Reduction of Short-Chain Fatty Acid-Producing Gut Microbiota Leads To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression. -
Genomics 98 (2011) 370–375
Genomics 98 (2011) 370–375 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae Hiromi Nishida a,⁎, Teruhiko Beppu b, Kenji Ueda b a Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan b Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan article info abstract Article history: The anaerobic thermophilic bacterial genus Dictyoglomus is characterized by the ability to produce useful Received 2 June 2011 enzymes such as amylase, mannanase, and xylanase. Despite the significance, the phylogenetic position of Accepted 1 August 2011 Dictyoglomus has not yet been clarified, since it exhibits ambiguous phylogenetic positions in a single gene Available online 7 August 2011 sequence comparison-based analysis. The number of substitutions at the diverging point of Dictyoglomus is insufficient to show the relationships in a single gene comparison-based analysis. Hence, we studied its Keywords: evolutionary trait based on whole-genome comparison. Both gene content and orthologous protein sequence Whole-genome comparison Dictyoglomus comparisons indicated that Dictyoglomus is most closely related to the phylum Thermotogae and it forms a Bacterial systematics monophyletic group with Coprothermobacter proteolyticus (a constituent of the phylum Firmicutes) and Coprothermobacter proteolyticus Thermotogae. Our findings indicate that C. proteolyticus does not belong to the phylum Firmicutes and that the Thermotogae phylum Dictyoglomi is not closely related to either the phylum Firmicutes or Synergistetes but to the phylum Thermotogae. © 2011 Elsevier Inc. -
Detection of a Bacterial Group Within the Phylum Chloroflexi And
Microbes Environ. Vol. 21, No. 3, 154–162, 2006 http://wwwsoc.nii.ac.jp/jsme2/ Detection of a Bacterial Group within the Phylum Chloroflexi and Reductive-Dehalogenase-Homologous Genes in Pentachlorobenzene- Dechlorinating Estuarine Sediment from the Arakawa River, Japan KYOSUKE SANTOH1, ATSUSHI KOUZUMA1, RYOKO ISHIZEKI2, KENICHI IWATA1, MINORU SHIMURA3, TOSHIO HAYAKAWA3, TOSHIHIRO HOAKI4, HIDEAKI NOJIRI1, TOSHIO OMORI2, HISAKAZU YAMANE1 and HIROSHI HABE1*† 1 Biotechnology Research Center, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan 2 Department of Industrial Chemistry, Faculty of Engineering, Shibaura Institute of Technology, Minato-ku, Tokyo 108–8548, Japan 3 Environmental Biotechnology Laboratory, Railway Technical Research Institute, 2–8–38 Hikari-cho, Kokubunji-shi, Tokyo 185–8540, Japan 4 Technology Research Center, Taisei Corporation, 344–1 Nase, Totsuka-ku, Yokohama 245–0051, Japan (Received April 21, 2006—Accepted June 12, 2006) We enriched a pentachlorobenzene (pentaCB)-dechlorinating microbial consortium from an estuarine-sedi- ment sample obtained from the mouth of the Arakawa River. The sediment was incubated together with a mix- ture of four electron donors and pentaCB, and after five months of incubation, the microbial community structure was analyzed. Both DGGE and clone library analyses showed that the most expansive phylogenetic group within the consortium was affiliated with the phylum Chloroflexi, which includes Dehalococcoides-like bacteria. PCR using a degenerate primer set targeting conserved regions in reductive-dehalogenase-homologous (rdh) genes from Dehalococcoides species revealed that DNA fragments (approximately 1.5–1.7 kb) of rdh genes were am- plified from genomic DNA of the consortium. The deduced amino acid sequences of the rdh genes shared sever- al characteristics of reductive dehalogenases. -
Gut Microbiota Differences Between Psoriatic Arthritis and Undifferentiated Arthritis Patients
Gut microbiota differences between psoriatic arthritis and undifferentiated arthritis patients Chung-Yuan Hsu Chang Gung Memorial Hospital Kaohsiung Branch Ho-Chang Kuo Chang Gung Memorial Hospital Kaohsiung Branch YU-JIH Su ( [email protected] ) Chang Gung Memorial Hospital Kaohsiung Branch https://orcid.org/0000-0002-7274-3458 Research article Keywords: Psoriatic arthritis, undifferentiated arthritis, enthesitis, dactylitis, microbiota Posted Date: February 28th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-15400/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/15 Abstract Introduction Psoriatic arthritis (PSA) is a form of immune-mediated inammatory arthritis. Studying the gut microbiota of PSA patients may offer new insights into the pathophysiology of this inammatory joint disease. We designed a prospective study to examine gut microbiome from patients with PSA, primarily with enthesitis and dactylitis, and compared the data with undifferentiated arthritis patients (NO PSA), without enthesitis or dactylitis. Methods We enrolled nine PSA patients and 10 NO PSA patients in this study. The fecal samples were investigated by using 16S rRNA amplicon sequencing, followed by bioinformatics and statistical analyses. Results None of the available objective clinical laboratory data could differentiate PSA from the NO PSA subgroup. The microbiota result shows that Family: XIII_AD3011 is signicantly higher in NO PSA patients than PSA patients’ stool samples (p=0.039). Megasphaera elsdenii in the PSA was 10000 times higher than in the NO PSA group. Conclusion Our results demonstrated high intra-group homogeneous and high inter-group heterogeneous microbiota. The clinical symptoms of either enthesitis or dactylitis link to the specic microbiota in the current study. -
Antimicrobial Activity of Plants Infusions on Oral Fusobacteria and Their Adherence to Human Erythrocytes
Arch Health Invest (2013) 2(1): 3-9 ISSN 2317-3009 Antimicrobial Activity of Plants Infusions on Oral Fusobacteria and their Adherence to Human Erythrocytes Atividade antimicrobiana de infusões de vegetais sobre fusobactérias bucais e sua capacidade de adesão a eritrócitos humanos Actividad antimicrobiana de infusiones vegetales en fusobacterias orales y su capacidad de adhesión a los eritrocitos humanos Elerson Gaetti Jardim Jr1 Luís Fernando Landucci2 Ana Cláudia Okamoto1 Haroldo Akeshigue3 1Universidade Estadual Paulista “Júlio de Mesquita Filho”, UNESP - Faculdade de Odontologia de Araçatuba – Departamento de Patologia e Propedêutica Clínica 2Fundação Educacional de Santa Fé do Sul, FUNEC; Centro Universitário de Rio Preto, UNIRP 3 Universidade Católica de Brasília, UCB Periodontal disease is the result of the interrelationship between microbiotic aggression and the host’s organic defence. Amongst the microorganisms involved in periodontopathies, Fusobacterium nucleatum is conspicuous by establishing a link between the initial and final colonizers, besides producing toxic compounds and adhering to the host’s cells. Control of bacterial biofilm can be achieved by use of chemical agents, many of which extracted from plants. Thus the object of this study was to evaluate the inhibitory activity in vitro of some teas, generally taken in a normal diet, on Fusobacterium nucleatum and your adherence to host’s cells. Minimum inhibitory and bactericidal concentrations were established and haemagglutinative test in microplaques was effected. It was ascertained that all plant extracts have inhibitory activity and that infusions of Camellia sinensis (black tea and green tea), Mentha piperita (mint) and Pimpinella anixem (aniseed) added to the bacteria/erythrocyte compound reduced significantly the adherence of microorganisms. -
A Metagenomic Study of the Oral and Gut Microbiome in Crohn’S Disease Shijia Hu1* , Eileen Png2, Michelle Gowans3, David E
Hu et al. Gut Pathog (2021) 13:13 https://doi.org/10.1186/s13099-021-00409-5 Gut Pathogens RESEARCH Open Access Ectopic gut colonization: a metagenomic study of the oral and gut microbiome in Crohn’s disease Shijia Hu1* , Eileen Png2, Michelle Gowans3, David E. H. Ong3, Paola Florez de Sessions2, Jie Song2 and Niranjan Nagarajan2,4 Abstract Background: This study aims to characterize, the gut and oral microbiome in Asian subjects with Crohn’s disease (CD) using whole genome shotgun sequencing, thereby allowing for strain-level comparison. Methods: A case–control study with age, sex and ethnicity matched healthy controls was conducted. CD subjects were limited to well-controlled patients without oral manifestations. Fecal and saliva samples were collected for char- acterization of gut and oral microbiome respectively. Microbial DNA were extracted, libraries prepared and sequenced reads profled. Taxonomic diversity, taxonomic association, strain typing and microbial gene pathway analyses were conducted. Results: The study recruited 25 subjects with CD and 25 healthy controls. The oral microbe Streptococcus salivarius was found to be enriched and of concordant strains in the gut and oral microbiome of Crohn’s disease subjects. This was more likely in CD subjects with higher Crohn’s Disease Activity Index (184.3 2.9 vs 67.1 82.5, p 0.012) and active disease status (Diarrhoea/abdominal pain/blood-in-stool/fever and fatigue)± (p 0.016).± Gut species= found to be signifcantly depleted in CD compared to control (Relative abundance: Median[Range])= include: Faecalibacterium prausnitzii (0.03[0.00–4.56] vs 13.69[5.32–18.71], p 0.010), Roseburia inulinivorans (0.00[0.00–0.03] vs 0.21[0.01–0.53], p 0.010) and Alistipes senegalensis (0.00[0.00–0.00]= vs 0.00[0.00–0.02], p 0.029). -
Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae -
Yu-Chen Ling and John W. Moreau
Microbial Distribution and Activity in a Coastal Acid Sulfate Soil System Introduction: Bioremediation in Yu-Chen Ling and John W. Moreau coastal acid sulfate soil systems Method A Coastal acid sulfate soil (CASS) systems were School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia formed when people drained the coastal area Microbial distribution controlled by environmental parameters Microbial activity showed two patterns exposing the soil to the air. Drainage makes iron Microbial structures can be grouped into three zones based on the highest similarity between samples (Fig. 4). Abundant populations, such as Deltaproteobacteria, kept constant activity across tidal cycling, whereas rare sulfides oxidize and release acidity to the These three zones were consistent with their geological background (Fig. 5). Zone 1: Organic horizon, had the populations changed activity response to environmental variations. Activity = cDNA/DNA environment, low pH pore water further dissolved lowest pH value. Zone 2: surface tidal zone, was influenced the most by tidal activity. Zone 3: Sulfuric zone, Abundant populations: the heavy metals. The acidity and toxic metals then Method A Deltaproteobacteria Deltaproteobacteria this area got neutralized the most. contaminate coastal and nearby ecosystems and Method B 1.5 cause environmental problems, such as fish kills, 1.5 decreased rice yields, release of greenhouse gases, Chloroflexi and construction damage. In Australia, there is Gammaproteobacteria Gammaproteobacteria about a $10 billion “legacy” from acid sulfate soils, Chloroflexi even though Australia is only occupied by around 1.0 1.0 Cyanobacteria,@ Acidobacteria Acidobacteria Alphaproteobacteria 18% of the global acid sulfate soils. Chloroplast Zetaproteobacteria Rare populations: Alphaproteobacteria Method A log(RNA(%)+1) Zetaproteobacteria log(RNA(%)+1) Method C Method B 0.5 0.5 Cyanobacteria,@ Bacteroidetes Chloroplast Firmicutes Firmicutes Bacteroidetes Planctomycetes Planctomycetes Ac8nobacteria Fig. -
Fusobacteria Fusobacteria Are Non-Sporing, Anaerobic, Non-Motile, Non Or Weakly Fermentative, Spindle-Shaped Bacilli (With Fused Ends: Hence the Name)
Fusobacteria Fusobacteria are non-sporing, anaerobic, non-motile, non or weakly fermentative, spindle-shaped bacilli (with fused ends: hence the name). They are normal inhabitants of the oral cavity, colon and female genital tract and are sometimes isolated from pulmonary and pelvic abscesses. Fusospirochaetal infections, which they cause in combination with spirochaetes, are noteworthy. Fusobacterium nucleatum (the type species), and Fusobacterium periodontium are isolated mainly from periodontal disease sites. Fusobacterium alocis and Fusobacterium sulci are sometimes found in the healthy gingival sulcus.Non-oral species include Fusobacterium gonidiaformans, Fusobacterium russii and Fusobacterium ulcerans. Fusobacterium nucleatum Habitat and transmission Several subspecies of F. nucleatum have been identified in different habitats. These include F. nucleatum subsp. polymorphum, found in the healthy gingival crevice, and F. nucleatum subsp. nucleatum, recovered mainly from periodontal pockets. A third subspecies is F. nucleatum subsp. vincentii. Infections are almost invariably endogenous. Characteristics Gram-negative, strictly anaerobic, cigar-shaped bacilli with pointed ends. Cells often have a central swelling. A Gram-stained smear of deep gingival debris obtained from a lesion of acute ulcerative gingivitis is a simple method of demonstrating the characteristic fusobacteria, together with spirochaetes and polymorphonuclear leukocytes. These, together with the clinical picture, confirm a clinical diagnosis of acute ulcerative gingivitis. Culture and identification Grows on blood agar as dull, granular colonies with an irregular rhizoid edge. Biochemical reactions and the acidic end products of carbohydrate metabolism help in identification. As fusobacteria can remove sulphur from cysteine and methionine to produce odoriferous hydrogen sulphide and methylmercaptan, they are thought to be associated with halitosis. Pathogenicity The endotoxin of the organism appears to be involved in the pathogenesis of periodontal disease. -
Bacteroidales and Clostridiales Are the Dominant Orders in the Rumen Community of the Russian Arctic Reindeers
Bacteroidales and Clostridiales are the dominant orders in the rumen community of the Russian Arctic reindeers P07.209 T. Dunyashev I, L. IlinaI, E. YildirimI, D. SobolevI, K. LaishevII IBIOTROF+ Ltd, St. Petersburg, Russia, IINorthwest Center for Interdisciplinary Research of Food Security Problems, St. Peterburg, Russia In the period 20172018, a series of expeditions were organized in the YamaloNenets Autonomous District (Kharp, foresttundra natural and climatic zone) and the Nenets Autonomous District with the aim of colecting rumen content from reindeer of various ages, including calves. A total of 38 samples were taken from reindeer (Rangifer tarandus) of the Nenets breed. The phylogenetic affiliation of the constituents of the microbial community of the reindeer rumen was determined using the NGS 16s rRNA gene. Data analysis was performed in QIIME software. The dominant position was occupied by the phyla Bacteroidetes and Firmicutes. In total, they occupied from 65 to 88% of all bacteria in the reindeer rumen. Representatives of phyla Cyanobacteria took the following position. The proportion of Cyanobacteria increased in the winter. If in the summer period their share was from 0.5 to 3.3%, then in the winter from 1.5 to 12.2%. These differences are significant in the Nenets Autonomous District the proportion of cyanobacteria there was significant in the winter from 6.7 to 12.2% (p = 0.02), while in the YamaloNenets Autonomous District it did not exceed 5 % in the winter. Verrucomicrobia occupied from 0.2 to 4% in the rumen community. Bacteria of other phyla (Tenericutes, SR1, TM7, Spirochaetes, Chloroflexi, Proteobacteria, Elusimicrobia, Actinobacteria, Fibrobacteres, Fusobacteria and others) were less represented in the reindeer rumen community. -
Identification and Antimicrobial Susceptibility Testing of Anaerobic
antibiotics Review Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology? Márió Gajdács 1,*, Gabriella Spengler 1 and Edit Urbán 2 1 Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; [email protected] 2 Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-62-342-843 Academic Editor: Leonard Amaral Received: 28 September 2017; Accepted: 3 November 2017; Published: 7 November 2017 Abstract: Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance -
A Phylogenetic Analysis of the Mycoplasmas: Basis for Their Lc Assification W
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Public Health Resources Public Health Resources 9-1989 A Phylogenetic Analysis of the Mycoplasmas: Basis for Their lC assification W. G. Weisburg University of Illinois J. G. Tully National Institute of Allergy and Infectious Diseases D. L. Rose National Institute of Allergy and Infectious Diseases J. P. Petzel Iowa State University H. Oyaizu University of Illinois See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/publichealthresources Weisburg, W. G.; Tully, J. G.; Rose, D. L.; Petzel, J. P.; Oyaizu, H.; Yang, D.; Mandelco, L.; Sechrest, J.; Lawrence, T. G.; Van Etten, James L.; Maniloff, J.; and Woese, C. R., "A Phylogenetic Analysis of the Mycoplasmas: Basis for Their lC assification" (1989). Public Health Resources. 310. https://digitalcommons.unl.edu/publichealthresources/310 This Article is brought to you for free and open access by the Public Health Resources at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Public Health Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors W. G. Weisburg, J. G. Tully, D. L. Rose, J. P. Petzel, H. Oyaizu, D. Yang, L. Mandelco, J. Sechrest, T. G. Lawrence, James L. Van Etten, J. Maniloff, and C. R. Woese This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ publichealthresources/310 JOURNAL OF BACTERIOLOGY, Dec. 1989, p. 6455-6467 Vol. 171, No.