium graminearum). They also host the bacteria and oats (Avena sativa). There are three species of that cause annual ryegrass toxicity (Rathayibacter wild oats in Australia- Avena fatua, Avena ludoviciana toxicus). (also known as Avena sterilis) and Avena barbata. Wild oats tend to grow in patches in a paddock and are Wild oats are also commonly known as black oats and found on most soil types from light to heavy textured bearded oats. They can be confused with Brome soils with a pH range of 4.5-9 (Nugent, Storrie & Medd 1999). Identification Seed bank The leaves of wild oat Wild oat seeds are relatively short lived having a half seedlings usually twist in an life of only 6 months. This means 75% of the seed anticlockwise direction as bank can diminish in 12 months and 99% in 2 years in opposed to wheat and barley the absence of new seed inputs (McGillion & Storrie (Figure 2). They have some 2006; Medd 1996). Seedbank decline generally follows hairs on their leaves, a large an exponential pattern with the greatest loss occurring ligule, no auricles and the in the first year (56-81%) (Figure 5) (Nietschke 1997). emerging leaf is rolled as Seeds rarely survive longer than 3 years and research opposed to folded. The has shown that persistent control for 3-5 years can seedlings are blue-green in virtually eradicate wild oats. However due to the prolific colour, especially when seed production of wild oats one season of poor stressed. Mature wild oat control can replenish the seed bank. Soil type also plants are up to 120cm tall. affects the seedbank as seedling recruitment and seedbank decline is greater in sandy soil compared to heavy soils. Photo: weedman.forsham.net.au Figure 2. Avena fatua seedling 120 Before flowering, it is very difficult to distinguish between the wild oat species. The spikelets of A. fatua 100 (Figure 3) hang from both sides of the floret and from only one side in A. barbata. The spikelet of A. 80 ludoviciana does not break up easily as it does in the other two species. Wild oat seeds can vary in colour from black to yellow and may have gold-brown hairs 60 (Figure 4). 40 Wild oat seed in the soil (%) soil the in seed oat Wild 20 0 0 5 10 15 20 25 Time (months) Figure 5. Persistence of wild oat seeds in the soil in the absence of seed input (adapted from Storrie et al. n.d.). Seed dormancy and germination Seed dormancy is relatively short lived in wild oat seeds that are on or near the soil surface. Dormancy Photo: Ian Lunt will be greater in buried seeds due to the cool, moist environment and lack of oxygen. Buried seeds may Figure 3. Avena fatua spikelet (Photo Ian Lunt). remain viable in the soil for up to 10 years however once brought to the surface these seeds will be released from dormancy and will germinate readily. Approximately 40% of the wild oat (A. fatua) seed bank germinates after opening rains and a further 30% later in the season (Nugent, Storrie & Medd 1999). Germination occurs from autumn to spring with the later, smaller cohorts producing enough seed to replenish the seed bank. Wild oats have a large germination window and will germinate in temperatures of 10-26.5°C. The emergence patterns of the three wild oat species differ slightly although this is unlikely to significantly impact on management. A. fatua germinates from Photo: Ian Lunt autumn to spring whereas A. ludoviciana germinates in Figure 4. Avena fatua seed (Photo Ian Lunt). winter to early spring (Medd 1996). A. barbata predominantly germinates after opening rains (Nugent, infestation can produce 20,000 seeds/m2 (McGillion & Storrie & Medd 1999). Storrie 2006). The number of seeds produced depends on weed density, crop density and vigour, time of The dormancy of wild oat seeds depends somewhat emergence, soil moisture, soil fertility and on the origin of the seeds. Primary seeds of each management. spikelet have been found to germinate in a single cohort following opening rains whereas secondary Most seeds of wild oats fall within one metre of the seeds are more persistent and therefore have parent plant. Long distance spread commonly occurs protracted germination (Cousens 2003). in fodder and grain, by livestock (e.g. on their coats) and on machinery. Delaying harvest until more seed Flowering has shed from the parent plant may reduce the dispersal of mature seeds by harvesters. The wild oat panicle is spreading and open, up to 40cm long and 20cm wide, and occurs on both sides of the stem (except in A. barbata). The large spikelets MANAGEMENT have 2-3 flowers (2-5 in A. ludoviciana) and the florets fall as single seeds when mature. A.ludoviciana The physiology of wild oats (staggered germination, flowers slightly earlier than A.fatua however the prolific seed production, self-pollination, high implications for management are likely to be competitiveness, rapid maturity and early seed shed) insignificant. together with widespread herbicide resistance makes their control difficult. It is essential to use an integrated Seed production and dispersal weed management (IWM) approach utilising a wide range of chemical, cultural and biological control Wild oats are self-pollinated so reproduction can occur options (Table 1). from a single plant. They are prolific seed producers and one plant can produce 225 seeds and an Table 1. Weed control tactics and their expected control for wild oats (Avena spp.) (McGillion & Storrie 2006). Tactic Likely control (%) (and control range) Crop choice and sequence 95 (30-99) Improve crop competition 70 (20-99) Herbicide tolerant crops 90 (80-99) Autumn tickle 40 (30-60) Knockdown pre-sowing (non-selective herbicide) 80 (70-90) Pre-emergent herbicides 80 (70-90) Selective post-emergent herbicides 80 (70-90) Spray-topping (selective herbicide) 90 (60-99) Pasture spray-topping 80 (70-90) Cutting for hay and silage 97 (95-99) Grazing 75 (60-80) Weed seed collection at harvest 70 (20-80) Reproduction rather than seed carryover is the main Integrated weed management programs should be mechanism of persistence in wild oat populations. based on long-term considerations including seed Management programs should aim to prevent seed production and the possibility of herbicide resistance production and seedbank inputs every year while developing. Jones, Cacho and Sinden (2003) minimising reductions in grain yield and quality. concluded that there are significant potential economic Infestations should be controlled as early as possible benefits associated with long term integrated weed after emergence as wild oats do most damage due to management systems for the control of wild oats and in competition early in the growing season (Table 2).
Recommended publications
  • Identification of Cereal Remains from Archaeological Sites 2Nd Edition 2006
    Identification of cereal remains from archaeological sites 2nd edition 2006 Spikelet fork of the “new glume wheat” (Jones et al. 2000) Stefanie JACOMET and collaborators Archaeobotany Lab IPAS, Basel University English translation partly by James Greig CEREALS: CEREALIA Fam. Poaceae /Gramineae (Grasses) Systematics and Taxonomy All cereal species belong botanically (taxonomically) to the large family of the Gramineae (Poaceae). This is one of the largest Angiosperm families with >10 000 different species. In the following the systematics for some of the most imporant taxa is shown: class: Monocotyledoneae order: Poales familiy: Poaceae (= Gramineae) (Süssgräser) subfamily: Pooideae Tribus: Triticeae Subtribus: Triticinae genera: Triticum (Weizen, wheat); Aegilops ; Hordeum (Gerste; barley); Elymus; Hordelymus; Agropyron; Secale (Roggen, rye) Note : Avena and the millets belong to other Tribus. The identification of prehistoric cereal remains assumes understanding of different subject areas in botany. These are mainly morphology and anatomy, but also phylogeny and evolution (and today, also genetics). Since most of the cereal species are treated as domesticated plants, many different forms such as subspecies, varieties, and forms appear inside the genus and species (see table below). In domesticates the taxonomical category of variety is also called “sort” (lat. cultivar, abbreviated: cv.). This refers to a variety which evolved through breeding. Cultivar is the lowest taxonomic rank in the domesticated plants. Occasionally, cultivars are also called races: e.g. landraces evolved through genetic isolation, under local environmental conditions whereas „high-breed-races“ were breed by strong selection of humans. Anyhow: The morphological delimitation of cultivars is difficult, sometimes even impossible. It needs great experience and very detailed morphological knowledge.
    [Show full text]
  • Conservation Science W
    Conservation Science W. Aust. 9 (2) : 181–200 (2014) The status and distribution of alien plants on the islands of the south coast of Western Australia MT LOHR 1 AND G KEIGHERY 2 1 Department of Parks and Wildlife, Woodvale Research Centre, PO Box 51, Wanneroo WA 6946, Australia 2 Department of Parks and Wildlife, Keiran McNamara Conservation Science Centre, 17 Dick Perry Avenue, Technology Park, Western Precinct, Kensington WA 6151, Australia email: [email protected] ABSTRACT Alien plants pose a substantial threat to island ecosystems in Australia and worldwide. A better understanding of weed distributions is necessary to more effectively manage natural resources on islands. To address this need for Western Australian islands, we created a database of all available records of alien plants on these islands. Here we report on records from all islands located along the south coast of Western Australia. From 789 individual records, a total of 116 alien plant species were recorded on the 43 islands with existing weed records. A disproportionately large number of weed species were recorded on estuarine islands and islands with a history of intensive human activity. Some of the species are known to be serious environmental weeds, including bridal creeper (Asparagus asparagoides), pig’s ear (Cotyledon orbiculata), sea spurge (Euphorbia paralias), cleavers (Galium aparine), African boxthorn (Lycium ferocissimum), tree mallow (Malva arborea), arum lily (Zantedeschia aethiopica), and the annual grasses Avena, Bromus, Ehrharta, Hordeum, Lolium and Vulpia. Developing management plans to address these species, as well as surveying islands adjacent to known infestations, should be a conservation priority for south coast islands.
    [Show full text]
  • Minnesota and Federal Prohibited and Noxious Plants List 6-22-2011
    Minnesota and Federal Prohibited and Noxious Plants List 6-22-2011 Minnesota and Federal Prohibited and Noxious Plants by Scientific Name (compiled by the Minnesota DNR’s Invasive Species Program 6-22-2011) Key: FN – Federal noxious weed (USDA–Animal Plant Health Inspection Service) SN – State noxious weed (Minnesota Department of Agriculture) RN – Restricted noxious weed (Minnesota Department of Agriculture) PI – Prohibited invasive species (Minnesota Department of Natural Resources) PS – State prohibited weed seed (Minnesota Department of Agriculture) RS – State restricted weed seed (Minnesota Department of Agriculture) (See explanations of these classifications below the lists of species) Regulatory Scientific Name Common Name Classification Aquatic Plants: Azolla pinnata R. Brown mosquito fern, water velvet FN Butomus umbellatus Linnaeus flowering rush PI Caulerpa taxifolia (Vahl) C. Agardh Mediterranean strain (killer algae) FN Crassula helmsii (Kirk) Cockayne Australian stonecrop PI Eichomia azurea (Swartz) Kunth anchored water hyacinth, rooted water FN hyacinth Hydrilla verticillata (L. f.) Royle hydrilla FN, PI Hydrocharis morsus-ranae L. European frog-bit PI Hygrophila polysperma (Roxburgh) T. Anders Indian swampweed, Miramar weed FN, PI Ipomoea aquatica Forsskal water-spinach, swamp morning-glory FN Lagarosiphon major (Ridley) Moss ex Wagner African oxygen weed FN, PI Limnophila sessiliflora (Vahl) Blume ambulia FN Lythrum salicaria L., Lythrum virgatum L., (or any purple loosestrife PI, SN variety, hybrid or cultivar thereof) Melaleuca quenquinervia (Cav.) Blake broadleaf paper bank tree FN Monochoria hastata (Linnaeus) Solms-Laubach arrowleaf false pickerelweed FN Monochoria vaginalis (Burman f.) C. Presl heart-shaped false pickerelweed FN Myriophyllum spicatum Linnaeus Eurasian water mifoil PI Najas minor All. brittle naiad PI Ottelia alismoides (L.) Pers.
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • Avena Strigosa Schreb.) Germplasm
    EVALUATION OF BLACK OAT ( AVENA STRIGOSA SCHREB.) GERMPLASM Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with my advisory committee. This thesis does not include proprietary or classified information. ________________________________________ Thomas Antony Certificate of Approval: _________________________ _________________________ David B. Weaver Edzard van Santen, Chair Professor Professor Agronomy and Soils Agronomy and Soils _______________________ _________________________ Andrew J. Price Joe F. Pittman Assistant Professor Interim Dean Agronomy and Soils Graduate School EVALUATION OF BLACK OAT ( AVENA STRIGOSA SCHREB.) GERMPLASM Thomas Antony A Thesis Submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirement for the Degree of Master of Science Auburn, Alabama December 17, 2007 EVALUATION OF BLACK OAT ( AVENA STRIGOSA SCHREB.) GERMPLASM Thomas Antony Permission is granted to Auburn University to make copies of this thesis at its discretion, upon the request of individuals or institutions and at their expense. The author reserves all publication rights. ___________________________________ Signature of Author ___________________________________ Date of Graduation iii THESIS ABSTRACT EVALUATION OF BLACK OAT ( AVENA STRIGOSA SCHREB.) GERMPLASM Thomas Antony Master of Science, December 17, 2007 (B.S. (Agriculture), Kerala Agricultural University, India, 2002) (B.S. (Botany), Mahatma Gandhi University, India, 1995) 156 Typed Pages Directed by Edzard van Santen Black oat has become an important winter cover crop in subtropical and temperate regions. Originating in the northern parts of Spain and Portugal, black oat cultivation has spread to different parts of the globe. Even though different in ploidy level, diploid black oat has been used in many hexaploid common oat ( A.
    [Show full text]
  • Physilogical and Biochemical Responses of Avena Species To
    Vol. 12(43), pp. 6170-6175, 23 October, 2013 DOI: 10.5897/AJB12.1044 ISSN 1684-5315 ©2013 Academic Journals African Journal of Biotechnology http://www.academicjournals.org/AJB Full Length Research Paper Studies on morpho-physiological characters of different Avena species under stress conditions H. C. Pandey1*, M. J. Baig2, Shahid Ahmed1, Vikas Kumar1 and Praveen Singh3 1Indian Grassland and Fodder Research Institute, Jhansi-284003, Uttar Pradesh, India. 2Central Rice Research Institute, Cuttack, Orrisa, India. 3SKUAST-J, Poonch-185101. Jammu & Kashmir. India Accepted 12 April, 2013 Seven species of oat (Avena) were evaluated for their relative drought tolerance under soil moisture stress. The plant height, leaf area production and biomass yield reduced under soil moisture stress. Among the species tested, minimum reduction in height was recorded in Avena vaviloviana, Avena abyssinica and Avena sterilis at vegetative and flowering stages. Significant decrease in leaf area production was recorded at vegetative stage, whereas at flowering stage, the decrease in leaf area production was marginal in A. sterilis followed by A. abyssinica predicting their more adaption to stress environment. The increase in specific leaf weight (SLW) of all the species of Avena showed increase in leaf thickness, exhibiting high water retention capacity under soil moisture stress condition which is a requisite trait for drought tolerance. Soil moisture stress imposed at vegetative and flowering stages reduced fresh biomass yield in all the species. Minimum reduction in dry biomass accumulation under stress environment at vegetative stage was recorded in A. sterilis followed by A. strigosa and A. sativa, exhibiting their tolerance to drought at early stages of growth.
    [Show full text]
  • Pollen Morphology of Poaceae (Poales) in the Azores, Portugal
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/283696832 Pollen morphology of Poaceae (Poales) in the Azores, Portugal ARTICLE in GRANA · OCTOBER 2015 Impact Factor: 1.06 · DOI: 10.1080/00173134.2015.1096301 READS 33 4 AUTHORS, INCLUDING: Vania Gonçalves-Esteves Maria A. Ventura Federal University of Rio de Janeiro University of the Azores 86 PUBLICATIONS 141 CITATIONS 43 PUBLICATIONS 44 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Maria A. Ventura letting you access and read them immediately. Retrieved on: 10 December 2015 Grana ISSN: 0017-3134 (Print) 1651-2049 (Online) Journal homepage: http://www.tandfonline.com/loi/sgra20 Pollen morphology of Poaceae (Poales) in the Azores, Portugal Leila Nunes Morgado, Vania Gonçalves-Esteves, Roberto Resendes & Maria Anunciação Mateus Ventura To cite this article: Leila Nunes Morgado, Vania Gonçalves-Esteves, Roberto Resendes & Maria Anunciação Mateus Ventura (2015) Pollen morphology of Poaceae (Poales) in the Azores, Portugal, Grana, 54:4, 282-293, DOI: 10.1080/00173134.2015.1096301 To link to this article: http://dx.doi.org/10.1080/00173134.2015.1096301 Published online: 04 Nov 2015. Submit your article to this journal Article views: 13 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=sgra20 Download by: [b-on: Biblioteca do conhecimento
    [Show full text]
  • Avena Sterilis L.) Abdolmajid Rezai Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1977 Variation for some agronomic traits in the World Collection of wild oats (Avena sterilis L.) Abdolmajid Rezai Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agriculture Commons, and the Agronomy and Crop Sciences Commons Recommended Citation Rezai, Abdolmajid, "Variation for some agronomic traits in the World Collection of wild oats (Avena sterilis L.) " (1977). Retrospective Theses and Dissertations. 6103. https://lib.dr.iastate.edu/rtd/6103 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce ti^.is document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
    [Show full text]
  • Identification of Wild-Oats Dr Stephen Moss ROTHAMSTED RESEARCH in the UK, There Are Two Main Species Which Occur As Weeds of Arable Crops
    ® Identification of wild-oats Dr Stephen Moss ROTHAMSTED RESEARCH In the UK, there are two main species which occur as weeds of arable crops. Their relative fequencies, as reported in the Atlas of the British Flora (2002), are given as the (%) of the 2852 10 x 10 km grid squares surveyed in which the species was detected. Avena fatua – common Avena sterilis ssp. ludoviciana or spring wild-oat – winter wild-oat Occurs throughout England; Less common and mainly found more scattered distribution in within 50 – 100 miles of Oxford Scotland and Wales. (55%). where it was first recorded Germinates mainly in spring in the wild in 1910. (10%). (March/April) but with a Probably under-reported due variable, and sometimes to confusion with Avena fatua. considerable, amount of Germinates mainly in autumn autumn germination too (mainly Sept/Oct). and winter, from October to early March, and is more tolerant of freezing conditions than Avena fatua. Both species may occur within a single field, sometimes in mixture but sometimes in separate patches. Why does identification of species matter? Avena sterilis ssp. ludoviciana is generally considered the more challenging species to control, requiring more robust strategies Seedling emergence patterns and winter hardiness differ between the two species so correct identification can help in herbicide decision-making Although herbicide resistance has been found in both species, it is relatively more common in Avena sterilis ssp. ludoviciana. The first cases of resistance in the UK were all found in this species despite its more limited distribution. At the vegetative stage, wild-oats can be identified in cereal crops by: Hairy leaf margins and the absence of auricles Auricles No auricles on wild-oats Wheat - well developed, Barley - large, (or cultivated oats) but hairy auricles (hairs hairless auricles.
    [Show full text]
  • INVASIVE SPECIES Grass Family (Poaceae) Wild Oats Are Annuals
    A PROJECT OF THE SONOMA-MARIN COASTAL PRAIRIE WORKING GROUP INVASIVE SPECIES I NVASIVE A NNUAL P LANTS WILD OATS (AVENA FATUA) AND SLENDER WILD OATS (AVENA BARBATA) - NON-NATIVE Grass Family (Poaceae) Wild oats are annuals. WILD OATS: Are native to Eurasia and North Africa. WILD OAT ECOLOGY Is often dominant or co-dominant in coastal prairie (Ford and Hayes 2007; Sawyer, et al. 2009), Occurs in moist lowland prairies, drier upland prairies and open woodlands (Darris and Gonzalves 2008), Species Interactions: The success of Avena lies in its superior competitive ability: o It has a dense root system. The total root length of a single Avena plant can be from 54.3 miles long (Pavlychenko 1937) to, most likely, twice that long (Dittmer 1937). Wild oats (Avena) in Marin coastal grassland. o It produces allelopathic compounds, Photo by D. (Immel) Jeffery, 2010. chemicals that inhibit the growth of other adjacent plant species. o It has long-lived seeds that can survive for as long as 10 years in the soil (Whitson 2002). Citation: Jeffery (Immel), D., C. Luke, K. Kraft. Last modified February 2020. California’s Coastal Prairie. A project of the Sonoma Marin Coastal Grasslands Working Group, California. Website: www.cnga.org/prairie. Coastal Prairie Described > Species: Invasives: Page 1 of 18 o Pavlychenko (1937) found that, although Avena is a superior competitor when established, it is relatively slow (as compared to cultivated cereal crops wheat, rye and barley) to develop seminal roots in the early growth stages. MORE FUN FACTS ABOUT WILD OATS Avena is Latin for “oat.” The cultivated oat (Avena sativa), also naturalized in California) is thought to be derived from wild oats (Avena fatua) by early humans (Baum and Smith [2011]).
    [Show full text]
  • Ardenwood Plants
    Ardenwood Plants A photographic guide to wild plants of Ardenwood Historic Farm Sorted by Scientific Name Photographs by Wilde Legard Botanist, East Bay Regional Park District Revision: February 23, 2007 More than 2,000 species of native and naturalized plants grow wild in the San Francisco Bay Area. Most are very difficult to identify without the help of good illustrations. This is designed to be a simple, color photo guide to help you identify some of these plants. The selection of plants displayed in this guide is by no means complete. The intent is to expand the quality and quantity of photos over time. The revision date is shown on the cover and on the header of each photo page. A comprehensive plant list for this area (including the many species not found in this publication) can be downloaded at the East Bay Regional Park District’s wild plant download page at: http://www.ebparks.org. This guide is published electronically in Adobe Acrobat® format to accommodate these planned updates. You have permission to freely download, distribute, and print this pdf for individual use. You are not allowed to sell the electronic or printed versions. In this version of the guide, the included plants are sorted alphabetically by scientific name. Under each photograph are four lines of information, based on upon the current standard wild plant reference for California: The Jepson Manual: Higher Plants of California, 1993. Scientific Name Scientific names revised since 1993 are NOT included in this edition. Common Name These non-standard names are based on Jepson and other local references.
    [Show full text]
  • Tracheophyte of Xiao Hinggan Ling in China: an Updated Checklist
    Biodiversity Data Journal 7: e32306 doi: 10.3897/BDJ.7.e32306 Taxonomic Paper Tracheophyte of Xiao Hinggan Ling in China: an updated checklist Hongfeng Wang‡§, Xueyun Dong , Yi Liu|,¶, Keping Ma | ‡ School of Forestry, Northeast Forestry University, Harbin, China § School of Food Engineering Harbin University, Harbin, China | State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China ¶ University of Chinese Academy of Sciences, Beijing, China Corresponding author: Hongfeng Wang ([email protected]) Academic editor: Daniele Cicuzza Received: 10 Dec 2018 | Accepted: 03 Mar 2019 | Published: 27 Mar 2019 Citation: Wang H, Dong X, Liu Y, Ma K (2019) Tracheophyte of Xiao Hinggan Ling in China: an updated checklist. Biodiversity Data Journal 7: e32306. https://doi.org/10.3897/BDJ.7.e32306 Abstract Background This paper presents an updated list of tracheophytes of Xiao Hinggan Ling. The list includes 124 families, 503 genera and 1640 species (Containing subspecific units), of which 569 species (Containing subspecific units), 56 genera and 6 families represent first published records for Xiao Hinggan Ling. The aim of the present study is to document an updated checklist by reviewing the existing literature, browsing the website of National Specimen Information Infrastructure and additional data obtained in our research over the past ten years. This paper presents an updated list of tracheophytes of Xiao Hinggan Ling. The list includes 124 families, 503 genera and 1640 species (Containing subspecific units), of which 569 species (Containing subspecific units), 56 genera and 6 families represent first published records for Xiao Hinggan Ling. The aim of the present study is to document an updated checklist by reviewing the existing literature, browsing the website of National Specimen Information Infrastructure and additional data obtained in our research over the past ten years.
    [Show full text]