First Steps Towards an Intensional Semantics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Semantics and Pragmatics
Semantics and Pragmatics Christopher Gauker Semantics deals with the literal meaning of sentences. Pragmatics deals with what speakers mean by their utterances of sentences over and above what those sentences literally mean. However, it is not always clear where to draw the line. Natural languages contain many expressions that may be thought of both as contributing to literal meaning and as devices by which speakers signal what they mean. After characterizing the aims of semantics and pragmatics, this chapter will set out the issues concerning such devices and will propose a way of dividing the labor between semantics and pragmatics. Disagreements about the purview of semantics and pragmatics often concern expressions of which we may say that their interpretation somehow depends on the context in which they are used. Thus: • The interpretation of a sentence containing a demonstrative, as in “This is nice”, depends on a contextually-determined reference of the demonstrative. • The interpretation of a quantified sentence, such as “Everyone is present”, depends on a contextually-determined domain of discourse. • The interpretation of a sentence containing a gradable adjective, as in “Dumbo is small”, depends on a contextually-determined standard (Kennedy 2007). • The interpretation of a sentence containing an incomplete predicate, as in “Tipper is ready”, may depend on a contextually-determined completion. Semantics and Pragmatics 8/4/10 Page 2 • The interpretation of a sentence containing a discourse particle such as “too”, as in “Dennis is having dinner in London tonight too”, may depend on a contextually determined set of background propositions (Gauker 2008a). • The interpretation of a sentence employing metonymy, such as “The ham sandwich wants his check”, depends on a contextually-determined relation of reference-shifting. -
Reference and Sense
REFERENCE AND SENSE y two distinct ways of talking about the meaning of words y tlkitalking of SENSE=deali ng with relationshippggs inside language y talking of REFERENCE=dealing with reltilations hips bbtetween l. and the world y by means of reference a speaker indicates which things (including persons) are being talked about ege.g. My son is in the beech tree. II identifies persons identifies things y REFERENCE-relationship between the Enggplish expression ‘this p pgage’ and the thing you can hold between your finger and thumb (part of the world) y your left ear is the REFERENT of the phrase ‘your left ear’ while REFERENCE is the relationship between parts of a l. and things outside the l. y The same expression can be used to refer to different things- there are as many potential referents for the phrase ‘your left ear’ as there are pppeople in the world with left ears Many expressions can have VARIABLE REFERENCE y There are cases of expressions which in normal everyday conversation never refer to different things, i.e. which in most everyday situations that one can envisage have CONSTANT REFERENCE. y However, there is very little constancy of reference in l. Almost all of the fixing of reference comes from the context in which expressions are used. y Two different expressions can have the same referent class ica l example: ‘the MiMorning St’Star’ and ‘the Evening Star’ to refer to the planet Venus y SENSE of an expression is its place in a system of semantic relati onshi ps wit h other expressions in the l. -
The Meaning of Language
01:615:201 Introduction to Linguistic Theory Adam Szczegielniak The Meaning of Language Copyright in part: Cengage learning The Meaning of Language • When you know a language you know: • When a word is meaningful or meaningless, when a word has two meanings, when two words have the same meaning, and what words refer to (in the real world or imagination) • When a sentence is meaningful or meaningless, when a sentence has two meanings, when two sentences have the same meaning, and whether a sentence is true or false (the truth conditions of the sentence) • Semantics is the study of the meaning of morphemes, words, phrases, and sentences – Lexical semantics: the meaning of words and the relationships among words – Phrasal or sentential semantics: the meaning of syntactic units larger than one word Truth • Compositional semantics: formulating semantic rules that build the meaning of a sentence based on the meaning of the words and how they combine – Also known as truth-conditional semantics because the speaker’ s knowledge of truth conditions is central Truth • If you know the meaning of a sentence, you can determine under what conditions it is true or false – You don’ t need to know whether or not a sentence is true or false to understand it, so knowing the meaning of a sentence means knowing under what circumstances it would be true or false • Most sentences are true or false depending on the situation – But some sentences are always true (tautologies) – And some are always false (contradictions) Entailment and Related Notions • Entailment: one sentence entails another if whenever the first sentence is true the second one must be true also Jack swims beautifully. -
Two-Dimensionalism: Semantics and Metasemantics
Two-Dimensionalism: Semantics and Metasemantics YEUNG, \y,ang -C-hun ...:' . '",~ ... ~ .. A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Philosophy In Philosophy The Chinese University of Hong Kong January 2010 Abstract of thesis entitled: Two-Dimensionalism: Semantics and Metasemantics Submitted by YEUNG, Wang Chun for the degree of Master of Philosophy at the Chinese University of Hong Kong in July 2009 This ,thesis investigates problems surrounding the lively debate about how Kripke's examples of necessary a posteriori truths and contingent a priori truths should be explained. Two-dimensionalism is a recent development that offers a non-reductive analysis of such truths. The semantic interpretation of two-dimensionalism, proposed by Jackson and Chalmers, has certain 'descriptive' elements, which can be articulated in terms of the following three claims: (a) names and natural kind terms are reference-fixed by some associated properties, (b) these properties are known a priori by every competent speaker, and (c) these properties reflect the cognitive significance of sentences containing such terms. In this thesis, I argue against two arguments directed at such 'descriptive' elements, namely, The Argument from Ignorance and Error ('AlE'), and The Argument from Variability ('AV'). I thereby suggest that reference-fixing properties belong to the semantics of names and natural kind terms, and not to their metasemantics. Chapter 1 is a survey of some central notions related to the debate between descriptivism and direct reference theory, e.g. sense, reference, and rigidity. Chapter 2 outlines the two-dimensional approach and introduces the va~ieties of interpretations 11 of the two-dimensional framework. -
Denotational Semantics
Denotational Semantics CS 6520, Spring 2006 1 Denotations So far in class, we have studied operational semantics in depth. In operational semantics, we define a language by describing the way that it behaves. In a sense, no attempt is made to attach a “meaning” to terms, outside the way that they are evaluated. For example, the symbol ’elephant doesn’t mean anything in particular within the language; it’s up to a programmer to mentally associate meaning to the symbol while defining a program useful for zookeeppers. Similarly, the definition of a sort function has no inherent meaning in the operational view outside of a particular program. Nevertheless, the programmer knows that sort manipulates lists in a useful way: it makes animals in a list easier for a zookeeper to find. In denotational semantics, we define a language by assigning a mathematical meaning to functions; i.e., we say that each expression denotes a particular mathematical object. We might say, for example, that a sort implementation denotes the mathematical sort function, which has certain properties independent of the programming language used to implement it. In other words, operational semantics defines evaluation by sourceExpression1 −→ sourceExpression2 whereas denotational semantics defines evaluation by means means sourceExpression1 → mathematicalEntity1 = mathematicalEntity2 ← sourceExpression2 One advantage of the denotational approach is that we can exploit existing theories by mapping source expressions to mathematical objects in the theory. The denotation of expressions in a language is typically defined using a structurally-recursive definition over expressions. By convention, if e is a source expression, then [[e]] means “the denotation of e”, or “the mathematical object represented by e”. -
Scope Ambiguity in Syntax and Semantics
Scope Ambiguity in Syntax and Semantics Ling324 Reading: Meaning and Grammar, pg. 142-157 Is Scope Ambiguity Semantically Real? (1) Everyone loves someone. a. Wide scope reading of universal quantifier: ∀x[person(x) →∃y[person(y) ∧ love(x,y)]] b. Wide scope reading of existential quantifier: ∃y[person(y) ∧∀x[person(x) → love(x,y)]] 1 Could one semantic representation handle both the readings? • ∃y∀x reading entails ∀x∃y reading. ∀x∃y describes a more general situation where everyone has someone who s/he loves, and ∃y∀x describes a more specific situation where everyone loves the same person. • Then, couldn’t we say that Everyone loves someone is associated with the semantic representation that describes the more general reading, and the more specific reading obtains under an appropriate context? That is, couldn’t we say that Everyone loves someone is not semantically ambiguous, and its only semantic representation is the following? ∀x[person(x) →∃y[person(y) ∧ love(x,y)]] • After all, this semantic representation reflects the syntax: In syntax, everyone c-commands someone. In semantics, everyone scopes over someone. 2 Arguments for Real Scope Ambiguity • The semantic representation with the scope of quantifiers reflecting the order in which quantifiers occur in a sentence does not always represent the most general reading. (2) a. There was a name tag near every plate. b. A guard is standing in front of every gate. c. A student guide took every visitor to two museums. • Could we stipulate that when interpreting a sentence, no matter which order the quantifiers occur, always assign wide scope to every and narrow scope to some, two, etc.? 3 Arguments for Real Scope Ambiguity (cont.) • But in a negative sentence, ¬∀x∃y reading entails ¬∃y∀x reading. -
Denotation and Connotation in Hillary Clinton and Donald Trump: Discourse Analysis of the 2016 Presidential Debates
UNIVERSIDAD PONTIFICIA COMILLAS Facultad de Ciencias Humanas y Sociales Degree in Translation and Interpreting Final Degree Project Denotation and Connotation in Hillary Clinton and Donald Trump: Discourse analysis of the 2016 presidential debates Student: Markel Lezana Escribano Director: Dr Susan Jeffrey Campbell Madrid, 8th June 2017 Index List of Tables…………………………………………………………………………….i 1. Introduction .............................................................................................................. 3 2. Theoretical Framework............................................................................................. 5 2.1 Semantics ................................................................................................................ 5 2.2 Discourse Analysis ................................................................................................. 9 2.2.1 Functional Discourse Analysis ........................................................................ 9 2.2.2 Critical Discourse Analysis ........................................................................... 10 2.2.3 Political Discourse Analysis .......................................................................... 10 2.3 Pragmatics ............................................................................................................ 10 2.4 Tools of Analysis .................................................................................................. 11 2.4.1 Functions of Language ................................................................................. -
Invitation to Semantics
Varieties of meaning http://www-rohan.sdsu.edu/~gawron/semantics Jean Mark Gawron San Diego State University, Department of Linguistics 2012-01-25 Ling 525 Jean Mark Gawron ( SDSU ) Gawron: Semantics intro 2012-01-25 Ling 525 1 / 59 Outline 1 Semantics and pragmatics 2 Lexical vs. structural meaning 3 Sense and denotation 4 Determining denotations 5 Sentence denotations 6 Intensions and possible worlds 7 Conclusion Jean Mark Gawron ( SDSU ) Gawron: Semantics intro 2012-01-25 Ling 525 2 / 59 Outline 1 Semantics and pragmatics 2 Lexical vs. structural meaning 3 Sense and denotation 4 Determining denotations 5 Sentence denotations 6 Intensions and possible worlds 7 Conclusion Jean Mark Gawron ( SDSU ) Gawron: Semantics intro 2012-01-25 Ling 525 3 / 59 What is semantics? Definition Semantics Semantics is the study of the meaning of linguistic forms, what the words and the syntax contribute to what is communicated. Jean Mark Gawron ( SDSU ) Gawron: Semantics intro 2012-01-25 Ling 525 4 / 59 Literal meaning We call the meaning of a linguistic form its literal meaning. Sentence Literal meaning I forgot the paper Past forget(I, the paper) At some time in the past, someone forgets something [forget( , )] The speaker is the someone. The paper is the something. Each part of the sentence contributes something to this literal meaning. I the speaker of the utterance the paper an object appropriately describable as a paper forget the relation that holds between an indi- vidual and something they forget Past Tense (ed) the relation holds in the past Jean Mark Gawron ( SDSU ) Gawron: Semantics intro 2012-01-25 Ling 525 5 / 59 Semantics and pragmatics Literal meaning excludes a lot of what might actually be communicated on a particular occasion of utterance. -
How to Define Theoretical Terms Author(S): David Lewis Reviewed Work(S): Source: the Journal of Philosophy, Vol
Journal of Philosophy, Inc. How to Define Theoretical Terms Author(s): David Lewis Reviewed work(s): Source: The Journal of Philosophy, Vol. 67, No. 13 (Jul. 9, 1970), pp. 427-446 Published by: Journal of Philosophy, Inc. Stable URL: http://www.jstor.org/stable/2023861 . Accessed: 14/10/2012 20:19 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Journal of Philosophy, Inc. is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Philosophy. http://www.jstor.org THE JOURNAL OF PHILOSOPHY VOLUME LXVII, NO. I3, JULY 9, 19-0 HOW TO DEFINE THEORETICAL TERMS M OST philosophers of science agree that, when a newly proposed scientific theory introduces new terms, we usually cannot define the new terms using only the old terms we understood beforehand. On the contrary, I contend that there is a general method for defining the newly introduced theo- retical terms. Most philosophers of science also agree that, in order to reduce one scientific theory to another, we need to posit bridge laws: new laws, independent of the reducing theory, which serve to identify phenomena described in terms of the reduced theory with phe nomena described in terms of the reducing theory. -
The Etienne Gilson Series 21
The Etienne Gilson Series 21 Remapping Scholasticism by MARCIA L. COLISH 3 March 2000 Pontifical Institute of Mediaeval Studies This lecture and its publication was made possible through the generous bequest of the late Charles J. Sullivan (1914-1999) Note: the author may be contacted at: Department of History Oberlin College Oberlin OH USA 44074 ISSN 0-708-319X ISBN 0-88844-721-3 © 2000 by Pontifical Institute of Mediaeval Studies 59 Queen’s Park Crescent East Toronto, Ontario, Canada M5S 2C4 Printed in Canada nce upon a time there were two competing story-lines for medieval intellectual history, each writing a major role for scholasticism into its script. Although these story-lines were O created independently and reflected different concerns, they sometimes overlapped and gave each other aid and comfort. Both exerted considerable influence on the way historians of medieval speculative thought conceptualized their subject in the first half of the twentieth cen- tury. Both versions of the map drawn by these two sets of cartographers illustrated what Wallace K. Ferguson later described as “the revolt of the medievalists.”1 One was confined largely to the academy and appealed to a wide variety of medievalists, while the other had a somewhat narrower draw and reflected political and confessional, as well as academic, concerns. The first was the anti-Burckhardtian effort to push Renaissance humanism, understood as combining a knowledge and love of the classics with “the discovery of the world and of man,” back into the Middle Ages. The second was inspired by the neo-Thomist revival launched by Pope Leo XIII, and was inhabited almost exclusively by Roman Catholic scholars. -
Frege: “On Sense and Denotation”
Frege: “On Sense and Denotation” TERMIOLOGY • ‘On Sense and Nominatum’ is a quirky translation of ‘ Über Sinn und Bedeutung’. ‘On Sense and Denotation’ is the usual translation. • ‘Sameness’ is misleading in stating the initial puzzle. As Frege’s n.1 makes clear, the puzzle is about identity . THE PUZZLE What is identity? Is it a relation? If it is a relation, what are the relata? Frege considers two possibilities: 1. A relation between objects. 2. A relation between names (signs). (1) leads to a puzzle; (2) is the alternative Frege once preferred, but now rejects. The puzzle is this: if identity is a relation between objects, it must be a relation between a thing and itself . But everything is identical to itself, and so it is trivial to assert that a thing is identical to itself. Hence, every statement of identity should be analytic and knowable a priori . The “cognitive significance” of ‘ a = b ’ would thus turn out to be the same as that of ‘a = a’. In both cases one is asserting, of a single object, that it is identical to itself. Yet, it seems intuitively clear that these statements have different cognitive significance: “… sentences of the form a = b often contain very valuable extensions of our knowledge and cannot always be justified in an a priori manner” (p. 217). METALIGUISTIC SOLUTIO REJECTED In his Begriffschrift (1879), Frege proposed a metalinguistic solution: identity is a relation between signs. ‘ a = b’ thus asserts a relation between the signs ‘ a’ and ‘ b’. Presumably, the relation asserted would be being co-referential . -
Denotational Semantics
Denotational Semantics 8–12 lectures for Part II CST 2010/11 Marcelo Fiore Course web page: http://www.cl.cam.ac.uk/teaching/1011/DenotSem/ 1 Lecture 1 Introduction 2 What is this course about? • General area. Formal methods: Mathematical techniques for the specification, development, and verification of software and hardware systems. • Specific area. Formal semantics: Mathematical theories for ascribing meanings to computer languages. 3 Why do we care? • Rigour. specification of programming languages . justification of program transformations • Insight. generalisations of notions computability . higher-order functions ... data structures 4 • Feedback into language design. continuations . monads • Reasoning principles. Scott induction . Logical relations . Co-induction 5 Styles of formal semantics Operational. Meanings for program phrases defined in terms of the steps of computation they can take during program execution. Axiomatic. Meanings for program phrases defined indirectly via the ax- ioms and rules of some logic of program properties. Denotational. Concerned with giving mathematical models of programming languages. Meanings for program phrases defined abstractly as elements of some suitable mathematical structure. 6 Basic idea of denotational semantics [[−]] Syntax −→ Semantics Recursive program → Partial recursive function Boolean circuit → Boolean function P → [[P ]] Concerns: • Abstract models (i.e. implementation/machine independent). Lectures 2, 3 and 4. • Compositionality. Lectures 5 and 6. • Relationship to computation (e.g. operational semantics). Lectures 7 and 8. 7 Characteristic features of a denotational semantics • Each phrase (= part of a program), P , is given a denotation, [[P ]] — a mathematical object representing the contribution of P to the meaning of any complete program in which it occurs. • The denotation of a phrase is determined just by the denotations of its subphrases (one says that the semantics is compositional).