Integrated Flood Forecasting, Warning and Response System 3

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Flood Forecasting, Warning and Response System 3 Integrated Flood Forecasting, Warning and Response System 3 47 3.1 Defining an Integrated System Establishing a viable flood forecasting and composed of many links. Each link must be warning system for communities at risk present and functional if benefits are to be requires the combination of data, forecast achieved. Figure 12 shows a schematic tools, and trained forecasters. A flood- representation of the system as links in a forecast system must provide sufficient lead chain. time for communities to respond. Increasing lead time increases the potential The essential links or components of the to lower the level of damages and loss of life. integrated flood forecasting, warning and Forecasts must be sufficiently accurate to response system consist of a Data Source, promote confidence so that communities will Communications, Forecasts, Decision respond when warned. If forecasts are Support, Notification (often referred to as inaccurate, then credibility of the dissemination), Coordination, and Actions programme will be questioned and no (or responses). A flood forecast and warning response actions will occur. programme should be designed to mitigate floods, and, as such, it is an asset to overall Flood-warning systems must be reliable and water management. To achieve this, it is designed to operate during the most severe important that all of the components of the floods. The greatest benefits for an effective system be functional. If any component is flood-warning programme occur when dysfunctional, then this weak link could flooding is severe, widespread, and/or break the chain, resulting in an ineffective sudden, and when communities and warning and response process. For example, organizations are prepared to mitigate if critical rainfall or streamflow data are impacts. unavailable or if the data are not relayed to a forecast centre for use in forecasting, then The implementation of an end-to-end flood the critical lead time required to make forecast, warning and response system decisions, coordinate activities, warn consists of many components. These citizens, and take actions is not possible. If components must be linked for successful a perfect flood forecast is generated but does operation. The interaction of components of not reach the population at risk, then the the integrated flood forecast system or warning system is useless. Equally, should programme could be represented as a chain the population at risk receive the warning Figure 12 Integrated flood forecasting, warning and response system within IWRM Flood and Water Resources Management: a Critical Chain of Events and Actions GIS Tools Mathematical Models Data Communication Forecast Decision Notification Support Coordination Actions Sense Water Get Data Future Water Mgmt. Appropriate Tasks from Relocation Availability where Water & Individuals Response Sand bagging Needed Availability Flood Control & Groups Plans Other responses Decisions Organisations Civil society 48 Guidelines for Reducing Flood Losses but not know what actions should be taken, help put a recent flood into context. Often, then the system again would not have such records are of value in defining the accomplished its purpose. flood history in a river basin, particularly when combined with stream gauge records In the overall design of the integrated that exist for contemporary periods. Other system, there are many factors that should more recent historical information can be be considered. The remainder of this drawn from newspapers, journals and oral chapter reviews some of these factors. histories. Usually there is a perception level associated with flooding at a given location; Basin characteristics large events are noted, smaller events are not. The physical characteristics of the basin, such as surface area, topography, geology, The flood history will identify the portions and land surface cover, will help to of a basin subject to flooding, whether determine the nature of potential flooding flooding is urban or rural or both, seasonal and the basin's susceptibility to related characteristics of flooding, and the feasible hazards such as landslides and mudflows. warning time. The type of flooding and associated hazards may be significantly The hydrological response of the basin can different on tributaries compared to the be impacted upon by changes in land use main stem of the river. Knowledge of the associated with urbanization, forestry, factors contributing to or causing the agriculture, drainage, or channel flooding such as meteorological and modifications. A record of such changes antecedent conditions should be established over time is useful in establishing the for each flood event. dynamic relationship between rainfall and runoff. The following also contribute to an Lake flooding as well as flooding from understanding of flood hazards: records of ocean surge and tsunamis may pose climate norms and trends for parameters, problems quite different from river flooding. such as precipitation and evapotranspiration; These guidelines are oriented to river and information on the usual effects of flooding, but many principles contained ENSO events and extreme events, from herein are also applicable to varying degrees synoptic to mesoscale. to other water-related disasters. Population centres often are adjacent to Environmental factors rivers, and flood plains can be rich agricultural resources. Identification of Floods can induce major changes in river populations and economic activities at risk morphology, mobilize nutrients and should be carried out early in the process, as contaminants in the soil, release other this will shape the eventual forecast output. contaminants from storage depots, and discharge effluents to the river. Flood history Deforestation, fires and erosion of materials combined with saturated soils can lead to Flood history, also known as paleohydrology, landslides, mudflows and other threats to can be inferred from study of sediment human settlements. Sometimes floods are deposits, tree ring analysis, and examination accompanied by strong winds that also can of a number of other biological indicators. pose threats to human life and property. An Such analyses will not lead to a analysis of potential environmental risks will determination of flood volumes, but may help determine flood forecasting and 49 warning needs. This can help to shape System identification future approaches to flood plain management and regulation, and can assist Depending on the nature of the basin and in the design and establishment of response the type of event causing the flooding, actions. potential warning times could vary from hours to several days to weeks. Economic factors Communities subject to flash flooding require warnings of meteorological A flood forecasting, warning and response conditions that, when combined with system comprises an important element of antecedent basin conditions, could lead to integrated water resources management. flooding. This represents a special case of The benefits of river forecasts for power flood forecasting and warning. The generation, navigation or irrigated challenge in such cases is rapid depiction of agriculture make implementation of such a critical flood thresholds and their system more cost effective and sustainable. subsequent communication and emergency Even then, maintaining a system in a state of response. An analysis of historical rainfall readiness between floods may be difficult. records, including storm transposition and the resulting streamflow would help to An examination of past damages and the identify areas of concern. potential for future damages will help determine priority areas for flood forecasting, warning and response. Rigorous analysis would call for statistical analysis of flood peaks and the calculation of the present value of costs and benefits of flood forecasting and warning. In most cases, however, the benefits of flood forecasting, warning and response are virtually self-evident. The real questions are the affordability of various options and the desire of society to invoke a more pro-active stance to reducing flood losses. Communities at risk While flood losses in rural districts can be devastating to those areas, the most significant losses are usually in urban communities because of the concentration of Journal Review Photo: J. Laurie, Las Vegas people and related socio-economic Las Vegas, July 1999, flash flood meets desert investments. The basin characteristics and flood history of individual communities, When warning times are longer than a few combined with damage estimates from hours, full-fledged forecast systems should previous floods, will give some indication of be contemplated. The degree of desired the type of flood forecasting and warning automation and sophistication must be system that may be most suitable for considered in light of current needs and effective warnings. Once the system is capabilities. Automation needs can be defined, consideration should be given as to considered in sub-systems: data acquisition how it could benefit rural areas as well. and transmission; data processing; forecast 50 Guidelines for Reducing Flood Losses preparation; and forecast distribution. damages to be more accurately estimated Different levels of automation may be for various levels of flooding. required as the overall system develops and expands, and as financial resources become A rigorous cost-benefit analysis would available. Systems may vary from those require determining a flood frequency using largely
Recommended publications
  • Assessment of Antecedent Moisture Condition on Flood Frequency An
    Journal of Hydrology: Regional Studies 26 (2019) 100629 Contents lists available at ScienceDirect Journal of Hydrology: Regional Studies journal homepage: www.elsevier.com/locate/ejrh Assessment of antecedent moisture condition on flood frequency: An experimental study in Napa River Basin, CA T ⁎ Jungho Kima,b, , Lynn Johnsona,b, Rob Cifellib, Andrea Thorstensenc, V. Chandrasekara a Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA b NOAA Earth System Research Laboratory, Physical Sciences Division, Boulder, CO, USA c NOAA National Weather Service, North Central River Forecast Center, USA ARTICLE INFO ABSTRACT Keywords: Study region: This study region is the Napa River basin in California whose antecedent soil Flood frequency moisture states and precipitation magnitudes are primary drivers to occur extreme floods. Antecedent moisture condition Study focus: This study assessed the influence of antecedent moisture condition on flood fre- Precipitation frequency quency, based on an experimental application scheme and pre-processing. For this purpose, T- T-year flood simulation year flood simulations were conducted using a distributed hydrologic model. Distributed pre- Distributed hydrologic model cipitation patterns which have an amount of precipitation corresponding to a specific T-year Radar-based precipitation data return period were generated by representative radar-based precipitation fields and precipitation frequency analysis. Dry, normal, and wet of antecedent moisture condition were applied to each T-year flood simulation to reflect variable initial soil moisture states. New hydrological insights for the region: The relationship among flood frequency, antecedent moisture condition, and precipitation frequency was derived for a specific target storm event. For normal antecedent moisture states, the relation showed that T-year precipitation could generate floods having return intervals nearly identical to those derived using gage records.
    [Show full text]
  • Data Assimilation for Rainfall-Runoff Prediction Based on Coupled Atmospheric-Hydrologic Systems with Variable Complexity
    remote sensing Article Data Assimilation for Rainfall-Runoff Prediction Based on Coupled Atmospheric-Hydrologic Systems with Variable Complexity Wei Wang 1,2, Jia Liu 1,*, Chuanzhe Li 1, Yuchen Liu 1 and Fuliang Yu 1 1 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; [email protected] (W.W.); [email protected] (C.L.); [email protected] (Y.L.); yufl@iwhr.com (F.Y.) 2 College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China * Correspondence: [email protected]; Tel.: +86-150-1044-3860 Abstract: The data assimilation technique is an effective method for reducing initial condition errors in numerical weather prediction (NWP) models. This paper evaluated the potential of the weather research and forecasting (WRF) model and its three-dimensional data assimilation (3DVar) module in improving the accuracy of rainfall-runoff prediction through coupled atmospheric-hydrologic systems. The WRF model with the assimilation of radar reflectivity and conventional surface and upper-air observations provided the improved initial and boundary conditions for the hydrological process; subsequently, three atmospheric-hydrological systems with variable complexity were estab- lished by coupling WRF with a lumped, a grid-based Hebei model, and the WRF-Hydro modeling system. Four storm events with different spatial and temporal rainfall distribution from mountainous catchments of northern China were chosen as the study objects. The assimilation results showed a general improvement in the accuracy of rainfall accumulation, with low root mean square error and Citation: Wang, W.; Liu, J.; Li, C.; high correlation coefficients compared to the results without assimilation.
    [Show full text]
  • Quantitative Flood Forecasting on Small- and Medium-Sized Basins: a Probabilistic Approach for Operational Purposes
    1432 JOURNAL OF HYDROMETEOROLOGY VOLUME 12 Quantitative Flood Forecasting on Small- and Medium-Sized Basins: A Probabilistic Approach for Operational Purposes FRANCESCO SILVESTRO AND NICOLA REBORA CIMA Research Foundation, Savona, Italy LUCA FERRARIS CIMA Research Foundation, Savona, and DIST, University of Genoa, Genoa, Italy (Manuscript received 5 November 2010, in final form 22 June 2011) ABSTRACT The forecast of rainfall-driven floods is one of the main themes of analysis in hydrometeorology and a critical issue for civil protection systems. This work describes a complete hydrometeorological forecast system for small- and medium-sized basins and has been designed for operational applications. In this case, because of the size of the target catchments and to properly account for uncertainty sources in the prediction chain, the authors apply a probabilistic framework. This approach allows for delivering a prediction of streamflow that is valuable for decision makers and that uses as input quantitative precipitation forecasts (QPF) issued by a regional center that is in charge of hydrometeorological predictions in the Liguria region of Italy. This kind of forecast is derived from different meteorological models and from the experience of meteorologists. Single-catchment and multicatchment approaches have been operationally implemented and studied. The hydrometeorological forecasting chain has been applied to a series of case studies with en- couraging results. The implemented system makes effective use of the quantitative information content of rainfall forecasts issued by expert meteorologists for flood-alert purposes. 1. Introduction that it is not possible to tackle the hydrological forecasting problem in a deterministic way (e.g., Krzysztofowicz 2001), Over the last few decades, much effort has been made and consequently they propose probabilistic approaches in the field of flood prediction.
    [Show full text]
  • A Brief Review of Flood Forecasting Techniques and Their Applications
    International Journal of River Basin Management ISSN: 1571-5124 (Print) 1814-2060 (Online) Journal homepage: http://www.tandfonline.com/loi/trbm20 A Brief review of flood forecasting techniques and their applications Sharad Kumar Jain, Pankaj Mani, Sanjay K. Jain, Pavithra Prakash, Vijay P. Singh, Desiree Tullos, Sanjay Kumar, S. P. Agarwal & A. P. Dimri To cite this article: Sharad Kumar Jain, Pankaj Mani, Sanjay K. Jain, Pavithra Prakash, Vijay P. Singh, Desiree Tullos, Sanjay Kumar, S. P. Agarwal & A. P. Dimri (2018): A Brief review of flood forecasting techniques and their applications, International Journal of River Basin Management, DOI: 10.1080/15715124.2017.1411920 To link to this article: https://doi.org/10.1080/15715124.2017.1411920 Accepted author version posted online: 07 Dec 2017. Published online: 22 Jan 2018. Submit your article to this journal Article views: 21 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=trbm20 INTL. J. RIVER BASIN MANAGEMENT, 2018 https://doi.org/10.1080/15715124.2017.1411920 A Brief review of flood forecasting techniques and their applications Sharad Kumar Jaina, Pankaj Manib, Sanjay K. Jaina, Pavithra Prakashc, Vijay P. Singhd, Desiree Tullose, Sanjay Kumara, S. P. Agarwalf and A. P. Dimrig aNational Institute of Hydrology, Roorkee, India; bNational Institute of Hydrology, Regional Center, Patna, India; cPostdoctoral Researcher, University of California, Davis, USA; dTexas A and M University, College Station, Texas, USA; eOregon State University, Corvallis, OR, USA; fIndian Institute of Remote Sensing, Dehradun, India; gJawaharlal Nehru University, New Delhi, India ABSTRACT ARTICLE HISTORY Flood forecasting (FF) is one the most challenging and difficult problems in hydrology.
    [Show full text]
  • Texas Flood Forecasting
    Texas flood forecasting A test bed for the National Flood Interoperability Experiment Produce high spatial resolution (1 mile2) flood forecasting products: 1. Local flood emergency planning and response 2. Web services for information sharing National Water Model based on: 1. Radar precipitation 2. Detailed river hydraulic modeling 3. Flood inundation mapping Funding support from UT system Collaboration among UT system institutions The project lead is Dr. David Maidment (maidment@utexasedu) Presented by May Yuan ([email protected]) NGAC Meeting, September 28, 2016 This presentation is based on a briefing to Texas Association of Regional Councils Texas Flood Response Study by Harry R. Evans [email protected] Dr. David K. Arctur [email protected] Dr. David R. Maidment [email protected] Center for Research in Water Resources University of Texas at Austin Briefing for TARC, 9-1-1 Coordinators Association, 21 September 2016 Acknowledgements: Austin Fire Department, COA Watershed Protection, e-911 Coordinators, CSEC National Weather Service, Texas Division of Emergency Management http://kxan.com/2016/05/03/new-technology-hopes-to-predict-flash-floods-before-it-happens/ http://kxan.com/2016/05/03/new-technology-hopes-to-predict-flash-floods-before-it-happens/ Storm Rainfall during 2015 Memorial Day Weekend http://gis.ncdc.noaa.gov/map/viewer/#app=cdo&cfg=radar&theme=radar&display=nexrad Sunday, May 24, noon Where are the corresponding flood maps on the ground? Saturday,Sunday,Saturday,Saturday,Sunday,Sunday, MayMay MayMay May May
    [Show full text]
  • Downloaded 09/27/21 11:47 PM UTC 25.2 METEOROLOGICAL MONOGRAPHS VOLUME 59
    CHAPTER 25 PETERS-LIDARD ET AL. 25.1 Chapter 25 100 Years of Progress in Hydrology a b c c CHRISTA D. PETERS-LIDARD, FAISAL HOSSAIN, L. RUBY LEUNG, NATE MCDOWELL, d e f g MATTHEW RODELL, FRANCISCO J. TAPIADOR, F. JOE TURK, AND ANDREW WOOD a Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland b Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington c Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington d Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland e Department of Environmental Sciences, Institute of Environmental Sciences, University of Castilla–La Mancha, Toledo, Spain f Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California g Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado ABSTRACT The focus of this chapter is progress in hydrology for the last 100 years. During this period, we have seen a marked transition from practical engineering hydrology to fundamental developments in hydrologic science, including contributions to Earth system science. The first three sections in this chapter review advances in theory, observations, and hydrologic prediction. Building on this foundation, the growth of global hydrology, land–atmosphere interactions and coupling, ecohydrology, and water management are discussed, as well as a brief summary of emerging challenges and future directions. Although the review attempts
    [Show full text]
  • Flood4castrtf: a Real-Time Urban Flood Forecasting Model
    sustainability Article Flood4castRTF: A Real-Time Urban Flood Forecasting Model Michel Craninx 1,* , Koen Hilgersom 2 , Jef Dams 1 , Guido Vaes 2, Thomas Danckaert 1 and Jan Bronders 1 1 Environmental Modelling Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; [email protected] (J.D.); [email protected] (T.D.); [email protected] (J.B.) 2 Hydroscan NV, 3010 Leuven, Belgium; [email protected] (K.H.); [email protected] (G.V.) * Correspondence: [email protected] Abstract: Worldwide, climate change increases the frequency and intensity of heavy rainstorms. The increasing severity of consequent floods has major socio-economic impacts, especially in urban envi- ronments. Urban flood modelling supports the assessment of these impacts, both in current climate conditions and for forecasted climate change scenarios. Over the past decade, model frameworks that allow flood modelling in real-time have been gaining widespread popularity. Flood4castRTF is a novel urban flood model that applies a grid-based approach at a modelling scale coarser than most recent detailed physically based models. Automatic model set-up based on commonly avail- able GIS data facilitates quick model building in contrast with detailed physically based models. The coarser grid scale applied in Flood4castRTF pursues a better agreement with the resolution of the forcing rainfall data and allows speeding up of the calculations. The modelling approach conceptualises cell-to-cell interactions while at the same time maintaining relevant and interpretable physical descriptions of flow drivers and resistances. A case study comparison of Flood4castRTF results with flood results from two detailed models shows that detailed models do not necessarily outperform the accuracy of Flood4castRTF with flooded areas in-between the two detailed models.
    [Show full text]
  • Hydrological Forecasts
    Practice Requirements Forecasts Requirements Hydrological Forecasts Forecasts Forecasts Hydrological Forecasts and Best Practice Practice Requirements Requirements Hydrological Best Practice Hydrological Best Practice ForecastsRequirements Forecasts Best Practice Forecasts Requirements Best Forecasts Requirements Best Hydrological Requirements and Hydrological Forecasts and Hydrological Best Hydrological Forecasts Best Best Practice Practice Forecasts Best Practice Hydrological Practice Best Requirements Forecasts Hydrological Forecasts Forecasts Best Requirements Best PracticeHydrological and Practice Forecasts Best Practice Forecasts Best Practice Requirements Hydrological Best Hydrological Practice Best Training Module Flood Disaster Risk Management- Hydrological Forecasts: Requirements and Best Practices A. Vogelbacher PracticePractice Requirements Forecasts Requirements Hydrological Forecasts Forecasts Forecasts Hydrological Forecasts and Best Practice Practice Requirements Requirements Hydrological Best Practice Hydrological Best Practice ForecastsRequirements Forecasts Best Practice Forecasts Requirements Best Forecasts Requirements Best Hydrological Requirements and Hydrological Forecasts and Hydrological Best Hydrological Forecasts Best Best Practice Practice Forecasts Best Practice Training Module Hydrological Practice Best Requirements Forecasts Requirements Forecasts HydrologicalFlood Disaster Forecasts Risk Management- Best Best PracticeHydrologicalHydrological Forecasts: Requirements andand Practice Forecasts BestBest Practice
    [Show full text]
  • Manual on Flood Forecasting and Warning
    Quality ManageMeNt Framework g N i MaNual on For more information, please contact: warn World Meteorological Organization Flood Forecasting and Communications and Public Affairs Office g N Tel.: +41 (0) 22 730 83 14/15 – Fax: +41 (0) 22 730 80 27 and Warning sti E-mail: [email protected] ca e or Hydrology and Water Resources Branch f Climate and Water Department lood Tel.: +41 (0) 22 730 84 79 – Fax: +41 (0) 22 730 80 43 E-mail: [email protected] 7 bis, avenue de la Paix – P.O. Box 2300 – CH-1211 Geneva 2 – Switzerland W_102107 l MANUAL ON f www.wmo.int P-C WMO-No. 1072 Manual on Flood Forecasting and Warning WMO-No. 1072 2011 edition WMO-No. 1072 © World Meteorological Organization, 2011 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box No. 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] ISBN 978-92-63-11072-5 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Flash Flood Forecasting: an Ingredients-Based Methodology
    560 WEATHER AND FORECASTING VOLUME 11 Flash Flood Forecasting: An Ingredients-Based Methodology CHARLES A. DOSWELL III, HAROLD E. BROOKS, AND ROBERT A. MADDOX NOAA/Environmental Research Laboratories, National Severe Storms Laboratory, Norman, Oklahoma (Manuscript received 31 August 1995, in ®nal form 5 June 1996) ABSTRACT An approach to forecasting the potential for ¯ash ¯ood±producing storms is developed, using the notion of basic ingredients. Heavy precipitation is the result of sustained high rainfall rates. In turn, high rainfall rates involve the rapid ascent of air containing substantial water vapor and also depend on the precipitation ef®ciency. The duration of an event is associated with its speed of movement and the size of the system causing the event along the direction of system movement. This leads naturally to a consideration of the meteorological processes by which these basic ingredients are brought together. A description of those processes and of the types of heavy precipitation±producing storms suggests some of the variety of ways in which heavy precipitation occurs. Since the right mixture of these ingredients can be found in a wide variety of synoptic and mesoscale situations, it is necessary to know which of the ingredients is critical in any given case. By knowing which of the ingredients is most important in any given case, forecasters can concentrate on recognition of the developing heavy precipitation potential as mete- orological processes operate. This also helps with the recognition of heavy rain events as they occur, a chal- lenging problem if the potential for such events has not been anticipated. Three brief case examples are presented to illustrate the procedure as it might be applied in operations.
    [Show full text]
  • Nhdplus and the National Water Model
    NHDPlus and the National Water Model David R. Maidment Center for Research in Water Resources University of Texas at Austin Edward P. Clark Office of Water Prediction National Weather Service AWRA GIS in Water Resources Specialty Conference, Sacramento CA, 11 July 2016 Acknowledgements: UT Austin Colleagues and Students, National Weather Service, NCAR City of Austin, ESRI, Kisters, Microsoft Research, Yan Liu, David Tarboton This research is supported in part by NSF EarthCube grant 1343785 NHDPlus Version 2 Geospatial foundation for a national water data infrastructure NHDPlus 2.67 million reach catchments in US average area 3 km2 reach length 2 km National Elevation Dataset Watershed Boundary Dataset National Hydrography Dataset National Land Cover Dataset The Opportunity New National Water Center established on the Tuscaloosa campus of University of Alabama by the National Weather Service and federal agency partners Has a mission to assess hydrology in a new way at the continental scale for the United States National Water Center FY15 Centralized Water Forecasting • Centralized Data Archive – all RFC data • Modeling Evaluation Service • RFC and NWC modeling and forecasts • Modeling Testbed – new NWC capabilities • Centralized Water Forecasting Demonstration Continental Scale Flood Forecasting Meteorology Mapping and Impacts 2.7 million catchments Hydrology Hydraulics Combining Grid and Vector Modeling Forcing: Runoff and reservoir releases NHDPlus Catchment Flow Legend Dam Junction Catchment National Water Prediction Model Configurations Four Forecasting Horizons for National Water Model Analysis & Short-Range Medium Range Long Range Assimilation ‘Flood Prediction’ ‘Flow Prediction’ ‘Water Resources’ Cycling Frequency Hourly 3-Hourly Daily ~Daily (x16) Forecast Duration - 3 hrs 0-2 days 0-10 days 0-30 days Spatial Discretization & Routing 1km/250m/NHDPlus 1km/250m/NHDPlus 1km/250m/NHDPlus 1 km/catchment Reach Reach Reach /NHDPlus Reach Meteorological Forcing MRMS blend/ Downscaled HRRR Short-range + Downscaled & HRRR-NAM bkgnd.
    [Show full text]
  • Assessing the Potential for Real-Time Urban Flood Forecasting Based on a Worldwide Survey on Data Availability
    ORE Open Research Exeter TITLE Assessing the potential for real-time urban flood forecasting based on a worldwide survey on data availability AUTHORS Rene, Jeanne-Rose; Djordjevic, Slobodan; Butler, David; et al. JOURNAL Urban Water Journal DEPOSITED IN ORE 02 October 2014 This version available at http://hdl.handle.net/10871/15669 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Assessing the potential for real-time urban flood forecasting based on a worldwide survey on data availability Jeanne-Rose René a,b,*, Slobodan Djordjević a, David Butler a, Henrik Madsen b, Ole Mark b a Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, North Park Road, Exeter, EX4 4QF, United Kingdom b DHI, Agern Allé 5, Hørsholm, 2970, Denmark *corresponding author: [email protected] or [email protected] [email protected];[email protected];[email protected];[email protected] 1 Assessing the potential for real-time urban flood forecasting based on a worldwide survey on data availability This paper explores the potential for real-time urban flood forecasting based on literature and the results from an online worldwide survey with 176 participants. The survey investigated the use of data in urban flood management as well as the perceived challenges in data acquisition and its principal constraints in urban flood modelling.
    [Show full text]