Analysis of Principal Stress Projection in Femur with Total Hip Arthroplasty Using CT-Image Based Finite Element Method

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Principal Stress Projection in Femur with Total Hip Arthroplasty Using CT-Image Based Finite Element Method ISSN: 2643-4016 Fukuoka and Todo. Int Arch Orthop Surg 2018, 1:003 Volume 1 | Issue 1 Open Access International Archives of Orthopaedic Surgery ORIGINAL RESEARCH Analysis of Principal Stress Projection in Femur with Total Hip Ar- throplasty using CT-image Based Finite Element Method Kosei Fukuoka1 and Mitsugu Todo2* 1Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Japan Check for updates 2Research Institute for Applied Mechanics, Kyushu University, Japan *Corresponding author: Mitsugu Todo, Associate Professor, Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan, Tel: +81-92-583-7762, Fax: +81-92-583-7762 lum and the femoral head are replaced, and three com- Abstract ponents are required: A stem and a spherical head that The research demonstrates a novel three-dimensional finite replaces the femoral head, and a hemispherical cup with element analysis to analyze biomechanical changes in a femur with implant. The method uses principal stress pro- an inner liner to replace the acetabulum. While funda- jections to determine trabeculae trajectories in the femur. mental concept of hip arthroplasty has changed little Visual comparisons of the projections of the femurs show since its appearance in medicine, the implants have ex- areas of cortical and cancellous changes due to changes in perienced numerous changes in terms of material and tensile and compressive stresses, revealing areas of stress shielding. The method also includes a bone remodeling al- design [1]. During the early stages of development, the gorithm to simulate bone adaptation. In the experiment, a THA implant had a metal-on-metal (MOM) bearing com- patient-specific femur model with inhomogeneous material bination. All components were made cobalt-chrome al- properties was created from CT scans. Models of femurs loy and bone cement was used to fixate the implant to with implants varying in type and size were also created. the bone. The implant head was also similar in size as Maximum load during walking was simulated with realistic muscle forces, and stress projections of the femur model the anatomical head, giving the hip a natural physiolog- were compared to trabecular trajectories of a real femur for ical range of motion (ROM). When it was revealed that validation. Bone remodeling was also simulated to inves- MOM produced high frictional torque, metal-on-poly- tigate changes in projections over time. High correlation mer became the popular bearing combination choice. It was found between the principal stress projections of the computational model and trabeculae trajectories of a real fe- soon became evident that debris from the plastic liner mur. Changes in projections were evident for implant mod- due to volumetric wear led to osteolysis and causing the els, suggesting stress shielding and bone remodeling. The implant to loosen. Thus, the implant head size was re- analysis provides an effective method for planning implants duced to decrease the wear, which also decreased the that are ideal for patients and for designing future implants ROM of the hip, limiting the patient’s mobility. The next that preserves the biomechanics of the femur to maintain its physiology. fifty years saw the introduction of two more bearing combinations (ceramic-on-polymer and ceramic-on-ce- Keywords ramic), though much of the implant designs and the small Biomechanics, Finite element analysis, Total hip arthroplas- head size remained unchanged. Presently, hip implants ty, Bone remodeling are available in all bearing combinations and in various shapes and sizes. THA implants with large head size are Introduction also becoming popular, as researches have shown that with larger head sizes, lubrication regime changes from Total hip arthroplasty (THA) is a type of joint replace- boundary lubrication to fluid-film lubrication [2]. New ment surgery that has been the standard treatment for researches in materials have also led to bearings having patients with osteoarthritis, avascular necrosis, and/or very low frictional coefficients. In addition, porous coat- fracture within the hip joint. In THA, both the acetabu- Citation: Fukuoka K, Todo M (2018) Analysis of Principal Stress Projection in Femur with Total Hip Arthroplasty using CT-image Based Finite Element Method. Int Arch Orthop Surg 1:003. Accepted: September 18, 2018; Published: September 20, 2018 Copyright: © 2018 Fukuoka K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Fukuoka and Todo. Int Arch Orthop Surg 2018, 1:003 • Page 1 of 10 • ISSN: 2643-4016 ings around the stem have led to the development of has introduced the use of telemetry devices to deter- cement less implants, providing stronger bone fixation mine hip contact force in real time. Combining the data than using bone cement. with musculoskeletal modeling has allowed research- ers to mimic realistic physiological loading conditions However, there are still risks to hip arthroplasty and [22-25]. Numerical and computational bone adaptation thousands of revision surgery is conducted each year. theory has also been suggested, following three basic The main indications for surgery that concerns the im- concepts: Alteration in bone architecture due to me- plant are aseptic loosening, dislocation, and the wear of chanical stimulus, calculation of updated material prop- acetabular component [3]. The main risk factors are can erty, and calculation of new stress and strain fields from be categorized as being mechanical, biological, or bio- updated material properties [26-30]. Computationally mechanical. Mechanical risk factors include incorrect derived principal stress projections have also been eval- determination of implant size, position, and orienta- uated with trabeculae structure of the femur with suc- tion. As mentioned earlier, using a smaller implant head cess [31,32]. size decreases the ROM of the hip and increases the risk of the implant impinging with the cup, leading to Despite of the advancements in materials and de- dislocation [4,5]. Biological risk factors are derived from signs, hip implants continue to cause complications. improper choice of implant type. With implants using The National Joint Registy (NJR) for England and Wales, bearing combinations of a polymer, the wear particles which has a large population and high rates of coverage, are associated with osteolysis, causing aseptic loosen- have recently revealed that the revision rate for MOM ing of the implant. With MOM implants, the release of implants, specifically HRA implants, was much higher metal ions has been linked to metallosis. In addition, than other bearing combinations [33,34]. The findings the size of head has been known to coincide with volu- have led to government health agencies in England and metric wear, with increasing head size leading to great- the United States to release alerts on the use of particu- er wear [6]. Both mechanical and biological risks have lar hip implants. Furthermore, within the past 10 years, been heavily discussed in literature, and with proper major implant companies have recalled their implants. clinical assessment and pre-surgical planning, the oc- While researches concerning implant design have been currence of these risks could be minimized. However, conducted, most have been based on minimizing me- biomechanical risk factors are based on the remodeling chanical and biological risks. Patient-specific implants of the bone, or the biological response due to mechan- have also been simulated; however, the advantages ical change. Stress shielding is one factor in which the have been minor compared to the cost and time to man- body load is shifted from the femur to the implant, caus- ufacture such implants [35-39]. Furthermore, long-term ing osteopenia [7-11]. Such condition can cause aseptic safety has not been addressed, which is a key factor for loosening due to instability in fixation, or cause sudden femur and implant survival, as well as the quality of life fatal damage to the femur, such as fracture. In order to for the patient. Ideally, there should be minimal differ- clinically assess biomechanical risks from an engineer- ences between the biomechanics of an intact femur and ing perspective, researchers have focused on the bone that of a femur with implant. Any alterations in loading adaptation theory [12-18]. will affect the stress and strain distribution, which will cause respective changes in the trabecular structure The first bone adaptation theory, known as “Wolff’s and henceforth the bone density. Thus, the primary de- Law” suggests that the bone adapts to changes in stress sign criteria of an implant must be based on minimizing and tries to minimize load. Wolff also illustrated his ver- biomechanical risks, followed by the minimization of sion of principal stress projections and postulated the mechanical and biological risks. In order to assess the “Trajectorial Theory”, in which he noted that cancellous effectiveness and safety of the implant design, it is nec- bone architecture is formed of a network of perpendic- essary to first replicate the biomechanics of the femur, ular intersections [19]. While Wolff’s Law has remained test under realistic physiological conditions, followed by as the philosophy of bone remodeling, the Trajecto- bone remodeling simulation to predict long-term out- ry Theory has been dismissed by modern research, as come. To the best of our knowledge, the combination of it has been found that the cancellous architecture is the three works has not yet been reported in literature. non-orthogonal, and its orientation is governed clearly by loading [20]. The objectives of this study were to realistically sim- ulate the physiological condition of the femur, to in- Finite element analysis (FEA) has frequently been vestigate the effects of an implant in the femur, and to used to simulate physiology of the femur, using pa- utilize the obtained results for optimization of implant tient-specific three-dimensional (3D) models made from designs.
Recommended publications
  • The Unknown Process Osseointegration
    biology Editorial The Unknown Process Osseointegration Nansi López-Valverde , Javier Flores-Fraile and Antonio López-Valverde * Department of Surgery, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; [email protected] (N.L.-V.); j.fl[email protected] (J.F.-F.) * Correspondence: [email protected] Received: 3 July 2020; Accepted: 14 July 2020; Published: 16 July 2020 Abstract: Although it was already described more than fifty years ago, there is yet no in-depth knowledge regarding the process of osseointegration as far as its mechanism of action is concerned. It could be one of the body’s ways of reacting to a foreign body, where the individual’s immune response capacity is involved. It is known that the nervous system has an impact on bone health and that the role of the autonomic nervous system in bone remodeling is an attractive field for current research. In the future, immuno/neuromodulatory techniques will open new and exciting lines of research. Keywords: osseointegration; foreign-body reaction; bone remodeling; immuno/neuromodulatory techniques Although the process of osseointegration was first described by Brånemark and colleagues [1], 50 years later, the real mechanism of this process, remains unknown and has not been studied in depth. The model proposed by Koka and Zarb marked genetics as one of the patient’s inherent variables, necessary, to achieve “sufficient” and lasting results [2]. Among the proposed theories, two have acquired particular interest: “foreign-body reaction”, which interprets osseointegration from the point of view of adverse immune processes [3]; and the so-called by certain authors “brain-bone axis” theory [4].
    [Show full text]
  • Biology of Bone Repair
    Biology of Bone Repair J. Scott Broderick, MD Original Author: Timothy McHenry, MD; March 2004 New Author: J. Scott Broderick, MD; Revised November 2005 Types of Bone • Lamellar Bone – Collagen fibers arranged in parallel layers – Normal adult bone • Woven Bone (non-lamellar) – Randomly oriented collagen fibers – In adults, seen at sites of fracture healing, tendon or ligament attachment and in pathological conditions Lamellar Bone • Cortical bone – Comprised of osteons (Haversian systems) – Osteons communicate with medullary cavity by Volkmann’s canals Picture courtesy Gwen Childs, PhD. Haversian System osteocyte osteon Picture courtesy Gwen Childs, PhD. Haversian Volkmann’s canal canal Lamellar Bone • Cancellous bone (trabecular or spongy bone) – Bony struts (trabeculae) that are oriented in direction of the greatest stress Woven Bone • Coarse with random orientation • Weaker than lamellar bone • Normally remodeled to lamellar bone Figure from Rockwood and Green’s: Fractures in Adults, 4th ed Bone Composition • Cells – Osteocytes – Osteoblasts – Osteoclasts • Extracellular Matrix – Organic (35%) • Collagen (type I) 90% • Osteocalcin, osteonectin, proteoglycans, glycosaminoglycans, lipids (ground substance) – Inorganic (65%) • Primarily hydroxyapatite Ca5(PO4)3(OH)2 Osteoblasts • Derived from mesenchymal stem cells • Line the surface of the bone and produce osteoid • Immediate precursor is fibroblast-like Picture courtesy Gwen Childs, PhD. preosteoblasts Osteocytes • Osteoblasts surrounded by bone matrix – trapped in lacunae • Function
    [Show full text]
  • Effects of Estrogen Receptor and Wnt Signaling Activation On
    International Journal of Molecular Sciences Article Effects of Estrogen Receptor and Wnt Signaling Activation on Mechanically Induced Bone Formation in a Mouse Model of Postmenopausal Bone Loss 1, , 1, 1 1 Astrid Liedert * y, Claudia Nemitz y, Melanie Haffner-Luntzer , Fabian Schick , Franz Jakob 2 and Anita Ignatius 1 1 Institute of Orhopedic Research and Biomechanics, Trauma Research Center Ulm, University Medical Center Ulm, 89081 Ulm, Germany; [email protected] (C.N.); melanie.haff[email protected] (M.H.-L.); [email protected] (F.S.); [email protected] (A.I.) 2 Orthopaedic Center for Musculoskeletal Research, University of Würzburg, 97074 Würzburg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-731-500-55333; Fax: +49-731-500-55302 These authors contributed equally to the study. y Received: 14 September 2020; Accepted: 31 October 2020; Published: 5 November 2020 Abstract: In the adult skeleton, bone remodeling is required to replace damaged bone and functionally adapt bone mass and structure according to the mechanical requirements. It is regulated by multiple endocrine and paracrine factors, including hormones and growth factors, which interact in a coordinated manner. Because the response of bone to mechanical signals is dependent on functional estrogen receptor (ER) and Wnt/β-catenin signaling and is impaired in postmenopausal osteoporosis by estrogen deficiency, it is of paramount importance to elucidate the underlying mechanisms as a basis for the development of new strategies in the treatment of osteoporosis. The present study aimed to investigate the effectiveness of the activation of the ligand-dependent ER and the Wnt/β-catenin signal transduction pathways on mechanically induced bone formation using ovariectomized mice as a model of postmenopausal bone loss.
    [Show full text]
  • Estrogen Receptor-Α in Osteocytes Is Important for Trabecular Bone Formation in Male Mice
    Estrogen receptor-α in osteocytes is important for trabecular bone formation in male mice Sara H. Windahla, Anna E. Börjessona, Helen H. Farmana, Cecilia Engdahla,Sofia Movérare-Skrtica, Klara Sjögrena, Marie K. Lagerquista, Jenny M. Kindbloma, Antti Koskelab, Juha Tuukkanenb, Paola Divieti Pajevicc, Jian Q. Fengd, Karin Dahlman-Wrighte, Per Antonsone, Jan-Åke Gustafssone,f,1,2, and Claes Ohlssona,1,2 aDepartment of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden; bDepartment of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu 90014, Finland; cDepartment of Medicine, Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114; dDepartment of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246; eDepartment of Biosciences and Nutrition and Center for Biosciences at Novum, Karolinska Institutet, 141 83 Huddinge, Sweden; and fCenter for Nuclear Receptors and Cell Signaling, Department of Cell Biology and Biochemistry, University of Houston, Houston, TX 77204 Contributed by Jan-Åke Gustafsson, December 4, 2012 (sent for review October 25, 2012) The bone-sparing effect of estrogen in both males and females is in osteoclasts is crucial for trabecular bone in females, but it is primarily mediated via estrogen receptor-α (ERα), encoded by the dispensable for trabecular bone in male mice and for cortical Esr1 gene. ERα in osteoclasts is crucial for the trabecular bone- bone in both males and females. However, not only osteoclasts sparing effect of estrogen in females, but it is dispensable for but also osteoblasts/osteocytes express ERs (15–17).
    [Show full text]
  • Sex Steroids and Bone
    Sex Steroids and Bone S.C. MANOLAGAS,S.KOUSTENI, AND R.L. JILKA Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, and the Central Arkansas Veterans Health Care System, Little Rock, Arkansas 72205 ABSTRACT The adult skeleton is periodically remodeled by temporary anatomic structures that comprise juxtaposed osteoclast and osteoblast teams and replace old bone with new. Estrogens and androgens slow the rate of bone remodeling and protect against bone loss. Conversely, loss of estrogen leads to increased rate of remodeling and tilts the balance between bone resorption and formation in favor of the former. Studies from our group during the last 10 years have elucidated that estrogens and androgens decrease the number of remodeling cycles by attenuating the birth rate of osteoclasts and osteoblasts from their respective progenitors. These effects result, in part, from the transcriptional regulation of genes responsible for osteoclastogenesis and mesenchymal cell replication and/or differentiation and are exerted through interactions of the ligand-activated receptors with other transcription factors. However, increased remodeling alone cannot explain why loss of sex steroids tilts the balance of resorption and formation in favor of the former. Estrogens and androgens also exert effects on the lifespan of mature bone cells: pro-apoptotic effects on osteoclasts but anti-apoptotic effects on osteoblasts and osteocytes. These latter effects stem from a heretofore unexpected function of the classical “nuclear” sex steroid receptors outside the nucleus and result from activation of a Src/Shc/extracellular signal-regulated kinase signal transduction pathway probably within preassembled scaffolds called caveolae.
    [Show full text]
  • Aandp1ch07lecture.Pdf
    Chapter 07 Lecture Outline See separate PowerPoint slides for all figures and tables pre- inserted into PowerPoint without notes. Copyright © McGraw-Hill Education. Permission required for reproduction or display. 1 Introduction • In this chapter we will cover: – Bone tissue composition – How bone functions, develops, and grows – How bone metabolism is regulated and some of its disorders 7-2 Introduction • Bones and teeth are the most durable remains of a once-living body • Living skeleton is made of dynamic tissues, full of cells, permeated with nerves and blood vessels • Continually remodels itself and interacts with other organ systems of the body • Osteology is the study of bone 7-3 Tissues and Organs of the Skeletal System • Expected Learning Outcomes – Name the tissues and organs that compose the skeletal system. – State several functions of the skeletal system. – Distinguish between bones as a tissue and as an organ. – Describe the four types of bones classified by shape. – Describe the general features of a long bone and a flat bone. 7-4 Tissues and Organs of the Skeletal System • Skeletal system—composed of bones, cartilages, and ligaments – Cartilage—forerunner of most bones • Covers many joint surfaces of mature bone – Ligaments—hold bones together at joints – Tendons—attach muscle to bone 7-5 Functions of the Skeleton • Support—limb bones and vertebrae support body; jaw bones support teeth; some bones support viscera • Protection—of brain, spinal cord, heart, lungs, and more • Movement—limb movements, breathing, and other
    [Show full text]
  • Predictions of Bone Remodeling Around Dental Implant Systems
    ARTICLE IN PRESS Journal of Biomechanics ] (]]]]) ]]]–]]] www.elsevier.com/locate/jbiomech www.JBiomech.com Short communication Predictions of bone remodeling around dental implant systems Hsuan-Yu Chou, John J. Jagodnik, S. Mu¨ftu¨Ã Department of Mechanical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA Accepted 31 January 2008 Abstract This study presents the implementation of a mathematical bone remodeling algorithm to bone adaptation in the premolar area of the mandible around various dental implant systems, and thus sheds a new perspective to the complex interactions in dental implant mechanics. A two-dimensional, plane strain model of the bone was built from a CT-scan. The effect of implant contour on internal bone remodeling was investigated by considering four dental implant systems with contours similar to commercially available ones and another four with cylindrical and conical cross-sections. The remodeling algorithm predicts non-homogeneous density/elastic modulus distribution; and, implant contour has some effect on how this is distributed. Bone density is predicted to increase on the tips of the threads of the implants, but to decrease inside the grooves. Threadless implants favor to develop a softer bone around their periphery, compared to implant systems that have threads. The overall contour (dimensions and the shape) of an implant affect the bone density redistribution, but the differences between different implant systems are relatively small. r 2008 Elsevier Ltd. All rights reserved. Keywords: Dental implants; Bone remodeling; Load transfer 1. Introduction to function. Many studies of implant-to-bone load transfer, in fact model the maintenance phase, and use the criteria Dental implants provide an alternative for treating that excessively high or inadequately low stress levels in the partial or full edentulism by serving as anchors for full- bone result in pathologic bone loss.
    [Show full text]
  • Osseointegration of a Novel Dental Implant in Canine Lingxiao Wang1,4, Zhenhua Gao1,4, Yucheng Su2,3, Qian Liu3, Yi Ge2* & Zhaochen Shan1*
    www.nature.com/scientificreports OPEN Osseointegration of a novel dental implant in canine Lingxiao Wang1,4, Zhenhua Gao1,4, Yucheng Su2,3, Qian Liu3, Yi Ge2* & Zhaochen Shan1* This study aimed to compare and verify the osseointegration performance of a novel implant (NI) in vivo, which could provide a useful scientifc basis for the further development of NIs. Thirty-two NIs treated with hydrofuoric acid and anodization and sixteen control implants (CIs) were placed in the mandibles of 8 beagles. Micro-CT showed that the trabecular number (Tb.N) signifcantly increased and trabecular separation (Tb.Sp) signifcantly decreased in the NIs at 2 weeks. Signifcant diferences were found in the trabecular thickness, Tb.N, Tb.Sp, bone surface/bone volume ratio, and bone volume/total volume ratio between the two groups from the 2nd–4th weeks. However, there were no signifcant diferences between the two groups in the bone volume density at 2, 4, 8, or 12 weeks or bone-implant contact at 2 or 4 weeks, but the BIC in the CIs was higher than that in the NIs at the 8th and 12th weeks. Meanwhile, the histological staining showed a similar osseointegration process between the two groups over time. Overall, the NIs could be used as new potential implants after further improvement. Te design of dental implants and their various unique dental implant systems is the most active and dynamic area of research in the feld of oral implantation. In 1952, the osseointegration of pure titanium was discovered and advanced by Professor Branemark. Based on a theoretical design, he developed the landmark Branemark dental implant system, which has been successfully used in the feld of oral restoration1.
    [Show full text]
  • Bones and Bone Tissue Module 6.1: Introduction to Bones As Organs
    CHAPTER 6: BONES AND BONE TISSUE MODULE 6.1: INTRODUCTION TO BONES AS ORGANS SKELETAL SYSTEM • Skeletal system includes: . Bones, joints, and their associated supporting tissues . Bones are main organs of this system: o Like any organ, they are composed of more than osseous tissue o Also composed of both dense regular and irregular collagenous connective tissue as well as bone marrow FUNCTIONS OF THE SKELETAL SYSTEM • Functions of skeletal system include: 1. Protection: certain bones, including skull, sternum (breastbone), ribs, and pelvis, protect underlying organs; example of Structure-Function Core Principle FUNCTIONS OF THE SKELETAL SYSTEM • Functions of skeletal system (continued): 2. Mineral storage and acid-base homeostasis: bone is most important storehouse in body for calcium, phosphorus, and magnesium salts; these minerals, also present in blood as electrolytes, acids, and bases; critical for electrolyte and acid-base maintenance FUNCTIONS OF THE SKELETAL SYSTEM • Functions of skeletal system (continued): 3. Blood cell formation: bones house red bone marrow; specialized connective tissue involved in formation of blood cells (hematopoiesis) FUNCTIONS OF THE SKELETAL SYSTEM • Functions of skeletal system (continued): 4. Fat storage: bones also contain yellow bone marrow; contains fat cells, or adipocytes, that store triglycerides; fatty acids from breakdown of triglycerides can be used for fuel by cells FUNCTIONS OF THE SKELETAL SYSTEM • Functions of skeletal system (continued): 5. Movement: bones serve as sites for attachment for most skeletal muscles; when muscles contract, they pull on bones; generates movement at a joint FUNCTIONS OF THE SKELETAL SYSTEM • Functions of skeletal system (continued): 6. Support: skeleton supports weight of body and provides its structural framework 1 BONE STRUCTURE • Bone structure can be organized into 5 classes despite diversity of bone appearance; all 206 bones fit into one of following categories based on shape (Figure 6.2): .
    [Show full text]
  • Physiology of Bone Formation, Remodeling, and Metabolism 2
    Physiology of Bone Formation, Remodeling, and Metabolism 2 Usha Kini and B. N. Nandeesh Contents 2.1 Introduction 2.1 Introduction ................................................ 29 Bone is a highly specialized supporting frame- 2.2 Physiology of Bone Formation .................. 30 2.2.1 Bone Formation ............................................ 30 work of the body, characterized by its rigidity, 2.2.2 Osteoblasts ................................................... 31 hardness, and power of regeneration and repair. It 2.2.3 Bone Matrix ................................................. 31 protects the vital organs, provides an environ- 2.2.4 Bone Minerals .............................................. 32 ment for marrow (both blood forming and fat 2.2.5 Osteocytes .................................................... 32 2.2.6 Intramembranous (Mesenchymal) storage), acts as a mineral reservoir for calcium Ossification ................................................ 32 homeostasis and a reservoir of growth factors and 2.2.7 Intracartilaginous (Endochondral) cytokines, and also takes part in acid–base bal- Ossification ................................................ 33 ance (Taichman 2005 ) . Bone constantly under- 2.2.8 Biological Factors Involved in Normal Bone Formation and Its Regulation ........... 37 goes modeling (reshaping) during life to help it 2.2.9 Bone Modeling ............................................. 37 adapt to changing biomechanical forces, as well 2.2.10 Determinants of Bone Strength .................... 37 as remodeling
    [Show full text]
  • Akt Promotes BMP2-Mediated Osteoblast Differentiation and Bone Development
    716 Research Article Akt promotes BMP2-mediated osteoblast differentiation and bone development Aditi Mukherjee and Peter Rotwein* Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA *Author for correspondence (e-mail: [email protected]) Accepted 10 November 2008 Journal of Cell Science 122, 716-726 Published by The Company of Biologists 2009 doi:10.1242/jcs.042770 Summary Signaling through the IGF-I receptor by locally synthesized stages of osteoblast maturation, dominant-negative Akt IGF-I or IGF-II is crucial for normal skeletal development and prevented accumulation of bone-specific alkaline phosphatase for bone remodeling. Osteogenesis is primarily regulated by and reduced mineralization, and more significantly inhibited bone morphogenetic proteins (BMPs), which activate gene the longitudinal growth of metatarsal bones in primary culture expression programs driven by bone-specific transcription by interfering with both chondrocyte and osteoblast factors. In a mesenchymal stem cell model of osteoblast development and function. We conclude that an intact IGF- commitment and differentiation controlled by BMP2, we show induced PI3-kinase–Akt signaling cascade is essential for BMP2- that an inhibitor of PI3-kinase or a dominant-negative Akt were activated osteoblast differentiation and maturation, bone as potent in preventing osteoblast differentiation as the IGF development and growth, and suggest that manipulation of this binding protein IGFBP5, whereas a Mek inhibitor was pathway could facilitate bone remodeling and fracture repair. ineffective. Conversely, an adenovirus encoding an inducible- active Akt was able to overcome the blockade of differentiation caused by IGFBP5 or the PI3-kinase inhibitor, and could Supplementary material available online at restore normal osteogenesis.
    [Show full text]
  • Bone Loss of Vertebral Bodies at the Operative Segment After Cervical Arthroplasty: a Potential Complication?
    NEUROSURGICAL FOCUS Neurosurg Focus 42 (2):E7, 2017 Bone loss of vertebral bodies at the operative segment after cervical arthroplasty: a potential complication? Dong Hwa Heo, MD, PhD, Dong Chan Lee, MD, Jong Yang Oh, MD, and Choon Keun Park, MD, PhD Department of Neurosurgery, Spine Center, The Leon Wiltse Memorial Hospital, Gyeonggi-do, Korea OBJECTIVE Bony overgrowth and spontaneous fusion are complications of cervical arthroplasty. In contrast, bone loss or bone remodeling of vertebral bodies at the operation segment after cervical arthroplasty has also been observed. The purpose of this study is to investigate a potential complication—bone loss of the anterior portion of the vertebral bodies at the surgically treated segment after cervical total disc replacement (TDR)—and discuss the clinical significance. METHODS All enrolled patients underwent follow-up for more than 24 months after cervical arthroplasty using the Ba- guera C disc. Clinical evaluations included recording demographic data and measuring the visual analog scale and Neck Disability Index scores. Radiographic evaluations included measurements of the functional spinal unit’s range of motion and changes such as bone loss and bone remodeling. The grading of the bone loss of the operative segment was clas- sified as follows: Grade 1, disappearance of the anterior osteophyte or small minor bone loss; Grade 2, bone loss of the anterior portion of the vertebral bodies at the operation segment without exposure of the artificial disc; or Grade 3, significant bone loss with exposure of the anterior portion of the artificial disc. RESULTS Forty-eight patients were enrolled in this study. Among them, bone loss developed in 29 patients (Grade 1 in 15 patients, Grade 2 in 6 patients, and Grade 3 in 8 patients).
    [Show full text]