Flash Flood Forecasting: an Ingredients-Based Methodology

Total Page:16

File Type:pdf, Size:1020Kb

Flash Flood Forecasting: an Ingredients-Based Methodology 560 WEATHER AND FORECASTING VOLUME 11 Flash Flood Forecasting: An Ingredients-Based Methodology CHARLES A. DOSWELL III, HAROLD E. BROOKS, AND ROBERT A. MADDOX NOAA/Environmental Research Laboratories, National Severe Storms Laboratory, Norman, Oklahoma (Manuscript received 31 August 1995, in ®nal form 5 June 1996) ABSTRACT An approach to forecasting the potential for ¯ash ¯ood±producing storms is developed, using the notion of basic ingredients. Heavy precipitation is the result of sustained high rainfall rates. In turn, high rainfall rates involve the rapid ascent of air containing substantial water vapor and also depend on the precipitation ef®ciency. The duration of an event is associated with its speed of movement and the size of the system causing the event along the direction of system movement. This leads naturally to a consideration of the meteorological processes by which these basic ingredients are brought together. A description of those processes and of the types of heavy precipitation±producing storms suggests some of the variety of ways in which heavy precipitation occurs. Since the right mixture of these ingredients can be found in a wide variety of synoptic and mesoscale situations, it is necessary to know which of the ingredients is critical in any given case. By knowing which of the ingredients is most important in any given case, forecasters can concentrate on recognition of the developing heavy precipitation potential as mete- orological processes operate. This also helps with the recognition of heavy rain events as they occur, a chal- lenging problem if the potential for such events has not been anticipated. Three brief case examples are presented to illustrate the procedure as it might be applied in operations. The cases are geographically diverse and even illustrate how a nonconvective heavy precipitation event ®ts within this methodology. The concept of ingredients-based forecasting is discussed as it might apply to a broader spectrum of forecast events than just ¯ash ¯ood forecasting. 1. Introduction use within the basin, and so on. Thus, a ¯ash ¯ood event is the concatenation of a meteorological event Flash ¯ooding has become the convective storm± with a particular hydrological situation. We are not pre- related event annually producing the most fatalities. pared to treat the hydrological aspects of the ¯ash ¯ood Whereas the system for reducing casualties from tor- problem in this paper, but we are by no means implying nadoes, including not only forecasts and warnings but their lack of relevance. also public preparedness, has improved steadily since As noted by Spiegler (1970), albeit in a different the 1950s and continues to improve, the comparable context, quantitative precipitation forecasting (QPF) is system for ¯ash ¯oods has experienced less progress. a ``formidable challenge.'' Rainfall, per se, is a quite A major challenge associated with ¯ash ¯ooding is the ordinary event, which is why it can be dif®cult to rouse quantitative character of the forecast: the task is not just public concern when rainfall becomes life threatening. to forecast the occurrence of an event, which is dif®cult The public has no dif®culty becoming concerned about enough by itself, but to anticipate the magnitude of the the threat associated with extraordinary weather events event. It is the amount of the precipitation that trans- such as tornadoes, but rain is both common and benign forms an otherwise ordinary rainfall into an extraordi- in the vast majority of circumstances. The fact that QPF nary, life-threatening situation. This challenge is ex- is dif®cult to do [see Mostek and Junker (1989) and acerbated by the interaction of the meteorology with Olson et al. (1995) for some QPF veri®cation results] hydrology. A given rainfall event's chances to produce makes the task that much more challenging; forecast a ¯ash ¯ood are dramatically affected by such factors credibility is certainly part of the problem. Even if as antecedent precipitation, the size of the drainage ba- we could do QPF with perfect skill, rousing the public sin, the topography of the basin, the amount of urban to recognition of the threat might continue to be a problem. Many operational studies associated with QPF are local or regional in scope (e.g., Belville and Johnson Corresponding author address: Dr. Charles A. Doswell III, Na- 1982). Moreover, such studies typically are empirical, tional Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069. in that they are based heavily on statistical associations E-mail: [email protected] between candidate precipitation predictors and precip- /3q06 0229 Mp 560 Tuesday Nov 12 10:58 AM AMS: Forecasting (December 96) 0229 DECEMBER 1996 DOSWELL 561 itation (e.g., Charba 1990), without establishing a ¯oods of 1993 clearly were due to the persistence of physical connection between predictor and predictand. rainfall over many weeks, but there were ¯ash ¯oods We want to provide forecasters with a basic framework with quite high rainfall rates embedded within the sum- for understanding the occurrence of heavy precipitation mer events of 1993. Flash ¯oods caused many of the that is neither limited in geographical application nor deaths during the summer of 1993; ¯ash ¯oods, of based on statistical relationships. Instead, we wish to course, are the main concern within this paper. develop a physical basis for understanding why heavy We have not provided quantitative thresholds for precipitation occurs that is not region speci®c and is what we consider to be ``high'' or ``extremely high'' not prone to obsolescence through advances in science rainfall rates, nor have we done so for ``long'' or ``ex- and/or technology. In fact, when the basis is properly tremely long'' durations. Thresholds can be intellectual constructed, it permits an easy and obvious integration traps for the unwary and what constitutes an important of new scienti®c concepts. We believe that a QPF threshold in one hydrometeorological situation may be scheme using an ``ingredients'' basis can be improved quite unimportant in another, as we shall illustrate be- and re®ned through advances in scienti®c understand- low. Broadly speaking, moderately high rainfall rates ing and technological tools, but the basis itself should begin at about 25 mm (Çone in.) h 01 , and moderately remain essentially unchanged, barring perhaps a true long durations begin at about 1 h, but these should be revolution in our understanding (a pervasive ``para- considered only as the crudest of guidelines. digm change''). Accordingly, in section 2, we develop what we be- 2) INGREDIENTS FOR HIGH PRECIPITATION RATE lieve to be such an ingredients-oriented basis for pre- dicting heavy precipitation. In section 3, we will pro- With this simple ``law'' in mind, one key issue is to vide an overview of the meteorological processes as- consider how heavy precipitation rates occur: from a sociated with bringing these ingredients together, synoptic viewpoint, precipitation is produced by lifting primarily in midlatitudes. The same ingredients are as- moist air to condensation. The instantaneous rainfall sociated with tropical occurrences of heavy precipita- rate at a particular point, R, is assumed to be propor- tion, but the processes by which they are brought to- tional to the magnitude of the vertical moisture ¯ux, gether may be different in important ways. Section 4 wq, where w is the ascent rate and q is the mixing ratio then provides three case examples that serve to illus- of the rising air.2 This means rising air should have a trate the ideas developed in sections 2 and 3, and sec- substantial water vapor content and a rapid ascent rate tion 5 offers a summary and discussion. if a signi®cant precipitation rate is to develop. The ver- tical moisture ¯ux can be related to the condensation 2. Ingredients for ¯ash ¯oods rate, which in turn is the ultimate source for precipi- tation. Of course, not all the water vapor ¯owing into a. Ingredients for heavy precipitation a cloud falls out as precipitation. This naturally brings up the subject of precipitation ef®ciency. The precipi- 1) A SIMPLE CONCEPT OF HEAVY PRECIPITATION tation ef®ciency, E, is the coef®cient of proportionality There is an almost absurdly simple concept of how relating rainfall rate to input water ¯ux, so that heavy precipitation comes about that by its very sim- R Å Ewq. plicity makes the issues leading to heavy precipitation quite clear. It takes the form of a simple statement (at- Precipitation ef®ciency is de®ned as the ratio of the tributable to C. F. Chappell) of quantitative precipita- mass of water falling as precipitation, mp , to the in¯ux tion forecasting: the heaviest precipitation occurs of water vapor mass into the cloud, mi , such that E where the rainfall rate is the highest for the longest Å mp /mi . The details of this de®nition are given in the time. That is, at any point on the earth, 1 if RV is the appendix. Figure 1 illustrates this process schemati- average rainfall rate and D is the duration of the rain- cally to show that precipitation ef®ciency is most log- fall, then the total precipitation produced, P, is simply ically understood as a time average over the history of a precipitation-producing weather system. If calculated P Å RDU . at any particular instant, precipitation ef®ciency might Flash ¯ood events arise from high to extremely high be zero (as when no rainfall is occurring early in the rainfall rates, whereas river ¯ood events are associated life cycle of the system) or it might be in®nite (as when with rainfall events over days and perhaps months. The infamous northern Mississippi and Missouri River 2 Note that the instantaneous ¯ux of water vapor into the thunder- storm is not directly equal to the precipitation rate.
Recommended publications
  • Assessment of Antecedent Moisture Condition on Flood Frequency An
    Journal of Hydrology: Regional Studies 26 (2019) 100629 Contents lists available at ScienceDirect Journal of Hydrology: Regional Studies journal homepage: www.elsevier.com/locate/ejrh Assessment of antecedent moisture condition on flood frequency: An experimental study in Napa River Basin, CA T ⁎ Jungho Kima,b, , Lynn Johnsona,b, Rob Cifellib, Andrea Thorstensenc, V. Chandrasekara a Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA b NOAA Earth System Research Laboratory, Physical Sciences Division, Boulder, CO, USA c NOAA National Weather Service, North Central River Forecast Center, USA ARTICLE INFO ABSTRACT Keywords: Study region: This study region is the Napa River basin in California whose antecedent soil Flood frequency moisture states and precipitation magnitudes are primary drivers to occur extreme floods. Antecedent moisture condition Study focus: This study assessed the influence of antecedent moisture condition on flood fre- Precipitation frequency quency, based on an experimental application scheme and pre-processing. For this purpose, T- T-year flood simulation year flood simulations were conducted using a distributed hydrologic model. Distributed pre- Distributed hydrologic model cipitation patterns which have an amount of precipitation corresponding to a specific T-year Radar-based precipitation data return period were generated by representative radar-based precipitation fields and precipitation frequency analysis. Dry, normal, and wet of antecedent moisture condition were applied to each T-year flood simulation to reflect variable initial soil moisture states. New hydrological insights for the region: The relationship among flood frequency, antecedent moisture condition, and precipitation frequency was derived for a specific target storm event. For normal antecedent moisture states, the relation showed that T-year precipitation could generate floods having return intervals nearly identical to those derived using gage records.
    [Show full text]
  • Data Assimilation for Rainfall-Runoff Prediction Based on Coupled Atmospheric-Hydrologic Systems with Variable Complexity
    remote sensing Article Data Assimilation for Rainfall-Runoff Prediction Based on Coupled Atmospheric-Hydrologic Systems with Variable Complexity Wei Wang 1,2, Jia Liu 1,*, Chuanzhe Li 1, Yuchen Liu 1 and Fuliang Yu 1 1 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; [email protected] (W.W.); [email protected] (C.L.); [email protected] (Y.L.); yufl@iwhr.com (F.Y.) 2 College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China * Correspondence: [email protected]; Tel.: +86-150-1044-3860 Abstract: The data assimilation technique is an effective method for reducing initial condition errors in numerical weather prediction (NWP) models. This paper evaluated the potential of the weather research and forecasting (WRF) model and its three-dimensional data assimilation (3DVar) module in improving the accuracy of rainfall-runoff prediction through coupled atmospheric-hydrologic systems. The WRF model with the assimilation of radar reflectivity and conventional surface and upper-air observations provided the improved initial and boundary conditions for the hydrological process; subsequently, three atmospheric-hydrological systems with variable complexity were estab- lished by coupling WRF with a lumped, a grid-based Hebei model, and the WRF-Hydro modeling system. Four storm events with different spatial and temporal rainfall distribution from mountainous catchments of northern China were chosen as the study objects. The assimilation results showed a general improvement in the accuracy of rainfall accumulation, with low root mean square error and Citation: Wang, W.; Liu, J.; Li, C.; high correlation coefficients compared to the results without assimilation.
    [Show full text]
  • Quantitative Flood Forecasting on Small- and Medium-Sized Basins: a Probabilistic Approach for Operational Purposes
    1432 JOURNAL OF HYDROMETEOROLOGY VOLUME 12 Quantitative Flood Forecasting on Small- and Medium-Sized Basins: A Probabilistic Approach for Operational Purposes FRANCESCO SILVESTRO AND NICOLA REBORA CIMA Research Foundation, Savona, Italy LUCA FERRARIS CIMA Research Foundation, Savona, and DIST, University of Genoa, Genoa, Italy (Manuscript received 5 November 2010, in final form 22 June 2011) ABSTRACT The forecast of rainfall-driven floods is one of the main themes of analysis in hydrometeorology and a critical issue for civil protection systems. This work describes a complete hydrometeorological forecast system for small- and medium-sized basins and has been designed for operational applications. In this case, because of the size of the target catchments and to properly account for uncertainty sources in the prediction chain, the authors apply a probabilistic framework. This approach allows for delivering a prediction of streamflow that is valuable for decision makers and that uses as input quantitative precipitation forecasts (QPF) issued by a regional center that is in charge of hydrometeorological predictions in the Liguria region of Italy. This kind of forecast is derived from different meteorological models and from the experience of meteorologists. Single-catchment and multicatchment approaches have been operationally implemented and studied. The hydrometeorological forecasting chain has been applied to a series of case studies with en- couraging results. The implemented system makes effective use of the quantitative information content of rainfall forecasts issued by expert meteorologists for flood-alert purposes. 1. Introduction that it is not possible to tackle the hydrological forecasting problem in a deterministic way (e.g., Krzysztofowicz 2001), Over the last few decades, much effort has been made and consequently they propose probabilistic approaches in the field of flood prediction.
    [Show full text]
  • A Brief Review of Flood Forecasting Techniques and Their Applications
    International Journal of River Basin Management ISSN: 1571-5124 (Print) 1814-2060 (Online) Journal homepage: http://www.tandfonline.com/loi/trbm20 A Brief review of flood forecasting techniques and their applications Sharad Kumar Jain, Pankaj Mani, Sanjay K. Jain, Pavithra Prakash, Vijay P. Singh, Desiree Tullos, Sanjay Kumar, S. P. Agarwal & A. P. Dimri To cite this article: Sharad Kumar Jain, Pankaj Mani, Sanjay K. Jain, Pavithra Prakash, Vijay P. Singh, Desiree Tullos, Sanjay Kumar, S. P. Agarwal & A. P. Dimri (2018): A Brief review of flood forecasting techniques and their applications, International Journal of River Basin Management, DOI: 10.1080/15715124.2017.1411920 To link to this article: https://doi.org/10.1080/15715124.2017.1411920 Accepted author version posted online: 07 Dec 2017. Published online: 22 Jan 2018. Submit your article to this journal Article views: 21 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=trbm20 INTL. J. RIVER BASIN MANAGEMENT, 2018 https://doi.org/10.1080/15715124.2017.1411920 A Brief review of flood forecasting techniques and their applications Sharad Kumar Jaina, Pankaj Manib, Sanjay K. Jaina, Pavithra Prakashc, Vijay P. Singhd, Desiree Tullose, Sanjay Kumara, S. P. Agarwalf and A. P. Dimrig aNational Institute of Hydrology, Roorkee, India; bNational Institute of Hydrology, Regional Center, Patna, India; cPostdoctoral Researcher, University of California, Davis, USA; dTexas A and M University, College Station, Texas, USA; eOregon State University, Corvallis, OR, USA; fIndian Institute of Remote Sensing, Dehradun, India; gJawaharlal Nehru University, New Delhi, India ABSTRACT ARTICLE HISTORY Flood forecasting (FF) is one the most challenging and difficult problems in hydrology.
    [Show full text]
  • Texas Flood Forecasting
    Texas flood forecasting A test bed for the National Flood Interoperability Experiment Produce high spatial resolution (1 mile2) flood forecasting products: 1. Local flood emergency planning and response 2. Web services for information sharing National Water Model based on: 1. Radar precipitation 2. Detailed river hydraulic modeling 3. Flood inundation mapping Funding support from UT system Collaboration among UT system institutions The project lead is Dr. David Maidment (maidment@utexasedu) Presented by May Yuan ([email protected]) NGAC Meeting, September 28, 2016 This presentation is based on a briefing to Texas Association of Regional Councils Texas Flood Response Study by Harry R. Evans [email protected] Dr. David K. Arctur [email protected] Dr. David R. Maidment [email protected] Center for Research in Water Resources University of Texas at Austin Briefing for TARC, 9-1-1 Coordinators Association, 21 September 2016 Acknowledgements: Austin Fire Department, COA Watershed Protection, e-911 Coordinators, CSEC National Weather Service, Texas Division of Emergency Management http://kxan.com/2016/05/03/new-technology-hopes-to-predict-flash-floods-before-it-happens/ http://kxan.com/2016/05/03/new-technology-hopes-to-predict-flash-floods-before-it-happens/ Storm Rainfall during 2015 Memorial Day Weekend http://gis.ncdc.noaa.gov/map/viewer/#app=cdo&cfg=radar&theme=radar&display=nexrad Sunday, May 24, noon Where are the corresponding flood maps on the ground? Saturday,Sunday,Saturday,Saturday,Sunday,Sunday, MayMay MayMay May May
    [Show full text]
  • Downloaded 09/27/21 11:47 PM UTC 25.2 METEOROLOGICAL MONOGRAPHS VOLUME 59
    CHAPTER 25 PETERS-LIDARD ET AL. 25.1 Chapter 25 100 Years of Progress in Hydrology a b c c CHRISTA D. PETERS-LIDARD, FAISAL HOSSAIN, L. RUBY LEUNG, NATE MCDOWELL, d e f g MATTHEW RODELL, FRANCISCO J. TAPIADOR, F. JOE TURK, AND ANDREW WOOD a Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland b Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington c Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington d Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland e Department of Environmental Sciences, Institute of Environmental Sciences, University of Castilla–La Mancha, Toledo, Spain f Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California g Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado ABSTRACT The focus of this chapter is progress in hydrology for the last 100 years. During this period, we have seen a marked transition from practical engineering hydrology to fundamental developments in hydrologic science, including contributions to Earth system science. The first three sections in this chapter review advances in theory, observations, and hydrologic prediction. Building on this foundation, the growth of global hydrology, land–atmosphere interactions and coupling, ecohydrology, and water management are discussed, as well as a brief summary of emerging challenges and future directions. Although the review attempts
    [Show full text]
  • Flood4castrtf: a Real-Time Urban Flood Forecasting Model
    sustainability Article Flood4castRTF: A Real-Time Urban Flood Forecasting Model Michel Craninx 1,* , Koen Hilgersom 2 , Jef Dams 1 , Guido Vaes 2, Thomas Danckaert 1 and Jan Bronders 1 1 Environmental Modelling Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; [email protected] (J.D.); [email protected] (T.D.); [email protected] (J.B.) 2 Hydroscan NV, 3010 Leuven, Belgium; [email protected] (K.H.); [email protected] (G.V.) * Correspondence: [email protected] Abstract: Worldwide, climate change increases the frequency and intensity of heavy rainstorms. The increasing severity of consequent floods has major socio-economic impacts, especially in urban envi- ronments. Urban flood modelling supports the assessment of these impacts, both in current climate conditions and for forecasted climate change scenarios. Over the past decade, model frameworks that allow flood modelling in real-time have been gaining widespread popularity. Flood4castRTF is a novel urban flood model that applies a grid-based approach at a modelling scale coarser than most recent detailed physically based models. Automatic model set-up based on commonly avail- able GIS data facilitates quick model building in contrast with detailed physically based models. The coarser grid scale applied in Flood4castRTF pursues a better agreement with the resolution of the forcing rainfall data and allows speeding up of the calculations. The modelling approach conceptualises cell-to-cell interactions while at the same time maintaining relevant and interpretable physical descriptions of flow drivers and resistances. A case study comparison of Flood4castRTF results with flood results from two detailed models shows that detailed models do not necessarily outperform the accuracy of Flood4castRTF with flooded areas in-between the two detailed models.
    [Show full text]
  • Hydrological Forecasts
    Practice Requirements Forecasts Requirements Hydrological Forecasts Forecasts Forecasts Hydrological Forecasts and Best Practice Practice Requirements Requirements Hydrological Best Practice Hydrological Best Practice ForecastsRequirements Forecasts Best Practice Forecasts Requirements Best Forecasts Requirements Best Hydrological Requirements and Hydrological Forecasts and Hydrological Best Hydrological Forecasts Best Best Practice Practice Forecasts Best Practice Hydrological Practice Best Requirements Forecasts Hydrological Forecasts Forecasts Best Requirements Best PracticeHydrological and Practice Forecasts Best Practice Forecasts Best Practice Requirements Hydrological Best Hydrological Practice Best Training Module Flood Disaster Risk Management- Hydrological Forecasts: Requirements and Best Practices A. Vogelbacher PracticePractice Requirements Forecasts Requirements Hydrological Forecasts Forecasts Forecasts Hydrological Forecasts and Best Practice Practice Requirements Requirements Hydrological Best Practice Hydrological Best Practice ForecastsRequirements Forecasts Best Practice Forecasts Requirements Best Forecasts Requirements Best Hydrological Requirements and Hydrological Forecasts and Hydrological Best Hydrological Forecasts Best Best Practice Practice Forecasts Best Practice Training Module Hydrological Practice Best Requirements Forecasts Requirements Forecasts HydrologicalFlood Disaster Forecasts Risk Management- Best Best PracticeHydrologicalHydrological Forecasts: Requirements andand Practice Forecasts BestBest Practice
    [Show full text]
  • Manual on Flood Forecasting and Warning
    Quality ManageMeNt Framework g N i MaNual on For more information, please contact: warn World Meteorological Organization Flood Forecasting and Communications and Public Affairs Office g N Tel.: +41 (0) 22 730 83 14/15 – Fax: +41 (0) 22 730 80 27 and Warning sti E-mail: [email protected] ca e or Hydrology and Water Resources Branch f Climate and Water Department lood Tel.: +41 (0) 22 730 84 79 – Fax: +41 (0) 22 730 80 43 E-mail: [email protected] 7 bis, avenue de la Paix – P.O. Box 2300 – CH-1211 Geneva 2 – Switzerland W_102107 l MANUAL ON f www.wmo.int P-C WMO-No. 1072 Manual on Flood Forecasting and Warning WMO-No. 1072 2011 edition WMO-No. 1072 © World Meteorological Organization, 2011 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box No. 2300 Fax: +41 (0) 22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] ISBN 978-92-63-11072-5 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Nhdplus and the National Water Model
    NHDPlus and the National Water Model David R. Maidment Center for Research in Water Resources University of Texas at Austin Edward P. Clark Office of Water Prediction National Weather Service AWRA GIS in Water Resources Specialty Conference, Sacramento CA, 11 July 2016 Acknowledgements: UT Austin Colleagues and Students, National Weather Service, NCAR City of Austin, ESRI, Kisters, Microsoft Research, Yan Liu, David Tarboton This research is supported in part by NSF EarthCube grant 1343785 NHDPlus Version 2 Geospatial foundation for a national water data infrastructure NHDPlus 2.67 million reach catchments in US average area 3 km2 reach length 2 km National Elevation Dataset Watershed Boundary Dataset National Hydrography Dataset National Land Cover Dataset The Opportunity New National Water Center established on the Tuscaloosa campus of University of Alabama by the National Weather Service and federal agency partners Has a mission to assess hydrology in a new way at the continental scale for the United States National Water Center FY15 Centralized Water Forecasting • Centralized Data Archive – all RFC data • Modeling Evaluation Service • RFC and NWC modeling and forecasts • Modeling Testbed – new NWC capabilities • Centralized Water Forecasting Demonstration Continental Scale Flood Forecasting Meteorology Mapping and Impacts 2.7 million catchments Hydrology Hydraulics Combining Grid and Vector Modeling Forcing: Runoff and reservoir releases NHDPlus Catchment Flow Legend Dam Junction Catchment National Water Prediction Model Configurations Four Forecasting Horizons for National Water Model Analysis & Short-Range Medium Range Long Range Assimilation ‘Flood Prediction’ ‘Flow Prediction’ ‘Water Resources’ Cycling Frequency Hourly 3-Hourly Daily ~Daily (x16) Forecast Duration - 3 hrs 0-2 days 0-10 days 0-30 days Spatial Discretization & Routing 1km/250m/NHDPlus 1km/250m/NHDPlus 1km/250m/NHDPlus 1 km/catchment Reach Reach Reach /NHDPlus Reach Meteorological Forcing MRMS blend/ Downscaled HRRR Short-range + Downscaled & HRRR-NAM bkgnd.
    [Show full text]
  • Assessing the Potential for Real-Time Urban Flood Forecasting Based on a Worldwide Survey on Data Availability
    ORE Open Research Exeter TITLE Assessing the potential for real-time urban flood forecasting based on a worldwide survey on data availability AUTHORS Rene, Jeanne-Rose; Djordjevic, Slobodan; Butler, David; et al. JOURNAL Urban Water Journal DEPOSITED IN ORE 02 October 2014 This version available at http://hdl.handle.net/10871/15669 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Assessing the potential for real-time urban flood forecasting based on a worldwide survey on data availability Jeanne-Rose René a,b,*, Slobodan Djordjević a, David Butler a, Henrik Madsen b, Ole Mark b a Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, North Park Road, Exeter, EX4 4QF, United Kingdom b DHI, Agern Allé 5, Hørsholm, 2970, Denmark *corresponding author: [email protected] or [email protected] [email protected];[email protected];[email protected];[email protected] 1 Assessing the potential for real-time urban flood forecasting based on a worldwide survey on data availability This paper explores the potential for real-time urban flood forecasting based on literature and the results from an online worldwide survey with 176 participants. The survey investigated the use of data in urban flood management as well as the perceived challenges in data acquisition and its principal constraints in urban flood modelling.
    [Show full text]
  • Development Team
    Paper No: 4 Environmental Geology Module: 11 Streams and Flooding Development Team Prof. R.K. Kohli Principal Investigator & Prof. V.K. Garg & Prof. Ashok Dhawan Co- Principal Investigator Central University of Punjab, Bathinda Prof. R. Baskar, , Guru Jambheshwar University of Paper Coordinator Science and Technology, Hisar Dr. Renu Lata G. B. Pant National Institute of Himalayan Environment Content Writer and Sustainable Development (GBPNIHESD), Kosi- Katarmal, Almora Dr. Sushmitha Baskar, IGNOU, New Delhi Content Reviewer 1 Anchor Institute Central University of Punjab Environmental Geology Environmental Sciences Streams and Flooding Description of Module Subject Name Environmental Sciences Paper Name Environmental Geology Module Streams and Flooding Name/Title Module Id EVS/EG-IV/11 Pre-requisites Objectives Explain the hydrological cycle and its relevance to streams Explain different types of streams Describe a drainage basin and explain the origins of different types of drainage patterns Explain the flood hazards (causes, effects & management) in India Describe some of the important historical floods in India Explain some of the steps that we can take to limit the damage from flooding Keywords Streams and floods, topography, impacts, consequences, flood control, flood management, action plan, policies. 2 Environmental Geology Environmental Sciences Streams and Flooding 1.0 Title : STREAMS AND FLOODING 2.0 Objectives Explain the hydrological cycle and its relevance to streams Explain different types of streams Describe a drainage basin and explain the origins of different types of drainage patterns Explain the flood hazards (causes, effects & management) in India Describe some of the important historical floods in India Explain some of the steps that we can take to limit the damage from flooding 2.1 Introduction Streams are the most important agents of erosion and transportation of sediments on Earth’s surface.
    [Show full text]