Antimicrobial Activity of Plants Infusions on Oral Fusobacteria and Their Adherence to Human Erythrocytes

Total Page:16

File Type:pdf, Size:1020Kb

Antimicrobial Activity of Plants Infusions on Oral Fusobacteria and Their Adherence to Human Erythrocytes Arch Health Invest (2013) 2(1): 3-9 ISSN 2317-3009 Antimicrobial Activity of Plants Infusions on Oral Fusobacteria and their Adherence to Human Erythrocytes Atividade antimicrobiana de infusões de vegetais sobre fusobactérias bucais e sua capacidade de adesão a eritrócitos humanos Actividad antimicrobiana de infusiones vegetales en fusobacterias orales y su capacidad de adhesión a los eritrocitos humanos Elerson Gaetti Jardim Jr1 Luís Fernando Landucci2 Ana Cláudia Okamoto1 Haroldo Akeshigue3 1Universidade Estadual Paulista “Júlio de Mesquita Filho”, UNESP - Faculdade de Odontologia de Araçatuba – Departamento de Patologia e Propedêutica Clínica 2Fundação Educacional de Santa Fé do Sul, FUNEC; Centro Universitário de Rio Preto, UNIRP 3 Universidade Católica de Brasília, UCB Periodontal disease is the result of the interrelationship between microbiotic aggression and the host’s organic defence. Amongst the microorganisms involved in periodontopathies, Fusobacterium nucleatum is conspicuous by establishing a link between the initial and final colonizers, besides producing toxic compounds and adhering to the host’s cells. Control of bacterial biofilm can be achieved by use of chemical agents, many of which extracted from plants. Thus the object of this study was to evaluate the inhibitory activity in vitro of some teas, generally taken in a normal diet, on Fusobacterium nucleatum and your adherence to host’s cells. Minimum inhibitory and bactericidal concentrations were established and haemagglutinative test in microplaques was effected. It was ascertained that all plant extracts have inhibitory activity and that infusions of Camellia sinensis (black tea and green tea), Mentha piperita (mint) and Pimpinella anixem (aniseed) added to the bacteria/erythrocyte compound reduced significantly the adherence of microorganisms. Keywords: Dental Plaque; Periodontitis; Disease Prevention; Plant Extracts; Hemagglutination; Cell Adhesion. INTRODUCTION their ability to co-aggregate with other oral anaerobes 4 seems to be involved in mixed infections . The oral fusobacteria are one of the most relevant Periodontitis represent serious health problems as microorganism in the biofilm, representing a bridge they involve, to a greater or lesser extension, all ethnic between the early and late colonizers of the biofilm1. groups, regardless gender or socio-economic levels2,3. The association of oral Fusobacterium species with However, inflammation of periodontal tissues might be gingivitis and periodontitis has received studies2,3 and minimized or even blocked, in a significant part of the Arch Health Invest 2(1) 2013 Arch Health Invest (2013) 2(1): 3-9 ISSN 2317-3009 population, by establishing means for bacterial biofilm chamomile (Matricaria chamomilla ), Japanese green control. tea (Camellia sinensis, Ban-cha variety), aniseed Fusobacterium nucleatum is able to adhere and (Pimpinella anixem), balm mint (Melissa officinalis) colonize a large variety of human cells, particularly and boldo (Peumus boldus) were prepared. The different erythrocytes, lymphocytes, neutrophils, fibroblasts, plants were acquired at the shops and represent the main epithelial cells, and HeLa cells5. Studies of microbial trademarks available. adherence to the host‘s cells are important instruments In preparation of the infusions, 10 g of leaves for understanding the colonization of the periodontal were added to 100ml of 0,1M buffered phosphate saline environment by resident microorganisms. In addition, solution (PBS) and left for 5 minutes at 100OC, for one the adherence of oral fusobacteria to erythrocytes was hour at 55ºC and overnight at 25oC. The aqueous closely related to their adhesion to epithelial cells and extracts were then submitted to fractioned filtration in other human cell lines6. cellulose membrane with 0.65 µm and sterilized through There is a cultural tendency in the population, in filtration in membranes of 0.22 µm (Millipore®). The considering the use of medicinal plants in infusions as infusions were prepared immediately before use the adequate pharmaceutical resources in the treatment of tests. oral problems, and there is the false belief that these 3. EVALUATION OF THE ANTIMICROBIAL compounds have no collateral effects7. However, some ACTIVITY OF PLANT INFUSIONS infusions, as tea, the beverage most largely consumed in In order to determine the higher inhibitory the world8, are valuable sources of fluoride and tannin dilution of the infusions, the agar dilution method was (polyphenols) with antibiofilm and anticariogenic employed as previously described10. It was used activity9. However, it is opportune to check whether Wilkins-Chalgren agar supplemented with yeast extract compounds of the human diet have an antimicrobial (0.5%). In the preparation of different dilutions of the effect on oral fusobacteria or if they might inhibit the infusions in agar, water originally used in preparation of microbial capacity of hemagglutination. Thus, this study the culture medium was partially substituted by plant aimed to evaluate the inhibitory activity of several plant infusions in order to obtain final dilutions representing infusions used in Brazilian diet on fusobacteria and the 1/2, 1/4, 1/8, 1/16, and 1/32 of the original preparation. effects of such infusions on capacity of adherence of In the test, microbial inoculum (105 colony these anaerobes on human erythrocytes. forming units-CFU) was transferred using a Steers’ replicator onto Wilkins-Chalgren agar plates in MATERIAL AND METHODS triplicate. The screening and control plates (without 1. MICROORGANISMS plant infusions) were incubated in anaerobiosis, at 37oC All tested isolates of Fusobacterium nucleatum for 48 hours. The higher antimicrobial dilution was were maintained at -80oC and were recovered from 1993 defined as the higher dilution of plant infusion that to 1997 from lesions of chronic periodontitis. inhibited completely microbial growth on agar. Reactivation of selected strains was performed in The contact inhibitory activity was evaluated as peptone yeast extract broth incubated at 37oC, under described hereinafter. Bacterial cells were cultivated in anaerobiosis (90% N2 + 10% CO2) for 48 hours. F. peptone yeast extract broth (Difco, Rochester, NY, nucleatum ATCC 10953 was used as control. USA) with glucose (1%) in anaerobiosis, at 370C for 48 2. PLANT INFUSIONS hours. Aliquots of 0,1 ml were transferred to Eppendorf Aqueous extracts of mint (Mentha piperita), mate tubes and rinsed three times in PBS, pH 7,2, by (Ilex paraguayensis) , black tea (Camelia sinensis), centrifuging at 3000xg per 8 minutes. Then PBS was Arch Health Invest 2(1) 2013 Arch Health Invest (2013) 2(1): 3-9 ISSN 2317-3009 removed and 1,5ml of plant infusion was added to the It was considered that inhibition of the inoculum (107 CFU) and incubated at 370C in hemagglutination occurred when the hemagglutination anaerobiosis. In the tests, phosphate buffered saline title of the microorganism was reduced to at least 50% solution was used as control. in the in the presence of plant infusion, in comparison to After 30 min. aliquots of 0,1ml of these mixtures control (PBS). were removed and submitted to serial ten-fold dilutions RESULTS in PBS and inoculated onto brain heart infusion (BHI) The values of higher inhibitory dilutions of plant agar plates supplemented with yeast extract (0.5%) and infusions on oral F. nucleatum are presented in Table 1, defibrinated horse blood (5%). The plates were whereas Table 2 showed the contact inhibitory activity o incubated at 37 C in anaerobiosis (90% N2 + 10% CO2), of these infusions on targeted anaerobes. at 37ºC, for 72 hours. The results were expressed as the plant infusion that reduced 90% of the microbial Table 1- Susceptibility of 32 isolates of Fusobacterium nucleatum to different plant infusions. inoculum, in relation of control (PBS). Higher dilution with antimicrobial activity 4. INHIBITION OF HEMAGGLUTINATION Plant extract 1RANGE 2MDI 3MDI This test was performed through methodology 50 90 Boldo (P. boldus) 1/4 - > 1a 1/2 1 6 described by Falker Jr., Hawley . The tests was carried Camomile (M. chamomilla) 1/4 - > 1d 1/2 1 out on microtitration plates, using human blood (type A, Black tea (C. sinensis) 1/4 -1 1/4 1 B, O and AB with the corresponding RH-positive and Green tea (Variety Banchá) 1/8 -1 1/8 1 RH-negative) collected in Alsever solution at 10%24. Balm mint (M. officinalis) 1/4 - > 1 1/2 1 The bacterial cells were cultivated in BHI broth Aniseed (P. anixem) 1/4 - > 1 1/2 1 Mint (M. piperita) 1/4 - > 1 1/4 1 supplemented with yeast extract (0.5%) for 48 hours. Mate (I. paraguayensis) 1/8 -1 1/8 1 The cells were then submitted to centrifugation at 3000xg per 8 minutes, in PBS, and rinsed three times to These data evidenced a significant heterogeneity eliminated residues of the culture medium and among clinical isolates of fusobacteria. The aqueous resuspended using plant infusions until reaching extracts of black tea, green tea and mate were able to 8 concentration of 10 CFU/ml. The erythrocytes were inhibit all tested strains. Only the infusions of black tea rinsed twice by centrifugation at 600xg per 5 minutes in and green tea (C. sinensis) and mate (I. paraguayensis) PBS and resuspended in plant infusions until reaching presented bactericide effect after 2 hours in contact with the concentration of 1%. the fusobacteria. Initially 50µl of the bacterial suspension was Table 2- Contact inhibitory activity of plant infusions on added to the microplates followed by serial dilutions on oral Fusobacterium nucleatum base 2, using plant infusion in the preparation of serial Isolates ( % ) Plant extract dilutions. This was followed by the addition of 50µl of Susceptible Resistant the erythrocyte suspension at each dilution. The Boldo (P. boldus) 25 (78.1) 7 (21.9) mixtures on the microplates were homogenized slightly Camomile (M. chamomilla) 27 (84.4) 5 (15.6) Black tea (C. sinensis) 32 (100.0) 0 (0.0) for 1 minute and maintained at 37ºC for 30 min., and at Green tea (variety Banchá) 32 (100.0) 0 (0.0) room temperature for 2 hours, the title of Balm mint (M. officinalis) 27 (84.4) 5 (15.6) hemagglutination being then defined and evaluated as Aniseed (P.
Recommended publications
  • The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
    microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression.
    [Show full text]
  • Genomics 98 (2011) 370–375
    Genomics 98 (2011) 370–375 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae Hiromi Nishida a,⁎, Teruhiko Beppu b, Kenji Ueda b a Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan b Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan article info abstract Article history: The anaerobic thermophilic bacterial genus Dictyoglomus is characterized by the ability to produce useful Received 2 June 2011 enzymes such as amylase, mannanase, and xylanase. Despite the significance, the phylogenetic position of Accepted 1 August 2011 Dictyoglomus has not yet been clarified, since it exhibits ambiguous phylogenetic positions in a single gene Available online 7 August 2011 sequence comparison-based analysis. The number of substitutions at the diverging point of Dictyoglomus is insufficient to show the relationships in a single gene comparison-based analysis. Hence, we studied its Keywords: evolutionary trait based on whole-genome comparison. Both gene content and orthologous protein sequence Whole-genome comparison Dictyoglomus comparisons indicated that Dictyoglomus is most closely related to the phylum Thermotogae and it forms a Bacterial systematics monophyletic group with Coprothermobacter proteolyticus (a constituent of the phylum Firmicutes) and Coprothermobacter proteolyticus Thermotogae. Our findings indicate that C. proteolyticus does not belong to the phylum Firmicutes and that the Thermotogae phylum Dictyoglomi is not closely related to either the phylum Firmicutes or Synergistetes but to the phylum Thermotogae. © 2011 Elsevier Inc.
    [Show full text]
  • Detection of a Bacterial Group Within the Phylum Chloroflexi And
    Microbes Environ. Vol. 21, No. 3, 154–162, 2006 http://wwwsoc.nii.ac.jp/jsme2/ Detection of a Bacterial Group within the Phylum Chloroflexi and Reductive-Dehalogenase-Homologous Genes in Pentachlorobenzene- Dechlorinating Estuarine Sediment from the Arakawa River, Japan KYOSUKE SANTOH1, ATSUSHI KOUZUMA1, RYOKO ISHIZEKI2, KENICHI IWATA1, MINORU SHIMURA3, TOSHIO HAYAKAWA3, TOSHIHIRO HOAKI4, HIDEAKI NOJIRI1, TOSHIO OMORI2, HISAKAZU YAMANE1 and HIROSHI HABE1*† 1 Biotechnology Research Center, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan 2 Department of Industrial Chemistry, Faculty of Engineering, Shibaura Institute of Technology, Minato-ku, Tokyo 108–8548, Japan 3 Environmental Biotechnology Laboratory, Railway Technical Research Institute, 2–8–38 Hikari-cho, Kokubunji-shi, Tokyo 185–8540, Japan 4 Technology Research Center, Taisei Corporation, 344–1 Nase, Totsuka-ku, Yokohama 245–0051, Japan (Received April 21, 2006—Accepted June 12, 2006) We enriched a pentachlorobenzene (pentaCB)-dechlorinating microbial consortium from an estuarine-sedi- ment sample obtained from the mouth of the Arakawa River. The sediment was incubated together with a mix- ture of four electron donors and pentaCB, and after five months of incubation, the microbial community structure was analyzed. Both DGGE and clone library analyses showed that the most expansive phylogenetic group within the consortium was affiliated with the phylum Chloroflexi, which includes Dehalococcoides-like bacteria. PCR using a degenerate primer set targeting conserved regions in reductive-dehalogenase-homologous (rdh) genes from Dehalococcoides species revealed that DNA fragments (approximately 1.5–1.7 kb) of rdh genes were am- plified from genomic DNA of the consortium. The deduced amino acid sequences of the rdh genes shared sever- al characteristics of reductive dehalogenases.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Yu-Chen Ling and John W. Moreau
    Microbial Distribution and Activity in a Coastal Acid Sulfate Soil System Introduction: Bioremediation in Yu-Chen Ling and John W. Moreau coastal acid sulfate soil systems Method A Coastal acid sulfate soil (CASS) systems were School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia formed when people drained the coastal area Microbial distribution controlled by environmental parameters Microbial activity showed two patterns exposing the soil to the air. Drainage makes iron Microbial structures can be grouped into three zones based on the highest similarity between samples (Fig. 4). Abundant populations, such as Deltaproteobacteria, kept constant activity across tidal cycling, whereas rare sulfides oxidize and release acidity to the These three zones were consistent with their geological background (Fig. 5). Zone 1: Organic horizon, had the populations changed activity response to environmental variations. Activity = cDNA/DNA environment, low pH pore water further dissolved lowest pH value. Zone 2: surface tidal zone, was influenced the most by tidal activity. Zone 3: Sulfuric zone, Abundant populations: the heavy metals. The acidity and toxic metals then Method A Deltaproteobacteria Deltaproteobacteria this area got neutralized the most. contaminate coastal and nearby ecosystems and Method B 1.5 cause environmental problems, such as fish kills, 1.5 decreased rice yields, release of greenhouse gases, Chloroflexi and construction damage. In Australia, there is Gammaproteobacteria Gammaproteobacteria about a $10 billion “legacy” from acid sulfate soils, Chloroflexi even though Australia is only occupied by around 1.0 1.0 Cyanobacteria,@ Acidobacteria Acidobacteria Alphaproteobacteria 18% of the global acid sulfate soils. Chloroplast Zetaproteobacteria Rare populations: Alphaproteobacteria Method A log(RNA(%)+1) Zetaproteobacteria log(RNA(%)+1) Method C Method B 0.5 0.5 Cyanobacteria,@ Bacteroidetes Chloroplast Firmicutes Firmicutes Bacteroidetes Planctomycetes Planctomycetes Ac8nobacteria Fig.
    [Show full text]
  • Fusobacteria Fusobacteria Are Non-Sporing, Anaerobic, Non-Motile, Non Or Weakly Fermentative, Spindle-Shaped Bacilli (With Fused Ends: Hence the Name)
    Fusobacteria Fusobacteria are non-sporing, anaerobic, non-motile, non or weakly fermentative, spindle-shaped bacilli (with fused ends: hence the name). They are normal inhabitants of the oral cavity, colon and female genital tract and are sometimes isolated from pulmonary and pelvic abscesses. Fusospirochaetal infections, which they cause in combination with spirochaetes, are noteworthy. Fusobacterium nucleatum (the type species), and Fusobacterium periodontium are isolated mainly from periodontal disease sites. Fusobacterium alocis and Fusobacterium sulci are sometimes found in the healthy gingival sulcus.Non-oral species include Fusobacterium gonidiaformans, Fusobacterium russii and Fusobacterium ulcerans. Fusobacterium nucleatum Habitat and transmission Several subspecies of F. nucleatum have been identified in different habitats. These include F. nucleatum subsp. polymorphum, found in the healthy gingival crevice, and F. nucleatum subsp. nucleatum, recovered mainly from periodontal pockets. A third subspecies is F. nucleatum subsp. vincentii. Infections are almost invariably endogenous. Characteristics Gram-negative, strictly anaerobic, cigar-shaped bacilli with pointed ends. Cells often have a central swelling. A Gram-stained smear of deep gingival debris obtained from a lesion of acute ulcerative gingivitis is a simple method of demonstrating the characteristic fusobacteria, together with spirochaetes and polymorphonuclear leukocytes. These, together with the clinical picture, confirm a clinical diagnosis of acute ulcerative gingivitis. Culture and identification Grows on blood agar as dull, granular colonies with an irregular rhizoid edge. Biochemical reactions and the acidic end products of carbohydrate metabolism help in identification. As fusobacteria can remove sulphur from cysteine and methionine to produce odoriferous hydrogen sulphide and methylmercaptan, they are thought to be associated with halitosis. Pathogenicity The endotoxin of the organism appears to be involved in the pathogenesis of periodontal disease.
    [Show full text]
  • Bacteroidales and Clostridiales Are the Dominant Orders in the Rumen Community of the Russian Arctic Reindeers
    Bacteroidales and Clostridiales are the dominant orders in the rumen community of the Russian Arctic reindeers P­07.2­09 T. Dunyashev I, L. IlinaI, E. YildirimI, D. SobolevI, K. LaishevII IBIOTROF+ Ltd, St. Petersburg, Russia, IINorthwest Center for Interdisciplinary Research of Food Security Problems, St. Peterburg, Russia In the period 2017­2018, a series of expeditions were organized in the Yamalo­Nenets Autonomous District (Kharp, forest­tundra natural and climatic zone) and the Nenets Autonomous District with the aim of colecting rumen content from reindeer of various ages, including calves. A total of 38 samples were taken from reindeer (Rangifer tarandus) of the Nenets breed. The phylogenetic affiliation of the constituents of the microbial community of the reindeer rumen was determined using the NGS 16s rRNA gene. Data analysis was performed in QIIME software. The dominant position was occupied by the phyla Bacteroidetes and Firmicutes. In total, they occupied from 65 to 88% of all bacteria in the reindeer rumen. Representatives of phyla Cyanobacteria took the following position. The proportion of Cyanobacteria increased in the winter. If in the summer period their share was from 0.5 to 3.3%, then in the winter from 1.5 to 12.2%. These differences are significant in the Nenets Autonomous District ­ the proportion of cyanobacteria there was significant in the winter from 6.7 to 12.2% (p = 0.02), while in the Yamalo­Nenets Autonomous District it did not exceed 5 % in the winter. Verrucomicrobia occupied from 0.2 to 4% in the rumen community. Bacteria of other phyla (Tenericutes, SR1, TM7, Spirochaetes, Chloroflexi, Proteobacteria, Elusimicrobia, Actinobacteria, Fibrobacteres, Fusobacteria and others) were less represented in the reindeer rumen community.
    [Show full text]
  • Mutagenesis and Cloning of Photosynesis Genes of the Filamentous Bacterium, Chloroflexus Aurantiacus
    Illinois Wesleyan University Digital Commons @ IWU Honors Projects Biology 4-28-2000 Mutagenesis and Cloning of Photosynesis Genes of the Filamentous Bacterium, Chloroflexus aurantiacus Kristi L. Berger '00 Illinois Wesleyan University Follow this and additional works at: https://digitalcommons.iwu.edu/bio_honproj Part of the Biology Commons Recommended Citation Berger '00, Kristi L., "Mutagenesis and Cloning of Photosynesis Genes of the Filamentous Bacterium, Chloroflexus aurantiacus" (2000). Honors Projects. 7. https://digitalcommons.iwu.edu/bio_honproj/7 This Article is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact [email protected]. ©Copyright is owned by the author of this document. Mutagenesis and Cloning of Photosynthesis Genes of the Filamentous Bacterium, Chloroflexus aurantiacus Kristi L. Berger Illinois Wesleyan University Research Honors Designated: April 14, 2000 Thesis Submitted: April 28, 2000 K. Berger 2 ABSTRACT Chloroflexus aurantiacus is a green non-sulfur bacterium that preferentially grows photosynthetically under lighted, anaerobic conditions. The biosynthetic pathway for one of the photosynthetic pigments, bacteriochlorophyll c, is not well understood but may share common steps with the better understood bacteriochlorophyll a pathway.
    [Show full text]
  • Halogenation Enzymes in Bacteria Associated with the Red-Banded Acorn Worm, Ptychodera Jamaicensis" (2011)
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Fall 2011 Halogenation Enzymes in Bacteria Associated with the Red- banded Acorn Worm, Ptychodera jamaicensis Milena May Lilles San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Lilles, Milena May, "Halogenation Enzymes in Bacteria Associated with the Red-banded Acorn Worm, Ptychodera jamaicensis" (2011). Master's Theses. 4099. DOI: https://doi.org/10.31979/etd.snbx-gv6x https://scholarworks.sjsu.edu/etd_theses/4099 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. HALOGENATION ENZYMES IN BACTERIA ASSOCIATED WITH THE RED- BANDED ACORN WORM, PTYCHODERA JAMAICENSIS A Thesis Presented to The Faculty of the Department of Biology San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Milena M. Lilles December 2011 © 2011 Milena M. Lilles ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled HALOGENATION ENZYMES IN BACTERIA ASSOCIATED WITH THE RED- BANDED ACORN WORM, PTYCHODERA JAMAICENSIS by Milena M. Lilles APPROVED FOR THE DEPARTMENT OF BIOLOGY SAN JOSÉ STATE UNIVERSITY December 2011 Dr. Sabine Rech Department of Biology Dr. Brandon White Department of Biology Dr. Roy Okuda Department of Chemistry ABSTRACT HALOGENATION ENZYMES IN BACTERIA ASSOCIATED WITH THE RED- BANDED ACORN WORM, PTYCHODERA JAMAICENSIS by Milena M. Lilles Organohalogens have diverse biological functions in the environment.
    [Show full text]
  • 16.5 Brief Comms Mx
    brief communications 2. Hinnebusch, B. J., Fischer, E. R. & Schwan, T. G. J. Infect. Dis. with genomic data, such as phylogenetic fast-evolving) positions, and is thus proba- 178, 1406–1415 (1998). trees based on multiple genes3,4. This sug- bly artefactual. The artefactual attraction of 3. Hinnebusch, B. J., Perry, R. D. & Schwan, T. G. Science 273, 8 367–370 (1996). gests that rRNA is rarely transferred and the long branches of Archaea and hyper- 4. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., indicates that species phylogeny can be thermophilic Bacteria, and the high guanine Korber, D. R. & Lappin-Scott, H. M. Annu. Rev. Microbiol. 49, deduced by using this marker. and cytosine content of rRNA in most 711–745 (1995). 9 5. Avery, L. Genetics 133, 897–917 (1993). However, rRNA phylogenies can be Archaea, Aquificales and Thermotogales , 6. Brubaker, R. R. Clin. Microbiol. Rev. 4, 309–324 (1991). seriously affected by artefacts of tree could explain why hyperthermophiles are 7. Jones, H. A., Lillard, J. W. Jr & Perry, R. D. Microbiology 145, construction5. As the most slowly evolving often found to branch early in Bacteria. 2117–2128 (1999). positions are less prone to confounding The emergence of hyperthermophilic 8. Gerke, C., Kraft, A., Sussmuth, R., Schweitzer, O. & Gotz, F. J. Biol. Chem. 273, 18586–18593 (1998). factors such as multiple substitutions, they Bacteria among mesophiles suggests a 9. Heilmann, C. et al. Mol. Microbiol. 20, 1083–1091 (1996). probably retain an ancient phylogenetic secondary adaptation to life at very high 10.Hinnebusch, B. J. J. Mol.
    [Show full text]
  • Comprehensive Comparative Genomics Reveals Over 50 Phyla of Free‑Living and Pathogenic Bacteria Are Associated with Diverse Members of the Amoebozoa Yonas I
    www.nature.com/scientificreports OPEN Comprehensive comparative genomics reveals over 50 phyla of free‑living and pathogenic bacteria are associated with diverse members of the amoebozoa Yonas I. Tekle*, Janae M. Lyttle, Maya G. Blasingame & Fang Wang The Amoebozoa, a group containing predominantly amoeboid unicellular protists has been shown to play an important ecological role in controlling environmental bacteria. Amoebozoans not only graze bacteria but also serve as a safe niche for bacterial replication and harbor endosymbiotic bacteria including dangerous human pathogens. Despite their importance, only a few lineages of Amoebozoa have been studied in this regard. In this research, we conducted a comprehensive genomic and transcriptomic study with expansive taxon sampling by including representatives from the three known clades of the Amoebozoa. We used culture independent whole culture and single cell genomics/transcriptomics to investigate the association of bacteria with diverse amoebozoans. Relative to current published evidence, we recovered the largest number of bacterial phyla (64) and human pathogen genera (51) associated with the Amoebozoa. Using single cell genomics/ transcriptomics we were able to determine up to 24 potential endosymbiotic bacterial phyla, some potentially endosymbionts. This includes the majority of multi‑drug resistant pathogens designated as major public health threats. Our study demonstrates amoebozoans are associated with many more phylogenetically diverse bacterial phyla than previously recognized. It also shows that all amoebozoans are capable of harboring far more dangerous human pathogens than presently documented, making them of primal public health concern. Te study of microbial interactions is a complex and fascinating feld of research 1–3. Microorganisms occupy diverse ecological niches and are usually found in large communities that result in inherent interactions.
    [Show full text]
  • Host-Associated Bacterial Taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/Candidate Divisions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Directory of Open Access Journals ournal of ralr æ icrobiologyi ORIGINAL ARTICLE Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions Anuj Camanocha1 and Floyd E. Dewhirst1,2* 1Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA; 2Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA Background and objective: In addition to the well-known phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Spirochaetes, Fusobacteria, Tenericutes, and Chylamydiae, the oral microbiomes of mammals contain species from the lesser-known phyla or candidate divisions, including Synergistetes, TM7, Chlorobi, Chloroflexi, GN02, SR1, and WPS-2. The objectives of this study were to create phyla-selective 16S rDNA PCR primer pairs, create selective 16S rDNA clone libraries, identify novel oral taxa, and update canine and human oral microbiome databases. Design: 16S rRNA gene sequences for members of the lesser-known phyla were downloaded from GenBank and Greengenes databases and aligned with sequences in our RNA databases. Primers with potential phylum level selectivity were designed heuristically with the goal of producing nearly full-length 16S rDNA amplicons. The specificity of primer pairs was examined by making clone libraries from PCR amplicons and determining phyla identity by BLASTN analysis. Results: Phylum-selective primer pairs were identified that allowed construction of clone libraries with 96Á100% specificity for each of the lesser-known phyla. From these clone libraries, seven human and two canine novel oral taxa were identified and added to their respective taxonomic databases.
    [Show full text]