Deer Sampletext

Total Page:16

File Type:pdf, Size:1020Kb

Deer Sampletext Deer (singular and plural) are habitats around the world. Clearing the ruminant mammals forming open areas within forests to some extent the family Cervidae. The two main may actually benefit deer populations by groups are the Cervinae, including exposing the understory and allowing the muntjac, the elk (wapiti), the fallow the types of grasses, weeds, and herbs deer and the chital, and the Capreolinae, to grow that deer like to eat. including the reindeer (caribou), the roe Additionally, access to adjacent deer and the moose. Female reindeer, croplands may also benefit deer. and male deer of all species (except the However, adequate forest or brush cover Chinese water deer), grow and shed must still be provided for populations to new antlers each year. In this they differ grow and thrive. from permanently horned antelope, Deer are widely distributed, with which are in the same indigenous representatives in all order, Artiodactyla. continents except Antarctica and The musk deer of Asia and water Australia, though Africa has only one chevrotain (or mouse deer) of tropical native deer, the Barbary stag, a African and Asian forests are not usually subspecies of red deer that is confined regarded as true deer and form their to the Atlas Mountains in the northwest own of the continent. However, fallow families: Moschidae and Tragulidae, deer have been introduced to South respectively. Africa. Small species of brocket Deer appear in art deer and pudús of Central and South from Paleolithic cave paintings onwards, America, and muntjacs of Asia generally and they have played a role in occupy dense forests and are less often mythology, religion, and literature seen in open spaces, with the possible throughout history, as well as exception of the Indian muntjac. There in heraldry. Their economic importance are also several species of deer that are includes the use of their meat highly specialized, and live almost as venison, their skins as soft, exclusively in mountains, grasslands, strong buckskin, and their antlers as swamps, and "wet" savannas, or riparian handles for knives. Deer hunting has corridors surrounded by deserts. Some been a popular activity since at least the deer have a circumpolar distribution in Middle Ages, and remains an important both North America and Eurasia. business today. Examples include the caribou that live in Arctic tundra and taiga (boreal forests) Deer live in a variety of biomes, ranging and moose that inhabit taiga and from tundra to the tropical rainforest. adjacent areas. Huemul deer While often associated with forests, (taruca and Chilean huemul) of South many deer are ecotonespecies that live America's Andes fill the ecological in transitional areas between forests and niches of the ibex and wild goat, with thickets (for cover) and prairie and the fawns behaving more like goat kids. savanna (open space). The majority of The highest concentration of large deer species inhabit temperate large deer species in temperate North mixed deciduous forest, mountain America lies in the Canadian Rocky mixed coniferous forest, tropical Mountain and Columbia seasonal/dry forest, and savanna Mountain regions between Alberta and British Columbia where all five North species of deer in the world, with most American deer species (white-tailed species being found in Asia. Europe, in deer, mule deer, caribou, elk, and comparison, has lower diversity in plant moose) can be found. This region has and animal species. However, many several clusters of national parks national parks and protected reserves in including Mount Revelstoke National Europe do have populations of red Park, Glacier National Park deer, roe deer, and fallow deer. These (Canada), Yoho National Park, species have long been associated with and Kootenay National Park on the the continent of Europe, but also British Columbia side, and Banff inhabit Asia Minor, the Caucasus National Park, Jasper National Park, Mountains, and Northwestern Iran. and Glacier National Park (U.S.) on the "European" fallow deer historically lived Alberta and Montana sides. Mountain over much of Europe during the Ice slope habitats vary from moist Ages, but afterwards became restricted coniferous/mixed forested habitats to primarily to the Anatolian Peninsula, in dry subalpine/pine forests with alpine present-day Turkey. meadows higher up. The foothills and Present-day fallow deer river valleys between the mountain populations in Europe are a result of ranges provide a mosaic of cropland and historic man-made introductions of this deciduous parklands. The rare woodland species, first to the Mediterranean caribou have the most restricted range regions of Europe, then eventually to the living at higher altitudes in the subalpine rest of Europe. They were initially park meadows and alpine tundra areas of animals that later escaped and some of the mountain ranges. Elk and reestablished themselves in the wild. mule deer both migrate between the Historically, Europe's deer species alpine meadows and lower coniferous shared their deciduous forest habitat forests and tend to be most common in with other herbivores, such as the this region. Elk also inhabit river valley extinct tarpan (forest horse), bottomlands, which they share with extinct aurochs (forest ox), and the White-tailed deer. The White-tailed deer endangered wisent (European bison). have recently expanded their range Good places to see deer in Europe within the foothills and river valley include the Scottish Highlands, the bottoms of the Canadian Rockies owing Austrian Alps, the wetlands between to conversion of land to cropland and Austria, Hungary, and the Czech the clearing of coniferous forests Republic and some fine National Parks, allowing more deciduous vegetation to including Doñana National Park in Spain, grow up the mountain slopes. They also the Veluwe in the Netherlands, live in the aspen parklands north of the Ardennes in Belgium, Calgary and Edmonton, where they and Białowieża National Park of Poland. share habitat with the moose. The Spain, Eastern Europe, and the adjacent Great Plains grassland habitats Caucasus Mountains still have virgin are left to herds of elk, American bison, forest areas that are not only home to and pronghorn antelope. sizable deer populations but also for other animals that were once abundant The Eurasian Continent (including the such as the wisent, Eurasian Indian Subcontinent) boasts the most lynx, Iberian lynx, wolves, and brown Lanka of which Kanha National bears. Park, Dudhwa National Park, The highest concentration of and Chitwan National Park are most large deer species in temperate Asia famous. Sri Lanka's Wilpattu National occurs in the mixed deciduous forests, Park and Yala National Park have large mountain coniferous forests, and taiga herds of Indian sambar and chital. The bordering North Korea, Manchuria Indian sambar are more gregarious in Sri (Northeastern China), and the Ussuri Lanka than other parts of their range Region (Russia). These are among some and tend to form larger herds than of the richest deciduous and coniferous elsewhere. forests in the world where one can The Chao Praya River Valley of find Siberian roe deer, sika deer, elk, and Thailand was once primarily tropical moose. Asian caribou occupy the seasonal moist deciduous forest and northern fringes of this region along the wet savanna that hosted populations of Sino-Russian border. hog deer, the now-extinct Schomburgk's Deer such as the sika deer, Eld's deer, Indian sambar, and deer, Thorold's deer, Central Asian red Indian muntjac. Both the hog deer and deer, and elk have historically been Eld's deer are rare, whereas Indian farmed for their antlers by Han sambar and Indian muntjac thrive in Chinese, Turkic peoples, Tungusic protected national parks, such as Khao peoples, Mongolians, and Koreans. Like Yai. Many of these South Asian and the Sami people of Finland and Southeast Asian deer species also share Scandinavia, the Tungusic peoples, their habitat with other herbivores, such Mongolians, and Turkic peoples of as Asian elephants, the various Asian Southern Siberia, Northern Mongolia, rhinoceros species, various antelope and the Ussuri Region have also taken to species (such as nilgai, four-horned raising semi-domesticated herds of antelope, blackbuck, and Indian Asian caribou. gazelle in India), and wild oxen (such The highest concentration of as wild Asian water large deer species in the tropics occurs buffalo, gaur, banteng, and kouprey). in Southern Asia in India's Indo-Gangetic One way that different herbivores can Plain Region and Nepal's Terai Region. survive together in a given area is for These fertile plains consist of tropical each species to have different food seasonal moist deciduous, dry preferences, although there may be deciduous forests, and both dry and wet some overlap. savannas that are home to chital, hog Australia has six introduced species of deer, barasingha, Indian sambar, deer that have established sustainable and Indian muntjac. Grazing species wild populations from acclimatisation such as the endangered barasingha and society releases in the 19th century. very common chital are gregarious and These are the fallow deer, red deer, live in large herds. Indian sambar can be sambar, hog deer, rusa, and chital. Red gregarious but are usually solitary or live deer introduced into New Zealand in in smaller herds. Hog deer are solitary 1851 from English and Scottish stock and have lower densities than Indian were domesticated in deer farms by the muntjac. Deer can be seen in several late 1960s and are common farm national parks in India, Nepal, and Sri animals there now. Seven other species of deer were introduced into New brown winter coat in autumn, which in Zealand but none are as widespread as turn gives way to the summer coat in the red deer. following spring. Moulting is affected by the photoperiod. Description Deer are also excellent jumpers and swimmers. Deer are ruminants, or Deer constitute the second most diverse cud-chewers, and have a four- family after bovids.
Recommended publications
  • Educator's Guide
    Educator’s Guide the jill and lewis bernard family Hall of north american mammals inside: • Suggestions to Help You come prepared • essential questions for Student Inquiry • Strategies for teaching in the exhibition • map of the Exhibition • online resources for the Classroom • Correlations to science framework • glossary amnh.org/namammals Essential QUESTIONS Who are — and who were — the North as tundra, winters are cold, long, and dark, the growing season American Mammals? is extremely short, and precipitation is low. In contrast, the abundant precipitation and year-round warmth of tropical All mammals on Earth share a common ancestor and and subtropical forests provide optimal growing conditions represent many millions of years of evolution. Most of those that support the greatest diversity of species worldwide. in this hall arose as distinct species in the relatively recent Florida and Mexico contain some subtropical forest. In the past. Their ancestors reached North America at different boreal forest that covers a huge expanse of the continent’s times. Some entered from the north along the Bering land northern latitudes, winters are dry and severe, summers moist bridge, which was intermittently exposed by low sea levels and short, and temperatures between the two range widely. during the Pleistocene (2,588,000 to 11,700 years ago). Desert and scrublands are dry and generally warm through- These migrants included relatives of New World cats (e.g. out the year, with temperatures that may exceed 100°F and dip sabertooth, jaguar), certain rodents, musk ox, at least two by 30 degrees at night. kinds of elephants (e.g.
    [Show full text]
  • Fitzhenry Yields 2016.Pdf
    Stellenbosch University https://scholar.sun.ac.za ii DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: March 2016 Copyright © 2016 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za iii GENERAL ABSTRACT Fallow deer (Dama dama), although not native to South Africa, are abundant in the country and could contribute to domestic food security and economic stability. Nonetheless, this wild ungulate remains overlooked as a protein source and no information exists on their production potential and meat quality in South Africa. The aim of this study was thus to determine the carcass characteristics, meat- and offal-yields, and the physical- and chemical-meat quality attributes of wild fallow deer harvested in South Africa. Gender was considered as a main effect when determining carcass characteristics and yields, while both gender and muscle were considered as main effects in the determination of physical and chemical meat quality attributes. Live weights, warm carcass weights and cold carcass weights were higher (p < 0.05) in male fallow deer (47.4 kg, 29.6 kg, 29.2 kg, respectively) compared with females (41.9 kg, 25.2 kg, 24.7 kg, respectively), as well as in pregnant females (47.5 kg, 28.7 kg, 28.2 kg, respectively) compared with non- pregnant females (32.5 kg, 19.7 kg, 19.3 kg, respectively).
    [Show full text]
  • Anaplasma Phagocytophilum in the Highly Endangered Père David's
    Yang et al. Parasites & Vectors (2018) 11:25 DOI 10.1186/s13071-017-2599-1 LETTER TO THE EDITOR Open Access Anaplasma phagocytophilum in the highly endangered Père David’s deer Elaphurus davidianus Yi Yang1,3, Zhangping Yang2,3*, Patrick Kelly4, Jing Li1, Yijun Ren5 and Chengming Wang1,6* Abstract Eighteen of 43 (41.8%) Père David’s deer from Dafeng Elk National Natural Reserve, China, were positive for Anaplasma phagocytophilum based on real-time FRET-PCR and species-specific PCRs targeting the 16S rRNA or msp4. To our knowledge this is the first report of A. phagocytophilum in this endangered animal. Keywords: Anaplasma phagocytophilum, Père David’s deer, Elaphurus davidianus, China Letter to the Editor GmbH, Mannheim, Germany). The fluorescence reson- Père David’s deer (Elaphurus davidianus) are now found ance energy transfer (FRET) quantitative PCR targeting only in captivity although they occurred widely in north- the 16S rRNA gene of Anaplasma spp. [5] gave positive eastern and east-central China until they became extinct reactions for 18 deer (41.8%), including 8 females in the wild in the late nineteenth century [1]. In the (34.8%) and 10 males (50.0%). To investigate the species 1980s, 77 Père David’s deer were reintroduced back into of Anaplasma present, the positive samples were further China from Europe. Currently the estimated total popu- analyzed with species-specific primers targeting the 16S lation of Père David’s deer in the world is approximately rRNA gene of A. centrale, A. bovis, A. phagocytophilum 5000 animals, the majority living in England and China.
    [Show full text]
  • Pbmr-400 Benchmark Solution of Exercise 1 and 2 Using the Moose Based Applications: Mammoth, Pronghorn
    EPJ Web of Conferences 247, 06020 (2021) https://doi.org/10.1051/epjconf/202124706020 PHYSOR2020 PBMR-400 BENCHMARK SOLUTION OF EXERCISE 1 AND 2 USING THE MOOSE BASED APPLICATIONS: MAMMOTH, PRONGHORN Paolo Balestra1, Sebastian Schunert1, Robert W Carlsen1, April J Novak2 Mark D DeHart1, Richard C Martineau1 1Idaho National Laboratory 955 MK Simpson Blvd, Idaho Falls, ID 83401, USA 2University of California, Berkeley 2000 Carleton Street, Berkeley, CA 94720, USA [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] ABSTRACT High temperature gas cooled reactors (HTGR) are a candidate for timely Gen-IV reac- tor technology deployment because of high technology readiness and walk-away safety. Among HTGRs, pebble bed reactors (PBRs) have attractive features such as low excess reactivity and online refueling. Pebble bed reactors pose unique challenges to analysts and reactor designers such as continuous burnup distribution depending on pebble mo- tion and recirculation, radiative heat transfer across a variety of gas-filled gaps, and long design basis transients such as pressurized and depressurized loss of forced circulation. Modeling and simulation is essential for both the PBR’s safety case and design process. In order to verify and validate the new generation codes the Nuclear Energy Agency (NEA) Data bank provide a set of benchmarks data together with solutions calculated by the participants using the state of the art codes of that time. An important milestone to test the new PBR simulation codes is the OECD NEA PBMR-400 benchmark which includes thermal hydraulic and neutron kinetic standalone exercises as well as coupled exercises and transients scenarios.
    [Show full text]
  • Hippotragus Equinus – Roan Antelope
    Hippotragus equinus – Roan Antelope authorities as there may be no significant genetic differences between the two. Many of the Roan Antelope in South Africa are H. e. cottoni or equinus x cottoni (especially on private properties). Assessment Rationale This charismatic antelope exists at low density within the assessment region, occurring in savannah woodlands and grasslands. Currently (2013–2014), there are an observed 333 individuals (210–233 mature) existing on nine formally protected areas within the natural distribution range. Adding privately protected subpopulations and an Cliff & Suretha Dorse estimated 0.8–5% of individuals on wildlife ranches that may be considered wild and free-roaming, yields a total mature population of 218–294 individuals. Most private Regional Red List status (2016) Endangered subpopulations are intensively bred and/or kept in camps C2a(i)+D*†‡ to exclude predators and to facilitate healthcare. Field National Red List status (2004) Vulnerable D1 surveys are required to identify potentially eligible subpopulations that can be included in this assessment. Reasons for change Non-genuine: While there was an historical crash in Kruger National Park New information (KNP) of 90% between 1986 and 1993, the subpopulation Global Red List status (2008) Least Concern has since stabilised at c. 50 individuals. Overall, over the past three generations (1990–2015), based on available TOPS listing (NEMBA) Vulnerable data for nine formally protected areas, there has been a CITES listing None net population reduction of c. 23%, which indicates an ongoing decline but not as severe as the historical Endemic Edge of Range reduction. Further long-term data are needed to more *Watch-list Data †Watch-list Threat ‡Conservation Dependent accurately estimate the national population trend.
    [Show full text]
  • Reproductive Seasonality in Captive Wild Ruminants: Implications for Biogeographical Adaptation, Photoperiodic Control, and Life History
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Reproductive seasonality in captive wild ruminants: implications for biogeographical adaptation, photoperiodic control, and life history Zerbe, Philipp Abstract: Zur quantitativen Beschreibung der Reproduktionsmuster wurden Daten von 110 Wildwiederkäuer- arten aus Zoos der gemässigten Zone verwendet (dabei wurde die Anzahl Tage, an denen 80% aller Geburten stattfanden, als Geburtenpeak-Breite [BPB] definiert). Diese Muster wurden mit verschiede- nen biologischen Charakteristika verknüpft und mit denen von freilebenden Tieren verglichen. Der Bre- itengrad des natürlichen Verbreitungsgebietes korreliert stark mit dem in Menschenobhut beobachteten BPB. Nur 11% der Spezies wechselten ihr reproduktives Muster zwischen Wildnis und Gefangenschaft, wobei für saisonale Spezies die errechnete Tageslichtlänge zum Zeitpunkt der Konzeption für freilebende und in Menschenobhut gehaltene Populationen gleich war. Reproduktive Saisonalität erklärt zusätzliche Varianzen im Verhältnis von Körpergewicht und Tragzeit, wobei saisonalere Spezies für ihr Körpergewicht eine kürzere Tragzeit aufweisen. Rückschliessend ist festzuhalten, dass Photoperiodik, speziell die abso- lute Tageslichtlänge, genetisch fixierter Auslöser für die Fortpflanzung ist, und dass die Plastizität der Tragzeit unterstützend auf die erfolgreiche Verbreitung der Wiederkäuer in höheren Breitengraden wirkte. A dataset on 110 wild ruminant species kept in captivity in temperate-zone zoos was used to describe their reproductive patterns quantitatively (determining the birth peak breadth BPB as the number of days in which 80% of all births occur); then this pattern was linked to various biological characteristics, and compared with free-ranging animals. Globally, latitude of natural origin highly correlates with BPB observed in captivity, with species being more seasonal originating from higher latitudes.
    [Show full text]
  • Connochaetes Gnou – Black Wildebeest
    Connochaetes gnou – Black Wildebeest Blue Wildebeest (C. taurinus) (Grobler et al. 2005 and ongoing work at the University of the Free State and the National Zoological Gardens), which is most likely due to the historic bottlenecks experienced by C. gnou in the late 1800s. The evolution of a distinct southern endemic Black Wildebeest in the Pleistocene was associated with, and possibly driven by, a shift towards a more specialised kind of territorial breeding behaviour, which can only function in open habitat. Thus, the evolution of the Black Wildebeest was directly associated with the emergence of Highveld-type open grasslands in the central interior of South Africa (Ackermann et al. 2010). Andre Botha Assessment Rationale Regional Red List status (2016) Least Concern*† This is an endemic species occurring in open grasslands in the central interior of the assessment region. There are National Red List status (2004) Least Concern at least an estimated 16,260 individuals (counts Reasons for change No change conducted between 2012 and 2015) on protected areas across the Free State, Gauteng, North West, Northern Global Red List status (2008) Least Concern Cape, Eastern Cape, Mpumalanga and KwaZulu-Natal TOPS listing (NEMBA) (2007) Protected (KZN) provinces (mostly within the natural distribution range). This yields a total mature population size of 9,765– CITES listing None 11,382 (using a 60–70% mature population structure). This Endemic Yes is an underestimate as there are many more subpopulations on wildlife ranches for which comprehensive data are *Watch-list Threat †Conservation Dependent unavailable. Most subpopulations in protected areas are stable or increasing.
    [Show full text]
  • Whole-Genome Sequencing of Wild Siberian Musk
    Yi et al. BMC Genomics (2020) 21:108 https://doi.org/10.1186/s12864-020-6495-2 RESEARCH ARTICLE Open Access Whole-genome sequencing of wild Siberian musk deer (Moschus moschiferus) provides insights into its genetic features Li Yi1†, Menggen Dalai2*†, Rina Su1†, Weili Lin3, Myagmarsuren Erdenedalai4, Batkhuu Luvsantseren4, Chimedragchaa Chimedtseren4*, Zhen Wang3* and Surong Hasi1* Abstract Background: Siberian musk deer, one of the seven species, is distributed in coniferous forests of Asia. Worldwide, the population size of Siberian musk deer is threatened by severe illegal poaching for commercially valuable musk and meat, habitat losses, and forest fire. At present, this species is categorized as Vulnerable on the IUCN Red List. However, the genetic information of Siberian musk deer is largely unexplored. Results: Here, we produced 3.10 Gb draft assembly of wild Siberian musk deer with a contig N50 of 29,145 bp and a scaffold N50 of 7,955,248 bp. We annotated 19,363 protein-coding genes and estimated 44.44% of the genome to be repetitive. Our phylogenetic analysis reveals that wild Siberian musk deer is closer to Bovidae than to Cervidae. Comparative analyses showed that the genetic features of Siberian musk deer adapted in cold and high-altitude environments. We sequenced two additional genomes of Siberian musk deer constructed demographic history indicated that changes in effective population size corresponded with recent glacial epochs. Finally, we identified several candidate genes that may play a role in the musk secretion based on transcriptome analysis. Conclusions: Here, we present a high-quality draft genome of wild Siberian musk deer, which will provide a valuable genetic resource for further investigations of this economically important musk deer.
    [Show full text]
  • Identification of the Endangered Small Red Brocket Deer (Mazama Bororo) Using Noninvasive Genetic Techniques (Mammalia; Cervidae)
    Molecular Ecology Resources (2009) 9, 754-758 doi:10.1111/j.l755-0998.2008.02390.x MOLECULAR DIAGNOSTICS AND DNA TAXONOMY Identification of the endangered small red brocket deer (Mazama bororo) using noninvasive genetic techniques (Mammalia; Cervidae) SUSANA GONZALEZ,* JESUS E. MALDONADO/r JORGE ORTEGA/tJ: ANGELA CRISTINA TALARICO,§LETICIABIDEGARAY-BATISTA,*,**JOSE EDUARDO GARCIA! and JOSE MAURICIO BARBANTI DUARTEg *Unidad de Genetica de la Conservation, Departamento de Genetica, IIBCE-Facultad de Ciencias/UdelaR, Montevideo, Uruguay, tCenterfor Conservation and Evolutionary Genetics, NZP/NMNH, Smithsonian Institution, 3001 Connecticut Ave. NW, Washington D.C. 20008, USA, %Laboratorio de Ictiologia y Limnologia, Posgrado en Ciencias Quimico-Biologicas, Escuela National de Ciencias Biologicas, lnstituto Politecnico National, Prolongation de Carpio y Plan de Ayala s/n, Col. Santo Tomds, 11340 Mexico, %Nucleo de Pesauisa e Conservacao de Cervideos (NUPECCE), Departamento de Zootecnia, FCAV/UNESP, Sao Paulo State University, Via de Acesso Paulo Donato Castellane, s/n, CEP 14884-900, Jaboticabal-SP, Brazil, fCentro Academico de Vitoria. Universidade Federal de Pernambuco, 55608-680 Vitoria de Santo Antao — PE, Brazil Abstract The small red brocket deer Mazama bororo is one of the most endangered deer in the Neotropics. The great morphological similarities with three other sympatric brocket deer species, coupled with the fact that they inhabit densely forested habitats complicate detection and prevent the use of traditional methodologies for accurate identification of species. The ability to determine the presence of this endangered species in an area is crucial for estimating its distribution range, and is critical for establishing conservation management strategies. Here we describe a fast and reliable noninvasive genetic method for species identification of Mazama species from faeces.
    [Show full text]
  • Activity Pattern of Brocket Deer (Genus Mazama) in the Atlantic Forest: Does Sampling Design Affect the Patterns?
    Research Article JOJ Wildl Biodivers Copyright © All rights are reserved by Ana Carolina Srbek-Araujo Volume 1 Issue 2 - September 2019 Activity Pattern of Brocket Deer (Genus Mazama) in the Atlantic Forest: Does Sampling Design Affect the Patterns? Ana Carolina Srbek-Araujo1,2,3,4*, Tayná Seabra1 and Giovanna Colnago Cecanecchia1,2 1Laboratório de Ecologia e Conservação de Biodiversidade (LECBio), Universidade Vila Velha – UVV, Rua Comissário José Dantas de Melo, nº 21, Bairro Boa Vista, Vila Velha, Espírito Santo, Brazil 2Programa de Pós-graduação em Ecologia de Ecossistemas, Universidade Vila Velha – UVV, Brazil 3Programa de Pós-graduação em Ciência Animal, Universidade Vila Velha – UVV, Brazil 4Instituto SerraDiCal de Pesquisa e Conservação, Belo Horizonte, Minas Gerais, Brazil Submission: June 25, 2019; Published: September 19, 2019 *Corresponding author: Ana Carolina Srbek-Araujo, Laboratório de Ecologia e Conservação de Biodiversidade, Programa de Pós-graduação em Ecologia de Ecossistemas, Programa de Pós-graduação em Ciência Animal, Universidade Vila Velha, Vila Velha, Espírito Santo, Brazil Abstract This study aimed to describe the activity pattern of Mazama spp. in an Atlantic Forest remnant in southeastern Brazil, and to test whether sampling designs, and these included camera trapping installed along internal unpaved roads or in the forest interior. The records of Mazama spp. werethe sampling collected design throughout can affect the theday, recorded with no periods patterns. of Datainactivity, from 4similarly sampling to
    [Show full text]
  • Andhra Pradesh Forestry Project: Forest Restoration and Joint Forest Management in India
    Andhra Pradesh Forestry Project: Forest Restoration and Joint Forest Management in India Project Description India’s 1988 forest policy stipulates that forests are to be managed primarily for ecological conservation, and the use of forest resources for local use or non-local industry is of secondary emphasis. In Andhra Pradesh, local people living near forests are forming Vana Samrakshna Samithi (VSS), village organisations dedicated to forest restoration. In partnership with the state forestry department more than 5,000 VSS are working to restore more than 1.2 million hectares of degraded forests. VSS share all of the non-timber forest products (grasses, fuel-wood, fruit, and medicines) amongst themselves, and receive all of the income from the harvest of timber and bamboo. Half of this income is set aside for the future development and maintenance of the forest. In this way the long-term sustainability of the project is protected and government support is only required while the forest returns to a productive state. Ecosystem type The Eastern Highlands Tropical Moist Deciduous Forests are considered globally outstanding for the communities of large vertebrates and intact ecological processes that they support. The region contains 84,000 km2 of intact habitat, some in blocks of more than 5,000 km2. The region is a refuge for many large vertebrates such as wolves (Canis lupus) and gaur (Bos gaurus), and threatened large mammals such as the tiger (Panthera tigris), sloth bear (Melursus ursinus), wild dog (Cuon alpinus), chousingha (Tetracerus quadricornis), blackbuck (Antilope cervicapra), and chinkara (Gazella bennettii). The only endemic mammal is a threatened Rhinolophidae bat, Hipposideros durgadasi.
    [Show full text]
  • Caribou (Barren-Ground Population) Rangifer Tarandus
    COSEWIC Assessment and Status Report on the Caribou Rangifer tarandus Barren-ground population in Canada THREATENED 2016 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2016. COSEWIC assessment and status report on the Caribou Rangifer tarandus, Barren-ground population, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xiii + 123 pp. (http://www.registrelep-sararegistry.gc.ca/default.asp?lang=en&n=24F7211B-1). Production note: COSEWIC would like to acknowledge Anne Gunn, Kim Poole, and Don Russell for writing the status report on Caribou (Rangifer tarandus), Barren-ground population, in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Justina Ray, Co-chair of the COSEWIC Terrestrial Mammals Specialist Subcommittee, with the support of the members of the Terrestrial Mammals Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment and Climate Change Canada Ottawa, ON K1A 0H3 Tel.: 819-938-4125 Fax: 819-938-3984 E-mail: [email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le Caribou (Rangifer tarandus), population de la toundra, au Canada. Cover illustration/photo: Caribou — Photo by A. Gunn. Her Majesty the Queen in Right of Canada, 2016. Catalogue No. CW69-14/746-2017E-PDF ISBN 978-0-660-07782-6 COSEWIC Assessment Summary Assessment Summary – November 2016 Common name Caribou - Barren-ground population Scientific name Rangifer tarandus Status Threatened Reason for designation Members of this population give birth on the open arctic tundra, and most subpopulations (herds) winter in vast subarctic forests.
    [Show full text]