Computational Cognition

Total Page:16

File Type:pdf, Size:1020Kb

Computational Cognition Computational Cognition Integrated DBS Software Design for Data-Driven Cognitive Processing December 9, 2019; revised July 5, 2020 ROLAND HAUSSER Friedrich Alexander Universität Erlangen Nürnberg (em.) email: [email protected] c Roland Hausser, August 8, 2020 Start May 07, 2017 CC1 July 29, 2017 CC2 March 05, 2018 CC3 June 27, 2018 CC4 August 03, 2018 CC5 September 20, 2018 CC6 October 01, 2018 CC7 November 01, 2018 CC8 December 03, 2018 CC9 January 02, 2019 CC10 February 16, 2019 CC11 March 11, 2019 CC12 April 5, 2019 CC13 May 2, 2019 CC14 June 14, 2019 CC15 July 2, 2019 CC16 December 9, 2019 CC17 July 5, 2020 (main changes in Chaps. 9, 12, 13) Pen name given to the author by Professor Inseok Yang, President of the Korean Society of Linguistics, Seoul 1982. Preface It is shown by the history of science that a basic property inadvertently omitted in the beginning can not be added post hoc. Therefore a theory of computa- tional cognition should aim from the outset to be as complete as possible and draw from all three branches of modern science, i.e. the natural sciences, the engineering sciences, and the humanities (grammar, philosophy of language). The natural and the engineering sciences have long evolved a symbiotic re- lationship, but the humanities still stand apart. Designing and building a talk- ing robot, however, is a challenge for which all three are needed. Agent-based Database Semantics (DBS) integrates recognition and action interfaces, an on- board orientation system, a content-addressable database, a data structure of nonrecursive feature structures with ordered attributes, and a linear algorithm. IMODEL IN AGENT OR AGENT IN MODEL? The empirical scope of a scientific theory is determined by its ontology. The DBS ontology for building a computational model of cognition is agent-based like the natural prototype: the artificial agent looks out into the world and inter- acts with it autonomously. The world is given in the form of raw data and any interaction is solely by means of (i) the agent’s interfaces for recognition and action, and by (ii) cognition-internal reasoning on content stored in memory. In this sense, the agent-based ontology places the model inside the agent. The alternative ontology is sign-based: an introspector-definer analyzes the intuitive relation between language signs and an abstract universe of discourse, called model. If the model were to include an agent, it would be defined like tables or chairs, i.e. as a virtual, immaterial doll without any interfaces for au- tonomous recognition and action; what it perceives or does would be entirely a matter of definition in a metalanguage by the introspector-definer. In this sense, agents are inside the models of a sign-based ontology. An agent-based ontology has a broader empirical base than a sign-based on- tology: (i) artificial interfaces for the sensory modalities, (ii) content in mem- ory resonating with current processing, (iii) switching between the speak and the hear mode, and (iv) switching between language and nonlanguage cogni- i ii Preface tion are indispensable in a DBS robot, but abstracted away from in sign-based systems. Conversely, instead of the sign-based definition of artificial models in a metalanguage (if-then conditionals based on truth values), the agent-based ontology is more realistic because it treats the world as given. II DATA-DRIVEN OR SUBSTITUTION-DRIVEN? The dichotomy between an agent-based and a sign-based ontology is com- plemented by the dichotomy between a data-driven and a substitution-driven computation. The input to a data-driven system is provided by recognition, memory, or a preceding operation; the output is content for action, provided by current processing or blueprints retrieved from memory. A substitution-driven system, in contrast, creates a hierarchy with rules which replace an abstract node with a larger (top down expansion) or smaller (bottom up reduction) expression. Building on the work of Frege (1848–1925), substitution-driven formalisms were used by Hilbert (1862–1943), Russell (1872–1970), Tarski (1901–1983), and Gödel (1906–1978) for the develop- ment of axiomatic systems and resulted in recursion, automata, and computa- tional complexity theory, such as the rewrite systems of Post (1936). When Chomsky borrowed the substitution-driven approach for analyzing natural language in the form of “generative grammar,” he ran into the problem that the extremely successful original was not designed to provide distinctions between recognition and action, the speak and the hear mode, and language and nonlanguage content. Also, its ‘vertical’ derivation order is inherently in conflict with the ‘horizontal’ time-linear structure of natural language, arti- ficially creating the “problem of serialization” for generative grammar. The way out was using the same start symbol S for randomly computing different substitutions to generate “base structures” alleged to be innate and universal. DBS, in contrast is data-driven. In the hear mode, the ordered input of con- crete agent-external surfaces is lexically analyzed as proplets which are con- nected into content with the classical semantic relations of structure coded by address. Navigating along the semantic relations between the order-free pro- plets of a content activates the proplets traversed, making them input to the language-dependent surface realization of the speak mode. Regarding computational complexity, data-driven LA-grammar provides the first, and so far the only, formal language hierarchy (TCS) which is orthogonal to the Chomsky hierarchy of substitution-driven Phrase Structure Grammar. It has been shown (FoCL Sects. 12.5, 22.3) that the natural languages are in the language class of C1-LAGs, which parses in linear time. Preface iii III MEDIA AND THEIR DUAL MODALITIES The interaction between the agent and the raw data provided by its environ- ment is based on the sensory media. Each medium has two modalities, one for recognition and one for action. For example, the sensory medium of speech has the dual sensory modalities of vocalization for action and audition for recog- nition, writing has the dual sensory modalities of manipulation for action and vision for recognition, and accordingly for Braille and signing (11.2.1). In addition to the sensory media and modalities there are the processing me- dia and modalities (11.2.2), which deal solely with content (no raw data). Ex- amples are (i) natural cognition based on the electrochemical medium and (ii) artificial cognition based on the medium of a programming language. The dual processing modalities of a DBS robot are (a) the declarative (alphanumeric) commands in a programming language, written by software engineers to be interpreted for recognition and action by a computer, and (b) the procedural (electronic) modality for executing the declarative commands automatically. IV FUNCTIONAL EQUIVALENCE AND UPSCALING CONTINUITY The cognition of an artificial agent must be functionally equivalent to the nat- ural prototype at a certain level of abstraction. For example, if the artificial agent is able to spontaneously call a color or a geometric shape the same as a human, functional equivalence is achieved. Similarly for the compositional as- pect: if the artificial agent understands the difference between the dog bit the man and the man bit the dog the same as an English-speaking human, there is functional equivalence. In such instances proper functioning may be verified by tracing the software via the service channel of the artificial agent (1.1.1). That computational (1) string search, (2) pattern matching, and (3) iteration are essential for building functional equivalence in a robot does not imply that natural cognition must use these methods as well. In analogy, even though a horse and a motorcycle are functionally equivalent at a certain level of ab- straction, i.e. for one or two persons getting from A to B, the functioning of a motorcycle has no bearing on the biological analysis of a horse. Functional equivalence is counterbalanced by a second, complementary standard of adequacy, namely the upscaling continuity of test cycles. A cycle consists of (a) testing the current software version automatically on systematic data (test suite), (b) correcting all errors, and (c) extending the test suite to additional data, after which the next test cycle is started. A cycle is successful if functional equivalence is achieved. Upscaling continuity holds, if the cycle following a successful cycle is successful as well. iv Preface VABSTRACTION IN PROGRAMMING: DECLARATIVE SPECIFICATION Programming languages are in a continuous process of debugging and devel- opment (updates, new releases). This requires software maintenance which may be labor-intensive; for example, a program written in 1985 in Interlisp-D will require work by an expert in order to run in today’s Common Lisp. Also, computer programs, old or new, are difficult for humans to read and without additional explanation do not easily reveal the conceptual idea. Therefore there have long been efforts at defining programs at a higher level of abstraction such as UML (unified modeling language) and ER (entity rela- tionship model). The goal is to use notions which are meaningful to humans, but also translate into various programming languages. It turns out, however, that the general purpose aspiration of UML, ER, and similar proposals, i.e. working for any task and any programming language, causes massive overhead and may require more work than they can actually save. This holds especially for research outside of today’s well-established computational applications based on substitution. Therefore the data structure, the database schema, and the algorithm of DBS are defined directly but abstractly: they are custom-designed to handle the soft- ware tasks inherent in the cognition of a talking robot (15.2.2) in a simple, standardized, conceptually transparent, and empirically comprehensive man- ner, called declarative specification.
Recommended publications
  • A Mechanistic Account of Wide Computationalism
    Rev.Phil.Psych. (2017) 8:501–517 DOI 10.1007/s13164-016-0322-3 A Mechanistic Account of Wide Computationalism Luke Kersten1 Published online: 24 October 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract The assumption that psychological states and processes are computational in character pervades much of cognitive science, what many call the computational theory of mind. In addition to occupying a central place in cognitive science, the computa- tional theory of mind has also had a second life supporting Bindividualism^, the view that psychological states should be taxonomized so as to supervene only on the intrinsic, physical properties of individuals. One response to individualism has been to raise the prospect of Bwide computational systems^, in which some computational units are instantiated outside the individual. BWide computationalism^ attempts to sever the link between individualism and computational psychology by enlarging the concept of computation. However, in spite of its potential interest to cognitive science, wide computationalism has received little attention in philosophy of mind and cognitive science. This paper aims to revisit the prospect of wide computationalism. It is argued that by appropriating a mechanistic conception of computation wide computationalism can overcome several issues that plague initial formulations. The aim is to show that cognitive science has overlooked an important and viable option in computational psychology. The paper marshals empirical support and responds to possible objections. 1 Introduction Jerry Fodor once claimed that: Bquite independent of one’s assumptions about the details of psychological theories of cognition, their general structure presupposes underlying computational processes^ (1975, p.28).
    [Show full text]
  • Processing and Integration of Sensory Information in Spatial Navigation
    Processing and Integration of Sensory Information in Spatial Navigation Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften (Dr. rer. nat.) im Fachbereich Humanwissenschaften der Universität Osnabrück vorgelegt von Caspar Mathias Goeke Osnabrück, im November 2016 Supervisors 1st Supervisor: Prof. Dr. Peter König University of Osnabrück, Osnabrück, Germany 2nd Supervisor: Prof. Dr. Klaus Gramann Technical University of Berlin, Berlin, Germany 3rd Supervisor: Prof. Dr. Bernhard Riecke Simon Fraser University, Vancouver, Canada Additional Supervisor: Prof. Dr. Gordon Pipa University of Osnabrück, Osnabrück, Germany Curriculum Vitae Caspar Goeke Schepelerstr. 21, [email protected] 49074 Osnabrück +49 157 5521 5307 Germany Journal Articles Goeke, C., König, S. U., Meilinger, T., & König, P. (submitted). Are non- egocentric spatial reference frames compatible with enacted theories? Scientific Reports König, S. U., Schumann, F., Keyser, J., Goeke, C., Krause, C., Wache, S., … Peter, K. (in press). Learning New Sensorimotor Contingencies: Effects of Long- term Use of Sensory Augmentation on the Brain and Conscious Perception. PloS One. Goeke, C. M., Planera, S., Finger, H., & König, P. (2016). Bayesian Alternation during Tactile Augmentation. Frontiers in Behavioral Neuroscience, 10, 187. Goeke, C., Kornpetpanee, S., Köster, M., Fernández-Revelles, A. B., Gramann, K., & König, P. (2015). Cultural background shapes spatial reference frame proclivity. Scientific reports, 5. Goeke, C. M., König, P., & Gramann, K. (2013). Different strategies for spatial updating in yaw and pitch path integration. Front Behav Neurosci,7. Conference Contributions A Bayesian Approach to Multimodal Integration between Augmented and Innate Sensory Modalities, Osnabrück Computational Cognition Alliance Meeting, Osnabrück, Germany 2014 Cultural impact on strategy selection mechanisms, Annual Meeting of Experimental Psychologists, Gießen, Germany, 2014.
    [Show full text]
  • Fast and Loose Semantics for Computational Cognition
    Logical Formalizations of Commonsense Reasoning: Papers from the 2015 AAAI Spring Symposium Fast and Loose Semantics for Computational Cognition Loizos Michael Open University of Cyprus [email protected] Abstract tics. The questions that arise, the alternatives that one could Psychological evidence supporting the profound effort- have adopted, and the prior works that are relevant to such an lessness (and often substantial carelessness) with which endeavor, are much too numerous to be reasonably covered human cognition copes with typical daily life situations in the constraints of one paper. We view this work as a start- abounds. In line with this evidence, we propose a formal ing point for a fuller investigation of this line of research. semantics for computational cognition that places em- phasis on the existence of naturalistic and unpretentious Perception Semantics algorithms for representing, acquiring, and manipulat- ing knowledge. At the heart of the semantics lies the re- We assume that the environment determines at each moment alization that the partial nature of perception is what ul- in time a state that fully specifies what holds. An agent never timately necessitates — and hinders — cognition. Inex- fully perceives these states. Instead, the agent uses some pre- orably, this realization leads to the adoption of a unified specified language to assign finite names to atoms, which are treatment for all considered cognitive processes, and to used to represent concepts related to the environment. The the representation of knowledge via prioritized implica- set of all atoms is not explicitly provided upfront. Atoms are tion rules. Through discussion and the implementation encountered through the agent’s interaction with its environ- of an early prototype cognitive system, we argue that ment, or introduced through the agent’s cognitive processing such fast and loose semantics may offer a good basis for mechanism.
    [Show full text]
  • Investigations on Cognitive Computation and Computational Cognition
    DIPARTIMENTO DI SCIENZE DELL’INFORMAZIONE DOTTORATO DI RICERCA IN INFORMATICA DELLA SCUOLA DI DOTTORATO IN INFORMATICA – XXII CICLO TESI DI DOTTORATO DI RICERCA INF/01 Investigations on cognitive computation and computational cognition Isabella Cattinelli Relatore: Prof. N. Alberto Borghese Correlatore: Prof. Eraldo Paulesu Il Direttore della Scuola di Dottorato in Informatica: Prof. Ernesto Damiani ANNO ACCADEMICO 2009–2010 ii iii Abstract This Thesis describes our work at the boundary between Computer Science and Cognitive (Neuro)Science. In particular, (1) we have worked on methodological improvements to clust- ering-based meta-analysis of neuroimaging data, which is a technique that allows to collec- tively assess, in a quantitative way, activation peaks from several functional imaging studies, in order to extract the most robust results in the cognitive domain of interest. Hierarchi- cal clustering is often used in this context, yet it is prone to the problem of non-uniqueness of the solution: a different permutation of the same input data might result in a different clustering result. In this Thesis, we propose a new version of hierarchical clustering that solves this problem. We also show the results of a meta-analysis, carried out using this algo- rithm, aimed at identifying specific cerebral circuits involved in single word reading. More- over, (2) we describe preliminary work on a new connectionist model of single word reading, named the two-component model because it postulates a cascaded information flow from a more cognitive component that computes a distributed internal representation for the input word, to an articulatory component that translates this code into the corresponding sequence of phonemes.
    [Show full text]
  • Overt Selection and Processing of Visual Stimuli
    Overt Selection and Processing of Visual Stimuli Dissertation zur Erlangung des Grades “Ph.D. in Cognitive Science” im Fachbereich Humanwissenschaften der Universitat¨ Osnabruck¨ vorgelegt von Jose´ P. Ossandon´ D. Osnabruck,¨ im November 2015 Supervisor: Prof. Dr. Peter Konig¨ University of Osnabruck,¨ Osnabruck,¨ Germany Additional reviewers: Prof. Dr. Frank Jakel¨ University of Osnabruck,¨ Osnabruck,¨ Germany Dr. rer. nat. Tobias Heed University of Hamburg, Hamburg, Germany The human understanding when it has once adopted an opinion ... draws all things else to support and agree with it. And though there be a greater number and weight of instances to be found on the other side, yet these it either neglects and despises, or else by some distinction sets aside and rejects, in order that by this great and pernicious predetermination the authority of its former conclusions may remain inviolate. Novum Organum FRANCIS BACON Going beyond accepted data is not very different from filling gaps, except that interpola- tions are limited to the next accepted data point; extrapolations, however, have no end point in what is known or assumed, so extrapolations may be infinitely daring, and so may be dramatically wrong. Perception as hypothesis RICHARD L. GREGORY Abstract To see is to act. Most obviously, we are continuously scanning different regions of the world with the movement of our eyes, head, and body. These overt movements are intrinsically linked to two other, more subtle, actions: (1) the prior process of deciding where to look; and (2) the prediction of the sensory consequences of overt movements. In this thesis I describe a series of experiments that investigate different mechanisms underlying the first process and that evaluate the existence of the second one.
    [Show full text]
  • NSF Workshop on Integrating Approaches to Computational Cognition
    NSF Workshop on Integrating Approaches to Computational Cognition Supplementary Material: Examples of Existing Work Bridging CS and ML The report from this workshop1 focuses on future gains that can be expected from cooperation between the machine learning (ML) and cognitive science (CS) research communities. There are numerous examples of recent research that point to this potential. Of many lines of research that could be used as illustrations, we give in this appendix a few examples selected by the workshop participants, noting that this is a small selection of both the research in the field and the research of the workshop members. Griffiths How should we represent the features of complex objects? When we look at the objects around us, the features that are relevant for deciding what an object is or how to use it seem obvious. But these features aren't as obvious to computers as they are to people, and the ease with which we identify the features of objects means that most psychological experiments assume the features of objects are simply available to observers. Griffiths and Ghahramani (2006) show how sophisticated statistical methods can be used to identify the features of objects from their appearance. This statistical approach solves two problems at once - identifying what the features are, and how many features need to be used. The model, named the Indian Buffet Process, was motivated by issues that come up in cognitive science, but has had a significant impact in machine learning. In subsequent work, we have examined how this idea can be used to explain how people identify the features of objects and how computers can do a better job of automatically forming representations of objects that are more similar to those formed by people.
    [Show full text]
  • What Is Artificial Intelligence?
    This is an open access article licensed under the Creative Commons BY-NC-ND License. Journal of Artificial General Intelligence 11(2) 52-56, 2020 Submitted 2019-10-11 DOI: 10.2478/jagi-2020-0003 Accepted 2019-11-07 What Is Artificial Intelligence? William J. Rapaport [email protected] Departments of Computer Science and Engineering, Philosophy, & Linguistics, and Center for Cognitive Science University at Buffalo The State University of New York Buffalo, New York, USA Editors: Dagmar Monett, Colin W. P. Lewis, and Kristinn R. Thorisson´ Wang (2019) claims to define AI in the sense of delimiting its research area. But he offers a definition only of ‘intelligence’ (not of AI). And it is only a theory of what intelligence is (artificial or otherwise). I offer and defend a definition of AI as computational cognition. 1. The Nature of Definitions Forward-looking (or prescriptive) definitions suggest what researchers ought or want to work on. Backward-looking (or descriptive) definitions are based on what researchers have actually tried to do or succeeded in doing.1 Examples abound in the history of science: Atoms were originally conceived as indivisible; we now know that they are not; electrons were originally conceived as tiny particles, a view now challenged by quantum mechanics. Reconciling such apparently incommensurable definitions or concepts is an open question in philosophy. In the case of AI, there is an obvious candidate for the forward-looking, prescriptive definition (mentioned, but not explicitly cited, by Wang): McCarthy’s definition from the Dartmouth conference that gave the field its name: the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it.
    [Show full text]
  • Angela J. Yu [email protected]
    Angela J. Yu [email protected] Research My lab utilizes rigorous and diverse tools to understand the nature of representation and computations that give rise to intelligent behavior, in particular with regard to how the brain copes with uncertainty in inference, learning, decision-making, and social cognition. Using Bayesian statistical modeling tools, control theory, reinforcement learning, information theory, and dynamical systems analysis, we develop mathematical and computational theo- ries that attempt to explain disparate aspects of cognition: perception, attention, decision- making, learning, cognitive control, active sensing, economic choice, and social perception and decision-making. My lab mainly specializes in theoretical modeling, but also utilizes various experimental methods, e.g. behavior, eye-tracking, fMRI, to help develop and vali- date the theoretical concepts. In addition, we collaborate with a number of experimentalists on a range of topics related to human and animal cognition, including neural and psychiatric impairments. Employment University of California San Diego La Jolla, CA 2014 - Present: Associate Professor (2008 - 2014: Assistant Professor), Department of Cogni- tive Science. Director of Computational and Cognitive Neuroscience Laboratory. Founding faculty of the Halicioglu Data Science Institute. Faculty member of the Contextual Robotics Institute, the Institute for Neural Computation, The Temporal Dynamics of Learning Center, the Neurosciences PhD Program, and Affiliate Faculty in Computer Science and Engineering Department. Education Princeton University Princeton, NJ April, 2005 - July, 2008 Post-doctoral fellow in the Center for the Study of Brain, Mind, and Behavior. Sloan-swartz fellow for computational neuroscience. UCL Gatsby Computational Neuroscience Unit London, UK October, 2000 - June, 2005 Ph.D in Computational Neuroscience.
    [Show full text]
  • Cognitive Science
    COGNITIVE SCIENCE Cognitive science has emerged in the last few decades as a major discipline that promises to be increasingly important in the 21st century. It focuses on the study of intelligent systems, both real and artificial. Cognitive science is the empirical study of intelligent systems, including the human mind. It is an interdisciplinary science, which combines results from neuroscience, computer science, linguistics, mathematics, philosophy and psychology to the study of language processing, perception, action, learning, concept formation, inference and other activities of the mind with applications for information technology and the study of artificial intelligence. A Cognitive Science graduate, skilled in the analysis of cognitive and decision-making processes, is well-prepared for a rewarding professional future. Semester 1 Semester 2 Studies in Cognitive Sciences Semester 3 1. Foundations of Cognitive Science This course provides an introduction to the study of intelligence, mind and brain from an interdisciplinary perspective. It encompasses the contemporary views of how the mind works, the nature of reason, and how thought processes are reflected in the language we use. Central to the course is the modern computational theory of mind and it specifies the underlying mechanisms through which the brain processes language, thinks thoughts, and develops consciousness. 2. Biological Basis of Behavior Biopsychology is focused on the structure and function of the nervous system. This course will provide the foundation for understanding the biological basis of behavior. It will cover the perspectives, questions, and techniques of neuroscience, brain cell structure and function, neural communication, neurotransmitters, neurological disorders and treatment, brain development, and neural systems responsible for motivation, learning, emotion, stress, sleep, sensation, perception, and consciousness.
    [Show full text]
  • Cognitive Ergonomics Lessons: Possible Challenges for USI?
    IPO Annual Progress Report 34 1999 Contents Page 4 General 8 Work Programme 1999 13 Organization IPO 17 User-Centred Design 19 D.G. Bouwhuis and J.B. Long Developments 24 J.B. Long Cognitive ergonomics lessons: Possible challenges for USI? 37 W.A. IJsselsteijn, H. de Ridder and J. Freeman Measuring presence: An overview of assessment methodologies 49 Information Access and Presentation 51 F.L. van Nes Developments 54 F.J.J. Blommaert and TJ.W.M. Janssen The satisfied user 63 G. Klein Teeselink, H. Siepe and J.R. de Pijper Log files for testing usability 73 Multimodal Interaction 75 A.J.M. Houtsma Developments 78 D.J. Hermes and S.L.J.D.E. van de Par Scientific approaches to sound design IPO Annual Progress Report 341999 2 86 M.M.J. Houben, D.J. Hermes and A. Kohlrausch Auditory perception of the size and velocity of rolling balls 94 S.L.J.D.E. van de Par and A. Kohlrausch Integration of auditory-visual patterns 103 Spoken Language Interfaces 105 R.N.J. Veldhuis Developments 111 M.M. Bekker and L.L.M. Vogten Usability of voice-controlled product interfaces 125 C.H.B.A. van Dinther, P.S. Rao, R.NJ. Veldhuis and A. Kohlrausch A measure for predicting audibility discrimination thresholds 133 E.A.M. Klabbers, R.N.J. Veldhuis and K.D. Koppen Improving diphone synthesis by adding context-sensitive diphones 142 J. Hirschberg, D. Litman and M.GJ. Swerts On-line spotting of ASR errors by means of prosody 150 Publications 174 Papers accepted for publication 176 Colophon For information on the use of material from this report, see the last page.
    [Show full text]
  • Todd M. Gureckis –
    6 Washington Place Room 859 New York, NY 1003 T (212) 998 3794 B [email protected] Todd M. Gureckis Í gureckislab.org Professional Experience 2014–present Associate Professor, Department of Psychology, Affiliate, Center for Data Science & Center for Neural Science, New York University, New York, NY. 2008–2013 Assistant Professor, Department of Psychology, New York University, New York, NY. 2005–2007 Post-doctoral Research Associate, Department of Psychological and Brain Sci- ences, Indiana University, Bloomington, IN. Visiting Affiliations Spring 2015 Institute of Cognitive and Brain Sciences, University of California, Berkeley, CA. Fall 2014 Booth School of Business, University of Chicago, Chicago, IL. Education 2001–2005 Ph.D., Cognition and Perception, The University of Texas, Austin, TX. 2001–2005 M.A., Cognition and Perception, The University of Texas, Austin, TX. 1997–2001 B.S., Electrical and Computer Engineering, The University of Texas, Austin, TX. Honors and Awards 2017 Visiting Research Fellowship, University of New South Wales, Sydney, Australia 2016 NYU College of Arts and Sciences Teach/Tech award, for innovation in the application of instructional technology to undergraduate education 2016 Distinguished Alumni Award, Northside Independent School District, San Antonio Texas 2015 Presidential Early Career Award for Scientists and Engineers (PECASE), Office of Science and Technology Policy, the White House 2014 Clifford T. Morgan Best Article Award, Memory & Cognition, competitive award from the Psychonomic Society (for Markant,
    [Show full text]
  • Syntactic Semantics and the Proper Treatment of Computationalism
    1 Syntactic Semantics and the Proper Treatment of Computationalism William J. Rapaport Department of Computer Science and Engineering, Department of Philosophy, Department of Linguistics, and Center for Cognitive Science University at Buffalo, The State University of New York Buffalo, NY 14260-2500 [email protected] http://www.cse.buffalo.edu/~rapaport Keywords: computationalism, semiotic systems, cognition, syntax, semantics 2 Abstract Computationalism should not be the view that (human) cognition is computation; it should be the view that cognition (simpliciter) is computable. It follows that computationalism can be true even if (human) cognition is not the result of computations in the brain. If semiotic systems are systems that interpret signs, then both humans and computers are semiotic systems. Finally, minds can be considered as virtual machines implemented in certain semiotic systems, primarily the brain, but also AI computers. 1. Introduction This essay treats three topics: computationalism, semiotic systems, and cognition (the mind), offering what I feel is the proper treatment of computationalism. From this, certain views about semiotic systems and minds follow (or, at least, are consistent): First, I argue that computationalism should not be understood as the view that (human) cognition is computation, but that it should be understood as the view that cognition (human or otherwise) is computable (§2). On this view, it follows that computationalism can be true even if (human) cognition is not the result of computations in the brain. Second, I argue that, if semiotic systems are systems that interpret signs, then both humans and computers are semiotic systems (§5.2). Finally, I suggest that minds should be considered as virtual machines implemented in certain semiotic systems: primarily brains, but also AI computers (§6.3).
    [Show full text]