Antisense Oligonucleotides: an Emerging Area in Drug Discovery and Development

Total Page:16

File Type:pdf, Size:1020Kb

Antisense Oligonucleotides: an Emerging Area in Drug Discovery and Development Journal of Clinical Medicine Review Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development Karishma Dhuri 1, Clara Bechtold 1, Elias Quijano 2, Ha Pham 3, Anisha Gupta 4, Ajit Vikram 5 and Raman Bahal 1,* 1 Department of Pharmaceutical Science, University of Connecticut, Storrs, CT 06269, USA; [email protected] (K.D.); [email protected] (C.B.) 2 Department of Genetics, Yale University, New Haven, CT 06520, USA; [email protected] 3 Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232-5671, USA; [email protected] 4 Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA; [email protected] 5 Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA; [email protected] * Correspondence: [email protected] Received: 24 April 2020; Accepted: 24 June 2020; Published: 26 June 2020 Abstract: Antisense oligonucleotides (ASOs) bind sequence specifically to the target RNA and modulate protein expression through several different mechanisms. The ASO field is an emerging area of drug development that targets the disease source at the RNA level and offers a promising alternative to therapies targeting downstream processes. To translate ASO-based therapies into a clinical success, it is crucial to overcome the challenges associated with off-target side effects and insufficient biological activity. In this regard, several chemical modifications and diverse delivery strategies have been explored. In this review, we systematically discuss the chemical modifications, mechanism of action, and optimized delivery strategies of several different classes of ASOs. Further, we highlight the recent advances made in development of ASO-based drugs with a focus on drugs that are approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for clinical applications. We also discuss various promising ASO-based drug candidates in the clinical trials, and the outstanding opportunity of emerging microRNA as a viable therapeutic target for future ASO-based therapies. Keywords: RNA; antisense oligonucleotides; chemical modifications; clinical trials 1. Introduction Aberrant protein production or metabolism is associated with numerous devastating diseases and disorders [1–4]. As proteins are produced by decoding information stored in messenger RNA (mRNA), aberrant protein production can be regulated by targeting mRNA. Additionally, a greater understanding of RNA has unraveled its multifaceted roles. Until the advent of non-coding RNAs (ncRNAs), mRNA was only considered as the mediator between DNA and the ribosome for protein synthesis. Among ncRNAs, microRNA (miRNA) [5], transfer RNA-derived small RNA [6], pseudogenes [7], PIWI-interacting RNA [8], long ncRNAs (lncRNAs) [9], and circular RNAs [10] have been identified as critical regulators of biological functions through modulation of gene expression. Hence, the antisense strategy comprising of targeting pre-mRNA, mRNA, or ncRNAs can alter the production of disease-causing proteins for therapeutic interventions. Unlike small molecule-based protein targeting, antisense drugs exhibit their effect by Watson–Crick base pairing rules with target RNA sequence. This principle of Watson–Crick molecular recognition provides the antisense field more flexibility in J. Clin. Med. 2020, 9, 2004; doi:10.3390/jcm9062004 www.mdpi.com/journal/jcm J. Clin. Med. 2020, 9, 2004 2 of 24 RNA-based drug design and expedites its development, which is imperative for targeting a myriad of rare and genetic diseases [11]. The amalgamation of chemical structure modifications of oligonucleotides and diverse delivery platforms provides an additional boost to the antisense field. Recent United States Food and Drug Administration (FDA) approval of several nucleic acid-based drugs has further spurred interest in the antisense research. Presently, numerous antisense drug candidates are in clinical trials to treat cardiovascular, metabolic, endocrine, neurological, neuromuscular, inflammatory, and infectious diseases [12]. This review provides a brief overview of the structural modifications of new generation antisense oligonucleotides (ASOs), their mechanisms of action, delivery strategies, and comprehensive information about FDA-approved antisense therapies and current antisense-based drug candidates in clinical trials. 2. Oligonucleotide Modifications In prior studies, ASOs based on phosphodiester backbone (also known as unmodified ASOs) were J. Clin. Med. 2020, 9, x FOR PEER REVIEW 4 of 24 usedJ. Clin. to Med. target 2020, 9 RNA, x FOR withPEER REVIEW moderate success. However, due to the presence of a phosphodiester3 of 24 bond, unmodified ASOs are susceptible to nuclease degradation [13]. In addition, the large size and charge of J. Clin. Med. 2020, 9, x FORTable PEER 1. ChemicalREVIEW modifications of antisense oligonucleotides (ASO). 3 of 24 Higher binding affinity, no immune unmodifiedJ. Clin. Med. 2020 ASOs, 9, x FOR restrict5′methylcytosine PEER REVIEW their passive diffusion intoRNase the H1 cell cleavage [14]. Hence, newer generation,3 of 24 chemically Name Structure Mechanism Properties stimulation J. Clin. Med. 2020, 9, x FOR PEER REVIEW 3 of 24 modified ASOs haveTable been 1. Chemical explored modificationsPhosphate to increase of modification antisense their oligonucleotides efficacy, enzymatic (ASO). stability, and decrease immune Table 1. Chemical modifications of antisense oligonucleotides (ASO). response andName off -target toxicityStructure (Table 1). Mechanism Properties J. Clin. Med. 2020, 9, x FORTable PEER 1. REVIEWChemical modifications of antisense oligonucleotides (ASO). 3 of 24 Name Structure PhosphateMechanism modification Properties Name Structure Phosphate Mechanismmodification Properties TableTable 1. Chemical 1. Chemical modifications modifications of antisense of oligonucleotides antisense oligonucleotides (ASO). (ASO). Phosphorothioate (PS) PhosphateRNase modification H1 cleavage Enzymatic stability Name Structure Mechanism Properties NameG-clamp Structure MechanismSteric hindrance Higher binding Properties affinity Phosphorothioate (PS) PhosphateRNase modification H1 cleavage Enzymatic stability Phosphate modification Phosphorothioate (PS) RNase H1 cleavage Enzymatic stability Phosphorothioate (PS) Sugar phosphateRNase H1modification cleavage Enzymatic stability Phosphorothioate (PS) RNase H1 cleavage Enzymatic stability Phosphorothioate (PS) Sugar phosphate modificationRNase H1 cleavage Enzymatic stability Phosphorodiamidate2.4. Locked Nucleic Acids (LNAs)Sugar phosphate Steric hindrance/splice modification Improved aqueous solubility, higher morpholino (PMO) Sugar phosphatemodulation modification binding affinity Phosphorodiamidate Steric hindrance/splice Improved aqueous solubility, higher Sugar phosphateSugar phosphatemodificationmodification Phosphorodiamidatemorpholino (PMO) Steric modulationhindrance/splice Improved aqueousbinding affinitysolubility, higher Phosphorodiamidatemorpholino (PMO) Stericmodulation hindrance/splice Improved bindingaqueous affinity solubility, higher morpholino (PMO) modulation binding affinity Phosphorodiamidate Steric hindrance/splice Improved aqueous solubility, higher Phosphorodiamidate Steric hindrance/splice Improved aqueous solubility, higher morpholino (PMO) Steric hindrance/splicemodulation Enzymatic stability, higher bindingbinding affinity Peptidemorpholino nucleic acid(PMO) (PNA) modulation binding affinity modulation affinity, no immune activation Steric hindrance/splice Enzymatic stability, higher binding Peptide nucleic acid (PNA) Steric modulationhindrance/splice Enzymaticaffinity, nostability, immune higher activation binding Peptide nucleic acid (PNA) Sugar modification Stericmodulation hindrance/splice Enzymaticaffinity, nostability, immune higher activation binding PeptidePeptide nucleic nucleic acidacid (PNA) Steric hindrance/splice Enzymatic stability, higher binding affinity, modulation affinity, no immune activation (PNA) Locked nucleic acids contain a constrainedmodulation methylene bridge between 2′ nooxygen immune and activation 4′ carbon SugarSteric modification hindrance/splice Enzymatic stability, higher binding Peptide nucleicof acidthe (PNA)ribose ring and display a strong binding affinity to the target DNA or RNA sequences due to SugarSteric modification modulationhindrance/RNase Higheraffinity, binding no immune affinity, activation enzymatic Locked nucleic acid (LNA) their preorganized structure.Sugar Each modification H1lockedSugar cleavage modificationnucleic acid (LNA) modificationstability increases the melting temperature of the duplex by 2–8°CSteric hindrance/RNase [30]. LNAs ex pressHigher their binding antisense affinity, ability enzymatic by steric hindrance Locked nucleic acid (LNA) Sugar modification mechanism. Diverse, comprehensive Steric H1hindrance/RNase LNA cleavage designs, gapmer,Higher mixmer, bindingstability affinity, and other enzymatic modifications have LockedLocked nucleic nucleic acidacid (LNA) Steric hindrance/RNase H1 been evaluated for their antisenseSteric activity H1hindrance/RNase cleavage and compared Higher with unmodifiedbindingstability Higheraffinity, ASOs. bindingenzymatic Gapmers a ffinity, enzymaticare LNA- stability Locked(LNA) nucleic acid (LNA) cleavage H1 cleavage stability DNA-LNA-based designs that contain continuous DNA nucleotides interspaced between two over Steric hindrance/RNase Higher binding affinity, enzymatic Locked nucleichanged
Recommended publications
  • Spinraza™ (Nusinersen)
    Spinraza™ (nusinersen) (Intrathecal) Document Number: IC-0291 Last Review Date: 08/03/2021 Date of Origin: 01/31/2017 Dates Reviewed: 01/2017, 02/2017, 01/2018, 08/2018, 06/2019, 08/2020, 08/2021 I. Length of Authorization Coverage will be provided annually and may be renewed. II. Dosing Limits A. Quantity Limit (max daily dose) [NDC Unit]: • Loading: 1 vial on D1, D15, D29, and D59 • Maintenance: 1 vial every 112 days B. Max Units (per dose and over time) [HCPCS Unit]: • Loading: 120 billable units on D1, D15, D29, and D59 • Maintenance: 120 billable units every 112 days III. Initial Approval Criteria1-12 • Submission of medical records related to the medical necessity criteria is REQUIRED on all requests for authorizations. Records will be reviewed at the time of submission. Please provide documentation via direct upload through the PA web portal or by fax. Coverage is provided in the following conditions: Spinal Muscular Atrophy (SMA) † Ф • Patient must not have previously received treatment with SMA gene therapy (i.e., onasemnogene abeparvovec-xioi); AND • Patient will not use in combination with other agents for SMA (e.g., onasemnogene abeparvovec, risdiplam, etc.); AND • Patient must not have advanced disease (complete limb paralysis, permanent ventilation support, etc.); AND Moda Health Plan, Inc. Medical Necessity Criteria Page 1/5 Proprietary & Confidential © 2021 Magellan Health, Inc. • Patient must have the following laboratory tests at baseline and prior to each administration*: platelet count, prothrombin time; activated
    [Show full text]
  • 1 Drug Development Working Group Report: Analysis of Existing
    Drug Development Working Group Report: Analysis of Existing Strengths, Critical Gaps, and Opportunities for Collaboration May 2014 1. Analysis. Biopharma - Focused on innovation with clinical application. Universities will play an increasingly large role in driving innovation in the biomedical industry for the foreseeable future. In New Jersey, there are several major biopharmaceutical and >350 smaller biotechnology and related companies with one or more employees. The recent integration of Rutgers creates a unique opportunity to align the University’s considerable drug discovery and development strengths. A directed effort of this sort would greatly enhance the capabilities of the University and enable University research to synergize with the biopharma industry, broadly defined. Although there have been shifts, mergers, and acquisitions in the New Jersey biopharma industry, the biopharma industry has continued to thrive. In 2003, the NY/NJ biopharma region had 17 companies with valuation >$100 M; in 2013 this region had still had 16 such companies. Moreover, the region is still vibrant: it continues to be home to large biomedical corporations, startups, entrepreneurs, and the world center for finance and capital. New Jersey also has quality industrial laboratory space, an ecosystem populated by a talented and experienced work force that has made New Jersey the “medicine chest of the world,” and an unparalleled opportunity to combine these factors in biopharma ventures that build on partnerships between Rutgers University and industry. Indeed, the primary difference between now and 15 years ago is that the present industry now is willing to reach out in a highly dynamic fashion. Rutgers is uniquely positioned to step forward as the premier university leader in biomedical innovation and development in the region.
    [Show full text]
  • 2017 ANNUAL REPORT | Translating SCIENCE • Transforming LIVES OUR COMMITMENT Make Every Day Count at PTC, Patients Are at the Center of Everything We Do
    20 YEARS OF COMMITMENT 2017 ANNUAL REPORT | Translating SCIENCE • Transforming LIVES OUR COMMITMENT Make every day count At PTC, patients are at the center of everything we do. We have the opportunity to support patients and families living with rare disorders through their journey. We know that every day matters and we are committed to making a difference. OUR SCIENCE Our scientists are finding new ways to regulate biology to control disease We have several scientific research platforms focused on modulating protein expression within the cell that we believe have the potential to address many rare genetic disorders. OUR PEOPLE Care for each other, our community, and for the needs of our patients At PTC, we are looking at drug discovery and development in a whole new light, bringing new technologies and approaches to developing medicines for patients living with rare disorders and cancer. We strive every day to be better than we were the day before. At PTC Therapeutics, it is our mission to provide access to best-in-class treatments for patients who have an unmet need. We are a science-led, global biopharmaceutical company focused on the discovery, development and commercialization of clinically-differentiated medicines that provide benefits to patients with rare disorders. Founded 20 years ago, PTC Therapeutics has successfully launched two rare disorder products and has a global commercial footprint. This success is the foundation that drives investment in a robust pipeline of transformative medicines and our mission to provide access to best-in-class treatments for patients who have an unmet medical need. As we celebrate our 20th year of bringing innovative therapies to patients affected by rare disorders, we reflect on our unwavering commitment to our patients, our science and our employees.
    [Show full text]
  • A Novel Therapeutic Drug for the Treatment of Familial Hypercholesterolemia, Hyperlipidaemia, and Hypercholesterolemia
    International Journal of Pharmacy and Pharmaceutical Sciences ISSN- 0975-1491 Vol 8, Issue 3, 2016 Review Article MIPOMERSEN: A NOVEL THERAPEUTIC DRUG FOR THE TREATMENT OF FAMILIAL HYPERCHOLESTEROLEMIA, HYPERLIPIDAEMIA, AND HYPERCHOLESTEROLEMIA AJAY KUMAR1, ARUN ACHARYA2, DINOBANDHU NANDI3, NEHA SHARMA4, EKTA CHITKARA1* 1Department of Paramedical Sciences, Lovely Professional University, Phagwara-144411, Punjab (India) Email: [email protected] Received: 25 Dec 2015 Revised and Accepted: 13 Jan 2016 ABSTRACT Familial Hypercholesterolemia (FH) is one of the most common autosomal dominant disorders which exist in either heterozygous form or a homozygous form. These two forms are prevalent in 1 in 500 and 1 in a million population respectively. FH results in premature atherosclerosis; as early as childhood in case of homozygous (HoFH) form and in adults in case of heterozygous (HeFH) form. In case of HoFH both the alleles for LDL- receptor are defective, whereas the mutation in the single allele is the cause for HeFH. Both the forms of the disease are associated with high levels of LDL-C and lipoprotein (a) in plasma, with high morbidity and mortality rate caused by cardiovascular disease. In several past years, different lipid-lowering drugs like Statins (HMG-coenzyme-A reductase inhibitor), MTTP inhibitor, CETP inhibitors, PCSK9 inhibitor, thyroid mimetics, niacin, bile acid sequestrants and lipid apheresis were administered to patients with FH, to achieve the goal of reducing plasma LDL-C and lipoprotein (a). However, such drugs proved inefficient to achieve the goals because of several reasons. Mipomersen is a 20 nucleotide antisense oligonucleotide; a novel lipid-lowering therapeutic drug currently enrolled in the treatment of patients with HoFH, HeFH and other forms of hypercholesterolemia.
    [Show full text]
  • DRUGS REQUIRING PRIOR AUTHORIZATION in the MEDICAL BENEFIT Page 1
    Effective Date: 08/01/2021 DRUGS REQUIRING PRIOR AUTHORIZATION IN THE MEDICAL BENEFIT Page 1 Therapeutic Category Drug Class Trade Name Generic Name HCPCS Procedure Code HCPCS Procedure Code Description Anti-infectives Antiretrovirals, HIV CABENUVA cabotegravir-rilpivirine C9077 Injection, cabotegravir and rilpivirine, 2mg/3mg Antithrombotic Agents von Willebrand Factor-Directed Antibody CABLIVI caplacizumab-yhdp C9047 Injection, caplacizumab-yhdp, 1 mg Cardiology Antilipemic EVKEEZA evinacumab-dgnb C9079 Injection, evinacumab-dgnb, 5 mg Cardiology Hemostatic Agent BERINERT c1 esterase J0597 Injection, C1 esterase inhibitor (human), Berinert, 10 units Cardiology Hemostatic Agent CINRYZE c1 esterase J0598 Injection, C1 esterase inhibitor (human), Cinryze, 10 units Cardiology Hemostatic Agent FIRAZYR icatibant J1744 Injection, icatibant, 1 mg Cardiology Hemostatic Agent HAEGARDA c1 esterase J0599 Injection, C1 esterase inhibitor (human), (Haegarda), 10 units Cardiology Hemostatic Agent ICATIBANT (generic) icatibant J1744 Injection, icatibant, 1 mg Cardiology Hemostatic Agent KALBITOR ecallantide J1290 Injection, ecallantide, 1 mg Cardiology Hemostatic Agent RUCONEST c1 esterase J0596 Injection, C1 esterase inhibitor (recombinant), Ruconest, 10 units Injection, lanadelumab-flyo, 1 mg (code may be used for Medicare when drug administered under Cardiology Hemostatic Agent TAKHZYRO lanadelumab-flyo J0593 direct supervision of a physician, not for use when drug is self-administered) Cardiology Pulmonary Arterial Hypertension EPOPROSTENOL (generic)
    [Show full text]
  • Drug Design Project Tips
    Drug Design Project Information and Tips CHEM 162B (2012) Part of your grade in Drug Design courses will come from a development of a “Drug Design Project”. Students who have taken Chem162A will be able to continue their project development; students who have not taken Chem 162A can pick one of the projects developed in past and take it further. Students will present their projects during the annual Drug Design Poster Event. Students taking Chem 162 during the Winter 2011 will be able accomplish three important milestones toward completing the Project. Part of your grade will be based on your success in completing these milestones. The milestones that you are expected to complete during the Spring 2012 are: 1) Characterize a validated protein/nucleic acid target for the disease that you are working on. If the target is an enzyme, describe in detail the reaction it catalyzes. If the target is not an enzyme, describe in detail its physiological role and mode of operation 2) Obtain or create a virtual library of possible drug candidates that are expected to bind to this target and carry out virtual screening to identify best binders 3) Describe adsorption, distribution, metabolism, excretion, and possible toxicity aspects of your drug candidate(s). If appropriate, propose modifications to improve your drug. You are expected to turn in your work on each milestone by the due dates specified; you’ll automatically receive 3 points per each milestone if you submit a significantly developed work by the due date. You will earn extra 5 points if you submit all milestones by the due date.
    [Show full text]
  • Duchenne Muscular Dystrophy (DMD) Agents
    Therapeutic Class Overview Duchenne muscular dystrophy (DMD) Agents INTRODUCTION • Duchenne muscular dystrophy (DMD) is 1 of 4 conditions known as dystrophinopathies, which are inherited, X-linked myopathic disorders due to a defect in the dystrophin gene that results in the primary pathologic process of muscle fiber degradation. The hallmark symptom is progressive weakness (Darras 2018[a], Darras 2018[b], Muscular Dystrophy Association [MDA] 2019). The other 3 conditions include: Becker muscular dystrophy (BMD), which is a mild form of DMD; an intermediate presentation between BMD and DMD; and DMD-associated dilated cardiomyopathy, which has little or no clinical ○ skeletal or muscle disease (MDA 2019). • DMD symptom onset is in early childhood, usually between the ages of 2 and 3 years old. The proximal muscles are affected first, followed by the distal limb muscles. Generally, the lower external muscles will be affected before the upper. The affected child may have difficulties jumping, walking, and running (MDA 2019). • The prevalence of DMD ranges from 1 to 2 per 10,000 live male births; female-manifesting carriers are rarer, but can present with a range of symptoms that vary in their severities (Birnkrant et al 2018, Darras 2018[a], Emflaza Food and Drug Administration [FDA] Medical Review 2017). • The clinical course and lifespan of patients with DMD is relatively short. Individuals are usually confined to a wheelchair by age 13, and many die in their late teens or twenties from respiratory insufficiency or cardiomyopathy. Although survival until adulthood is more common now, very few patients survive past the 3rd decade (Darras 2018[a]).
    [Show full text]
  • Vyondys 53™ (Golodirsen)
    UnitedHealthcare® Commercial Medical Benefit Drug Policy Vyondys 53™ (Golodirsen) Policy Number: 2021D0088C Effective Date: April 1, 2021 Instructions for Use Table of Contents Page Related Commercial Policy Coverage Rationale ....................................................................... 1 • Provider Administered Drugs – Site of Care Applicable Codes .......................................................................... 2 Background.................................................................................... 2 Community Plan Policy Benefit Considerations .................................................................. 3 • Vyondys 53™ (Golodirsen) Clinical Evidence ........................................................................... 3 U.S. Food and Drug Administration ............................................. 3 References ..................................................................................... 4 Policy History/Revision Information ............................................. 4 Instructions for Use ....................................................................... 4 Coverage Rationale See Benefit Considerations Vyondys 53 (golodirsen) may be covered for the treatment of Duchenne muscular dystrophy (DMD) in patients who meet all of the following criteria: For initial therapy, all of the following: o Diagnosis of Duchenne muscular dystrophy by, or in consultation with, a neurologist with expertise in the diagnosis of DMD; and o Submission of medical records (e.g., chart notes, laboratory
    [Show full text]
  • Prescription Drugs Requiring Prior Authorization
    PRESCRIPTION DRUGS REQUIRING PRIOR AUTHORIZATION Revised 10/16 As part of our drug utilization management program, members must request and receive prior authorization for certain prescription drugs in order to use their prescription drug benefits. Below is a list of drugs that currently require prior authorization. This list will be updated periodically as new drugs that require prior authorization are introduced. As benefits may vary by group and individual plans, the inclusion of a medication on this list does not imply prescription drug coverage. The Schedule of Benefits contains a list of drug categories that require prior authorization. Prior authorization requests are processed by our pharmacy benefit manager, Express Scripts, Inc. (ESI). Physicians must call ESI to obtain an authorization. (1-800-842-2015). Drug Name Generic Name Drug Classification Abstral fentanyl citrate oral tablet Controlled Dangerous Substance Accu-Chek Test Strips blood glucose test strips Blood Glucose Test Strips Actemra tocilizumab Monoclonal Antibody Acthar corticotropin Hormone Actimmune interferon gamma 1b Interferon Actiq fentanyl citrate OTFC Controlled Dangerous Substance Adcirca tadalafil Pulmonary Vasodilator Adempas riociguat Pulmonary Vasodilator Adlyxin lixisenatide Type 2 Diabetes Advocate Test Strips blood glucose test strips Blood Glucose Test Strips Aerospan** flunisolide Corticosteroids (Inhaled) Afrezza insulin Insulin (inhaled) Ampyra dalfampridine Multiple Sclerosis Agent Altoprev** lovastatin Cholesterol Alvesco** ciclesonide Corticosteroids
    [Show full text]
  • Computational Approaches for Drug Design and Discovery: an Overview
    Review Article Computational Approaches for Drug Design and Discovery: An Overview Baldi A College of Pharmacy, Dr. Shri R.M.S. Institute of Science & Technology, Bhanpura, Dist. Mandsaur (M.P.), India ARTICLE INFO ABSTRACT Article history: The process of drug discovery is very complex and requires an interdisciplinary effort to design Received 12 July 2009 effective and commercially feasible drugs. The objective of drug design is to find a chemical Accepted 21 July 2009 compound that can fit to a specific cavity on a protein target both geometrically and chemically. Available online 04 February 2010 After passing the animal tests and human clinical trials, this compound becomes a drug available Keywords: to patients. The conventional drug design methods include random screening of chemicals Computer-aided drug design found in nature or synthesized in laboratories. The problems with this method are long design Combinatorial chemistry cycle and high cost. Modern approach including structure-based drug design with the help Drug of informatic technologies and computational methods has speeded up the drug discovery Structure-based drug deign process in an efficient manner. Remarkable progress has been made during the past five years in almost all the areas concerned with drug design and discovery. An improved generation of softwares with easy operation and superior computational tools to generate chemically stable and worthy compounds with refinement capability has been developed. These tools can tap into cheminformation to shorten the cycle of drug discovery, and thus make drug discovery more cost-effective. A complete overview of drug discovery process with comparison of conventional approaches of drug discovery is discussed here.
    [Show full text]
  • The Use of Ataluren in the Effective Management of Duchenne Muscular Dystrophy
    Review Neuromuscular Diseases Early Diagnosis and Treatment – The Use of Ataluren in the Effective Management of Duchenne Muscular Dystrophy Eugenio Mercuri,1 Ros Quinlivan2 and Sylvie Tuffery-Giraud3 1. Catholic University, Rome, Italy; 2. Great Ormond Street Hospital and National Hospital for Neurology and Neurosurgery, London, UK; 3. Laboratory of Genetics of Rare Diseases (LGMR), University of Montpellier, Montpellier, France DOI: https://doi.org/10.17925/ENR.2018.13.1.31 he understanding of the natural history of Duchenne muscular dystrophy (DMD) is increasing rapidly and new treatments are emerging that have the potential to substantially improve the prognosis for patients with this disabling and life-shortening disease. For many, Thowever, there is a long delay between the appearance of symptoms and DMD diagnosis, which reduces the possibility of successful treatment. DMD results from mutations in the large dystrophin gene of which one-third are de novo mutations and two-thirds are inherited from a female carrier. Roughly 75% of mutations are large rearrangements and 25% are point mutations. Certain deletions and nonsense mutations can be treated whereas many other mutations cannot currently be treated. This emphasises the need for early genetic testing to identify the mutation, guide treatment and inform genetic counselling. Treatments for DMD include corticosteroids and more recently, ataluren has been approved in Europe, the first disease-modifying therapy for treating DMD caused by nonsense mutations. The use of ataluren in DMD is supported by positive results from phase IIb and phase III studies in which the treatment produced marked improvements in the 6-minute walk test, timed function tests such as the 10 m walk/run test and the 4-stair ascent/descent test compared with placebo.
    [Show full text]
  • Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
    CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products.
    [Show full text]