Wissenbacher Schiefer (Rheinisches Schiefergebirge, Harz, Devon)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comments on the Paper by A. May “Micheliniidae and Cleistoporidae (Anthozoa, Tabulata) from the Devonian of Spain”
Comments on the paper by A. May Micheliniidae and Cleistoporidae (Anthozoa, Tabulata) from the Devonian of Spain YVES PLUSQUELLEC & ESPERANZA FERNÁNDEZ-MARTÍNEZ PLUSQUELLEC,Y.&FERNÁNDEZ-MARTÍNEZ E. 2007. Com- lity for this species is known in Celtiberia, where the speci- ments on the paper by A. May “Micheliniidae and Cleistoporidae mens are preserved in calcite: North of Nogueras, Maripo- (Anthozoa, Tabulata) from the Devonian of Spain”. Bulletin of sas Formation, d4aβ, Lower Emsian. Geosciences 82(1), 85–89 (3 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received January 22, 2007; issued March 30, 2007. • DOI 10.3140/bull.geosci.2007.01.85 Pleurodictyum elisabetae May, 2006 Yves Plusquellec, Université de Bretagne Occidentale, UMR 6538 “Domaines océaniques”, Laboratoire de Paléontologie, The identification of Pleurodictyum-like corals is very UFR Sciences & Techniques, 6 av. Le Gorgeu – CS 93837, problematic when the aboral side is unknown. In this case F-29238 Brest cedex 3, France; [email protected] • the specimens could belong to Pleurodictyum Goldfuss, Esperanza Fernández-Martínez, Área de Paleontología, Facul- 1829, Procteria Davis, 1887, Procterodictyum Plusquel- tad de Ciencias Biológicas y Ambientales, Campus de Vegazana lec, 1993 or Amazonodictyum nom. nud. (Plusquellec s/n, Universidad de León, 24071 León, Spain; e.fernandez@uni- 2006, unpublished thesis; type species Pleurodictyum leon.es amazonicum Katzer, 1903). Nevertheless, a more precise identification is possible in a few cases. We have examined the two specimens (stock num- In our opinion the conclusions presented in the paper by bers 13D and 14D, Museo Geominero) figured by May Andreas May in Bulletin of Geosciences 81(3), 163–172 (fig. -
University of Michigan University Library
CONTRIBUTIONS FROM TEE MUSEUM OF PALEONTOLOGY UNIVERSITY OF MICHIGAN VOL. VIII, No. 8, pp. 205-220 (5 pls.) AUGUST11, 1950 CORALS OF THE DEVONIAN TRAVERSE GROUP OF MICHIGAN. PART 111, ANTHOLITES, PLEURODICTYUM, AND PROCTERIA BY ERWIN C. STUMM UNIVERSITY OF MICHIGAN PRESS ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY UNIVERSITY OF MICHIGAN Director: LEWISB. KELLUM The series of contributions from the Museum of Paleontology is a medium for the publication of papers based entirely or principally upon the collections in the Museum. When the number of wes issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and also to individuals upon request. Correspondence should be directed to the University of Michigan Press. A list of the separate papers in Vol- umes II-VII will be sent upon request. VOL. I. The Stratigraphy and Fauna of the Hackberry Stage of the Upper Devonian, by C. L. Fenton and M. A. Fenton. Pages xi+260. Cloth. $2.75. VOL. 11. Fourteen papers. Pages ixf240. Cloth. $3.00. Parts sold separately in paper covers. VOL. 111. Thirteen papers. Pages viii+275. Cloth. $3.50. Parts sold separately in paper covers. VOL. IV. Eighteen papers. Pages viii+295. Cloth. $3.50. Parts sold separately in paper covers. VOL. V. Twelve papers. Pages viii+-318. Cloth. $3.50. Part. sold separately in paper covers. VOL. VI. Ten papers. Pages viii+336. Paper covers. $3.00. Parts sold separately. VOL. VII. Ten numbers sold separately. (Continued on inside back cover) VOL. -
Strophomenide and Orthotetide Silurian Brachiopods from the Baltic Region, with Particular Reference to Lithuanian Boreholes
Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes PETRAS MUSTEIKIS and L. ROBIN M. COCKS Musteikis, P. and Cocks, L.R.M. 2004. Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes. Acta Palaeontologica Polonica 49 (3): 455–482. Epeiric seas covered the east and west parts of the old craton of Baltica in the Silurian and brachiopods formed a major part of the benthic macrofauna throughout Silurian times (Llandovery to Pridoli). The orders Strophomenida and Orthotetida are conspicuous components of the brachiopod fauna, and thus the genera and species of the superfamilies Plec− tambonitoidea, Strophomenoidea, and Chilidiopsoidea, which occur in the Silurian of Baltica are reviewed and reidentified in turn, and their individual distributions are assessed within the numerous boreholes of the East Baltic, particularly Lithua− nia, and attributed to benthic assemblages. The commonest plectambonitoids are Eoplectodonta(Eoplectodonta)(6spe− cies), Leangella (2 species), and Jonesea (2 species); rarer forms include Aegiria and Eoplectodonta (Ygerodiscus), for which the new species E. (Y.) bella is erected from the Lithuanian Wenlock. Eight strophomenoid families occur; the rare Leptaenoideidae only in Gotland (Leptaenoidea, Liljevallia). Strophomenidae are represented by Katastrophomena (4 spe− cies), and Pentlandina (2 species); Bellimurina (Cyphomenoidea) is only from Oslo and Gotland. Rafinesquinidae include widespread Leptaena (at least 11 species) and Lepidoleptaena (2 species) with Scamnomena and Crassitestella known only from Gotland and Oslo. In the Amphistrophiidae Amphistrophia is widespread, and Eoamphistrophia, Eocymostrophia, and Mesodouvillina are rare. In the Leptostrophiidae Mesoleptostrophia, Brachyprion,andProtomegastrophia are com− mon, but Eomegastrophia, Eostropheodonta, Erinostrophia,andPalaeoleptostrophia are only recorded from the west in the Baltica Silurian. -
Carboniferous Formations and Faunas of Central Montana
Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________ -
Abhandlungen Der Geologischen Bundesanstalt in Wien
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Abhandlungen der Geologischen Bundesanstalt in Wien Jahr/Year: 1999 Band/Volume: 54 Autor(en)/Author(s): Hladil Jindrich, Melichar Rostislav, Otava Jiri, Arnost Krs, Man Otakar, Pruner Petr, Cejchan Petr, Orel Petr Artikel/Article: The Devonian in the Easternmost Variszides, Moravia: a Holistic Analysis Directed Towards Comprehension of the Original Context 27-47 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT Abh. Geol. B.-A. ISSN 0016–7800 ISBN 3-85316-02-6 Band 54 S. 27–47 Wien, Oktober 1999 North Gondwana: Mid-Paleozoic Terranes, Stratigraphy and Biota Editors: R. Feist, J.A. Talent & A. Daurer The Devonian in the Easternmost Variscides, Moravia: a Holistic Analysis Directed Towards Comprehension of the Original Context JINDRICH HLADIL, ROSTISLAV MELICHAR, JIRI OTAVA, ARNOST GALLE, MIROSLAV KRS, OTAK AR MAN, PETR PRUNER, PETR CEJCHAN & PETR OREL*) 11 Text-Figures and 1 Table Czech Republic Moravia Bohemian Massif Devonian Variscides Facies Tectonics Palaeomagnetism Biodynamics Contents Zusammenfassung ....................................................................................................... 27 Abstract .................................................................................................................. 28 1. Current Concepts ....................................................................................................... -
Geology of the New Tripoli Quadrangle, Lehigh, Berks, Schuylki II, and Carbon Counties, Pennsylvania
Geology of the New Tripoli Quadrangle, Lehigh, Berks, Schuylki II, and Carbon Counties, Pennsylvania U.S. GEOLOGICAL SURVEY BULLETIN 1994 Prepared in cooperation with the Pennsylvania Department of Environmental Resources, Bureau of Topographic and Geologic Survey Geology of the New Tripoli Quadrangle, Lehigh, Berks, Schuylkill, and Carbon Counties, Pennsylvania By JACK B. EPSTEIN and PETER T. LYTTLE Prepared in cooperation with the Pennsylvania Department of Environmental Resources, Bureau of Topographic and Geologic Survey Structure and stratigraphy of a complexly deformed Paleozoic sequence in the central Appalachians of Pennsylvania U.S. GEOLOGICAL SURVEY BULLETIN 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government UNITED STATES GOVERNMENT PRINTING OFFICE: 1993 For sale by U.S. Geological Survey, Map Distribution Box 25286, Bldg. 810, Federal Center Denver, CO 80225 Library of Congress Cataloging in Publication Data Epstein, Jack Burton, 1935- Geology of the New Tripoli quadrangle, Lehigh, Berks, Schuylkill, and Carbon counties, Pennsylvania I by Jack B. Epstein and Peter T. Lyttle. p. cm.-(U.S. Geological Survey bulletin ; 1994) "Prepared in cooperation with the Pennsylvania Department of Environmental Resources, Bureau of Topographic and Geologic Survey." Includes bibliographical references. Supt. of Docs. no.: I 19.3:1994 1. Geology-Pennsylvania. -
First Major Appearance of Brachiopod-Dominated Benthic Shelly Communities in the Reef Ecosystem During the Early Silurian Cale A.C
Western University Scholarship@Western Electronic Thesis and Dissertation Repository August 2016 First Major Appearance of Brachiopod-Dominated Benthic Shelly Communities in the Reef Ecosystem during the Early Silurian Cale A.C. Gushulak The University of Western Ontario Supervisor Dr. Jisuo Jin The University of Western Ontario Joint Supervisor Dr. Rong-yu Li The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science © Cale A.C. Gushulak 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Evolution Commons, Other Ecology and Evolutionary Biology Commons, Paleobiology Commons, and the Paleontology Commons Recommended Citation Gushulak, Cale A.C., "First Major Appearance of Brachiopod-Dominated Benthic Shelly Communities in the Reef Ecosystem during the Early Silurian" (2016). Electronic Thesis and Dissertation Repository. 3972. https://ir.lib.uwo.ca/etd/3972 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected], [email protected]. Abstract The early Silurian reefs of the Attawapiskat Formation in the Hudson Bay Basin preserved the oldest record of major invasion of the coral-stromatoporoid skeletal reefs by brachiopods and other marine shelly benthos, providing an excellent opportunity for studying the early evolution, functional morphology, and community organization of the rich and diverse reef-dwelling brachiopods. Biometric and multivariate analysis demonstrate that the reef-dwelling Pentameroides septentrionalis evolved from the level- bottom-dwelling Pentameroides subrectus to develop a larger and more globular shell. -
CNIDARIA Corals, Medusae, Hydroids, Myxozoans
FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell. -
Substrate Specificity in the Devonian Tabulate Coral Pleurodictyurn
Substrate specificity in the Devonian tabulate coral Pleurodictyurn CARLTONE. BRETT AND JOHN F. COTTRELL Brett, Carlton E. & Cottrell, John F. 19820815: Substrate specificity in the Devonian tabulate coral LETHAIA pleurodicryum. Leihain, "01.15. pp 247-262. o110 ~ssN0024-1164. The tabulate coral Pleurodiciyum nmericonum Roemer has been cited as an example of a host-specific organism occurring exclusively on the shells of gastropods, particularly Paloeozvsopkuro homihonioe (Hall). Examination of over 16W specimens of P. omericonum, from the Middle Devonian Hamilton Group of wcrtcrn New York, reveals additional cornplcriticr which require reinterpretation. While substrate selectivity for Palaeoiygopleuro shells is evident in all 42 subsamples, a variety of other substrates were also utilized by Pleurodictyum including corals, brachiopods, other molluscs and pebbles. Recent rcleractinian corals inhabiting soft bottoms show similar substrate preference, selecting for the tubes of live serpulids, or gastropod shells (invariably with a secondary sipunculid host), but also occasionally settling on unoccupied shells or pebbles. Shell surfaces of P. harniltoniae, preserved as external molds on the Pieurodiciyum epitheca, exhibit cnciustation by worm tubes and bryozoans as well as boring5 and mechanical shell damage, suggesting that these were not ihc shells of live gastropods. However, the invariant aperture-downward orientation and thc high degrcc of selectivity of P. arneri- canurn strongly suggest that the shells were occupied by secondary hosts. O Subsrrarespecifi~iry,cornmen- mlirm, tobulore coral, garfropod, sipunculid, Devonian, Hamilton Group, New York. Corlron E. Brert ond John F. Cornell, Depcrimsnr of Geologicoi Sciences, the Univrrsiry of Rochester, Rochesrer, New York 14627; 15th March, 1981. Larvae of many marine invertebrates require substrate specificity in Pleurodictyum; however, hard, stable substrates for successful settlement it also reveals additional complexities which re- on the sea floor (Thorson 1950; Gray 1974). -
Back Matter (PDF)
Index Page numbers in italic denote Figures. Page numbers in bold denote Tables. Acadian Orogeny 224 Ancyrodelloides delta biozone 15 Acanthopyge Limestone 126, 128 Ancyrodelloides transitans biozone 15, 17,19 Acastella 52, 68, 69, 70 Ancyrodelloides trigonicus biozone 15, 17,19 Acastoides 52, 54 Ancyrospora 31, 32,37 Acinosporites lindlarensis 27, 30, 32, 35, 147 Anetoceras 82 Acrimeroceras 302, 313 ?Aneurospora 33 acritarchs Aneurospora minuta 148 Appalachian Basin 143, 145, 146, 147, 148–149 Angochitina 32, 36, 141, 142, 146, 147 extinction 395 annulata Events 1, 2, 291–344 Falkand Islands 29, 30, 31, 32, 33, 34, 36, 37 comparison of conodonts 327–331 late Devonian–Mississippian 443 effects on fauna 292–293 Prague Basin 137 global recognition 294–299, 343 see also Umbellasphaeridium saharicum limestone beds 3, 246, 291–292, 301, 308, 309, Acrospirifer 46, 51, 52, 73, 82 311, 321 Acrospirifer eckfeldensis 58, 59, 81, 82 conodonts 329, 331 Acrospirifer primaevus 58, 63, 72, 74–77, 81, 82 Tafilalt fauna 59, 63, 72, 74, 76, 103 ammonoid succession 302–305, 310–311 Actinodesma 52 comparison of facies 319, 321, 323, 325, 327 Actinosporites 135 conodont zonation 299–302, 310–311, 320 Acuticryphops 253, 254, 255, 256, 257, 264 Anoplia theorassensis 86 Acutimitoceras 369, 392 anoxia 2, 3–4, 171, 191–192, 191 Acutimitoceras (Stockumites) 357, 359, 366, 367, 368, Hangenberg Crisis 391, 392, 394, 401–402, 369, 372, 413 414–417, 456 agnathans 65, 71, 72, 273–286 and carbon cycle 410–413 Ahbach Formation 172 Kellwasser Events 237–239, 243, 245, 252 -
The Lochkovian-Pragian Boundary in the Lower Devo~Ian of the Barrandian Area (Czechoslovakia)
©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Jb. Geol. B.-A. ISSN 0016-7800 Band 128 Heft 1 S.9-41 Wien, Mai 1985 The Lochkovian-Pragian Boundary in the Lower Devo~ian of the Barrandian Area (Czechoslovakia) By Ivo CHLUpAC, PAVEL LUKES, FLORENTIN PARIS & HANS PETER SCHÖNLAUB*) With 17 figures, 1 table and 4 plates Tschechoslowakei Barrandium Karnische Alpen Devon Stratigraphische Korrelation Lochkov-Prag-Grenze Tentaculiten Conodonten Graptolithen Chitinozoa Trilobita Brachiopoda Contents Summary, Zusammenfassung . .. 9 1. Introduction..... .. 9 2. Description of sections 10 2.1. Cerna rokle near Kosoi' 10 2.2. Trebotov - Solopysky 13 2.3. Praha - Velka Chuchle (Pi'fdol f) 14 2.4. Cikanka quarry near Praha-Slivenec 17 2.5. Radolfn Valley - Hvizaalka quarry 19 2.6. Oujezdce quarry near Suchomasty 22 3. Stratigraphic significance of some fossil groups in the Lochkovian-Pragian boundary beds of the Barrandian 22 3.1. Dacryoconarid tentaculites (P. LUKES) 22 3.2. Conodonts (H. P. SCHÖNLAUB) 24 3.3. Chitinozoans (F. PARIS) 27 3.4. Graptolites 28 3.5. Trilobites 28 3.6. Brachiopods 29 3.6. Some other groups 29 4. Proposal for a conodont based Lochkovian-Pragian boundary 30 5. Conclusion 30 References 32 Zusammenfassung Summary Im Barrandium Böhmens wurde die Lochkov/Prag-Grenze Six selected sections of the Lochkovian-Pragian boundary des Unterdevons an 6 ausgewählten Profilen in Hinblick auf ih- beds in the Barrandian area of central Bohemia were subject- ren Makro- und Mikrofossilinhalt biostratigraphisch untersucht. ed to investigations of mega- and microfossils. Joint occur- Für Korrelationszwecke sind in erster Linie Dacryoconariden, rence of different stratigraphically important fossil groups, par- Conodonten, Chitinozoen, Trilobiten, Graptolithen und Bra- ticularly dacryoconarid tentaculites, conodonts, chitinozoans, chiopoden geeignet. -
Geologic History a – 1 1. a Whalebone That Originally Contained 200 Grams of Radioactive Carbon-14 Now Contains 25 Grams of C
Geologic History A – B1 Base your answers to questions 7 and 8 on the graph 1. A whalebone that originally contained 200 grams of below, which shows the generalized rate of decay of radioactive carbon-14 now contains 25 grams of carbon- radioactive isotopes over 5 half-lives. 14. How many carbon-14 half-lives have passed since this whale was alive? (1) 1 (2) 2 (3) 3 (4) 4 2. The diagram below represents a sample of a radioactive isotope. Which diagram best represents the percentage of this radioactive isotope sample that will remain after 2 half- lives? 7. If the original mass of a radioactive isotope was 24 grams, how many grams would remain after 3 half-lives? (1)12 (2)24 (3)3 (4)6 3. The table below shows information about the 8. Which radioactive isotope takes the greatest amount radioactive decay of carbon-14. of time to undergo the change shown on the graph? (1) carbon-14 (3) uranium-238 (2) potassium-40 (4) rubidium-87 ~~~~~~~~~~~~~~~ 9. An igneous rock contains 10 grams of radioactive potassium-40 and a total of 10 grams of its decay products. During which geologic time interval was this rock most likely formed? What is the amount of carbon-14 remaining after 28,500 (1) Middle Archean years? (2) Late Archean (3) Middle Proterozoic (4) Late Proterozoic 10. Which geologic event occurred in New York State at approximately the same time that eurypterids were 4. How old is a fossil that has radioactively decayed becoming extinct? through 4 half-lives of carbon-14? (1) the opening of the Atlantic Ocean (1) 5,700 years (3) 22,800 years (2) the uplift of the Appalachian Mountains (2) 17,100 years (4) 28,500 years (3) the formation of the Catskill Delta (4) the intrusion of the Palisades Sill 5.