Foodplain Vegetation in the Nxaraga Lagoon Area, Okavango Delta, Botswana

Total Page:16

File Type:pdf, Size:1020Kb

Foodplain Vegetation in the Nxaraga Lagoon Area, Okavango Delta, Botswana S. Afr. J. Bol. 2000, 66( I): 15- 21 15 Foodplain vegetation in the Nxaraga Lagoon area, Okavango Delta, Botswana M.C. Bonyongo" *, G.J. Bredenkamp' and E. Veenendaal' , Harry Oppenheimer Okavango Research Centre, University of Bo tswana, Private Bag 285, Maun. Botswana 20 epartment of Botany. University of Pretoria , Pretoria, 0002 Republic of South Africa Ueceived 2 June 1999, reVIsed 2() Ocwher /999 The phytosociology and patterns of vegetation distribution of the seasonal fi oodplains were studied. Cover-abundance data were collected from a total of 200 sample plots and captured in TU RBO(VEG), a software package for input and processing and presentation of phytosociological data. Application of the Braun-B lanquet methods of vegetation survey followed by a polythetic divisive classification technique (TWINSPAN) resulted in the delineation of eight vegetation communities of which five were further divided into sub-communities, The eight commun ities are Cyperus articulafus-Schoenopleclus corymbosus community, Alternanthera sessilis-Ludwigia sio/anitera community, Vetiveria nigritana-Setaria sphacelata community, Miscanthus junceus-Digitaria sea/arum community, Imperata cylindrica-Setana sphacelata community, Paspalidium oblusifolorum-Panicum repens community, Setaria sphaeefata- Eragrostis inamoena community and Sporobolus spicatus community. All plant commun ities are related to specific flooding regime namely time and duration of inundation . Keywords: Braun-Branquet, classification , plant community types, releve, TWINSPAN. "To whom correspondence should be addressed. Introduction re lative humidity at 0800 hours between 60% and 78% ( Ellery f!f Vegetation description is the starting point of both small and al. 1991 ) The cooler, drier winter months (June- August) have ,\ large scale vegetation research. Vegetation description aims to mean monthly maximum of25.3°(. to 28.rC and a mi ni mulll of enable people. oth er than the observer, to bui ld a mental picture 7.0°C to 10.0°C. The relative humidity ranges between 43% and of the area and its vegetation and to allow comparison and classi­ 63% (Ellery et al. 199 J). Soils consist predom inately of sands ficati on of different vegetation units (Kershaw 1973). The with an increase in th e amount of peat and other organic matter description of vegetation, with or without concurrent recording in the lower floodplain. Vegetation types were divided into of fac tors of the environment. has played a major part in the aquatic communities (e.g. C:VPf!/"lIS papyrus zone). primary development of plant ecology and continues to be importan t floodplain communities. (e.g . .\/is canl/llls sedgelands) secondary (Greig-Smith 1(83). Vegetation description is. therefore. an grassland (tall, wet and short. wet and dry grasslands) and island essenti al and integral part of vegetation science as it provides a grassland and riverine woodland communities (S.M.E.C. (986 ). scientific inventory for conservation and monitoring pu rposes as Primary fl oodplains are the low lyi ng arens adjacent to the chan­ well as for further research (Coetzee 1993). nel which get fl ooded first. while secondary fl oodplains are those Although a consi derable proportion of ecological work has areas lyi ng above the floodlinc and receive fl ood water rifle r the been directed towards the description of vegetation of various primary floodplains. ecosystems in th e world (Kershaw 1973). not much has been done on the phytosociology of the Okavango Delta seasonal Materials and Methods fl oodplain vegetation. Papers by Smith ( 1976), Biggs (1979), The I3raun-B lanqllct approach to th~ study of vc.:gC:lat iol1 is th e most and Ell ery (1987), Ellery el at. ( 1990; 1991; 1993) are so me ofa widdy uSl.!d lhroughoul thc world. and it has proven to bl.! a reli able few publications on the vegetation of the Okavango Delta, but and efli cient method fo r vegetation sur\'ey and cl assifi cat ion III most none of these paid special attention to a quantitative classifica­ cOllnlrit:s (Wt:rgcr 1974). This approach tak t:s a pract ica l. inh:rml.!d i­ tion of seasonal floodplain vegetation. Biggs (1979) described <lIt: position that recognlscs the h t:tc: rogen eit ~ of spc.:c ies di strihlll ioll s the vegetation types of the Okavango Delta using a visual physi­ hUl c.:mphasises. nonc.:thelcss. the int eraction hdween plants in Illc ognomic class ifi cation based on dominant species. Ellery el al. community. which have a cl! rtain individualit > because of rd ati\'c ( 1991) employed some quantitative objective methods of cl assi­ discontinuities betw\;,:en communi ti es in th e tield (Whittaker 19RU) . fication but concentrated on the vegetation of the back-swamps. In this method an analysis of the vcgdation. as a ruie. is preceeded In thi s study. the vegetati on of the Okavango Delta fl oodplains hy a prdiminary survey of the area. This rl.!collnai ssallec survey was described at a community level, thus a flori stic approached includes the study of general vegetation patterns and thc estahlish ­ was employed. ment of the apparent relations of vari ous vegetation typcs \\ itb geology lopography and soil l:onditions (Whittaker 1980). Siudyarea In a rcconnaissancl! survey o r the study ;m.:a eight diflercnl wiles \vere identified. The sampling dl.! sign was strati tied in rdation to The main study site is by the Nxaraga lagoon (19°35' S 23° 10' zones but rand omiscd withi n the zones. Overall 200 sa mph! pints W) on the Southwest side of Chiefs Island in Moremi Wildlife \vere placed randomly \vi thin the eigh t zones. A 5 m x 5 III plot size Reserve (Figure I ). The area is seasonally flooded by the Bora was selected after determi ning the min imum species arc as dl!si.:rihed River currently th e main out flowing river from the delta. The in Kershaw ( 1973). Muclicr-Dombois and Ellen berg (1974). Wager main fl oodi ng months are May to October. Rainfall in the area (1974), Whittaker (1980). and Kent and Coker ( 1992). Floristic data varies between 500 and 550 mm with the main rainfall months wen! collected when most of the spccics were in their th)\\cring being November to February (S.M.E.C. 1986). The mean stage to allO\v for casy identirication. The total species composition monthly maximum and minimum temperatures during summer and relative abundance of ench s pecit.~ s \Vere rc:corded in c: ach sa mp k range from 30.5°C. to 33.7°C and 14.8°C to 19.2°C with mean plot using the 13raun-Branquet cov..:r abundance scak. with the s. Afr. J. Bot. 2000. M( I) II i o 10 20 OJ)...,...,...., ........ o 5W(lIW. ....,.... __ ~KNCR$ 230- CONT'01JRS IN 1L.A..W.5.L Figure 1 I"opugrarhy ilnd zonation oflhe Okavango Fan (Stainsln:ct et 01 1993) . 1l1lldi l1t.:a lHlIl h~ IVludkr-DomboJs and Ellenb ~rg ( 197.t) and Elkn­ Africa (Fuls 1993 : Eckhmdt ]()t)3 : CO..:tl.l·~ It)93 : COl"lZl:": ('{ «/ hnh.'k ( l l)1-:7). The following moddied Bruun-B1an4uct l:ovcr­ 19')5) agglomerative (luster analys is (( )rl m:i I()67) or Lli\ isi\c clus­ ilnUndanl:L' :\l:'lk \\as used: tering (B redcnkamp et (II 199 1: 13r..:Jenkamp & 8ezuidcnhoul ]99)) \\ere applkd on the samples of lolal tloristic ((Imposition 10 {iL.: ri \l' \cr) r{lrc \\ ilh a ncgligihk c()\cr (usuaIJ) a singk ind i\ itlual): the ti rst approximation uf plant community lypes oj" the n.'le\c.U1t prc:-o:nl hut not ahllndant and \\'it h a small coycr \"<Jlu~ (less an:a. After deri ving th e appro:\imate malll communit ies by applymg than ["n (Jj"t\lc sample plot area): th~ divisive clustering algorithm . TWINSPAN (1Iil! 1979a) to th c nUlllcrous hu t wYering less 1% urthe sample plot tlr nOl than nnristic datil. fu rther n.:linemelll is c.lL"hicYed b) application or the S(l ahundant but cu\ering 1- 5% of the area: Bruun-[3mnquet procedures (B redenkamp 1982. 1(87). The cm.! 2a \ cr~ llumerous and covering less than 5% of the plot arca: product is an hierarchical classilication. \\11[1.:11 can be presented in a 2h ClHC fl ng. between 6-12% of the plot an;a independent of diagrnm or in table form . and where plan t communities arc dclined ahlHltlance: m terms of their total Ilor istie composition. with emphasis on 2111 w\cring het\H!en 13-25% of the plot area independent of indicator or diagnostic spcl:ics. ahllnuance: In this study the cover-abundance data wc re thell captured in 1 cnn::ring 26- 50% of the p[OI independent of abundance: TURBO{VEG). a software package for input. processing. and pres­ .t c{ln.'ri ng 51 - 75% of the pl ot independent of abundance: entation of phytosociologica l dC1la (Hennekens 1996a). The data 5 cm cring. 76- 100% of the independent of abundance. were then subjected to a t\\o-wa)' indicator species unalysis (TW IN­ In ph) to'im: iological work done in the savanna (B redcnkamp SPAN), (H ill 1979a) in MEGATAB, a visual editor ror phytosocio­ 1982. ]()R7 . Bwwn et ai. 1995) and grassland biomes of South logical tables (Hennehns \ 996b). After construction of a S. Afr. J. Ilot. 2000. 66( I) 17 ph~ tl):-{lCioitlgical tahle ( B on~ ongo 19(9). <l s~ Iloplic labk \\as con­ Table 1 Synoptic table of the floodplain vegetation in ..;tfueled h~ calculating the constaJl{:~ \alllC for each species in cal:h the Okavango Delta (% constancy) planl community. thus rcdw.; ing each l.:omTnUnil y to a single column Lli lh l' lahlc.
Recommended publications
  • Snow Cover Dynamics in Andean Watersheds of Chile (32.0-39.5°S) During the Years 2000 - 2013
    Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-357, 2016 Manuscript under review for journal Hydrol. Earth Syst. Sci. Published: 20 September 2016 c Author(s) 2016. CC-BY 3.0 License. Snow cover dynamics in Andean watersheds of Chile (32.0-39.5°S) during the years 2000 - 2013 Alejandra Stehr1,2,3 and Mauricio Aguayo1,2 1Centre for Environmental Sciences EULA-CHILE, University of Concepción, Concepción, Chile 5 2Faculty of Environmental Sciences, University of Concepción, Concepción, Chile 3CRHIAM, University of Concepción, Concepción, Chile Correspondence to: A. Stehr ([email protected]) Abstract. Andean watersheds present important snowfall accumulation mainly during the winter which is later melted during spring and part of the summer. The effect of snowmelt on the water balance can be critical to sustain agriculture activities, 10 hydropower generation, urban water supply and wildlife. In Chile 25% of the territory between the Valparaiso and Araucanía Regions comprise areas where snow precipitation occurs. As in many other difficult-to-access regions of the world, in the Chilean Andes there is a lack of hydrological data like discharge, snow courses, snow depths, which complicate the analysis of important hydrological processes (e.g. water availability). Remote sensing provides a promising opportunity to enhance the assessment and monitoring of the spatial and temporal variability of snow characteristics, like Snow Cover Area (SCA) and 15 Snow Cover Dynamic (SCD). In the above mentioned context the objectives of this study are to evaluate the suitability of MOD10A2 to estimate SCA and to assess SCD at five watersheds (Aconcagua, Rapel, Maule, Biobío and Toltén) located in the Chilean Andes, between latitude 32.0ºS and 39.5ºS.
    [Show full text]
  • Fire and Its Effects on Vegetation in the Okavango Delta.Pdf
    MICHAEL HEINL Fire and its effects on vegetation in the Okavango Delta, Botswana Feuer und sein Einfluss auf die Vegetation im Okavango Delta, Botswana supported by Fire and its effects on vegetation in the Okavango Delta, Botswana Feuer und sein Einfluss auf die Vegetation im Okavango Delta, Botswana Diplomarbeit am Lehrstuhl für Vegetationsökologie Technische Universität München Freising-Weihenstephan Prof. Dr. Jörg Pfadenhauer - 25. August 2001 - Autor: Michael Heinl ([email protected]) Betreuer: Dr. Jan Sliva ([email protected]) Prof. Jörg Pfadenhauer Dr. E. Veenendaal supported by PREFACE II Fire and its effects on vegetation in the Okavango Delta, BoBotttswanaswana Preface The present MSc-Thesis (Diplomarbeit) describes the results of a one-year project about the effects of fire on vegetation, with special focus on the Okavango Delta region, Botswana. The study is based on a new initiated research co-operation between Harry Oppenheimer Okavango Research Centre (HOORC) in Maun, Botswana, part of University of Botswana and the Chair of Vegetation Ecology of the Technische Universität München (TUM), Germany funded by Stifterverband für die Deutsche Wissenschaft within their programme “Forschung für Naturräume“ for young scientists. Under the topic “Elements in Conflict - Anthropogenic fires in the RAMSAR-wetland Okavango-Delta (Botswana)”, prerequisites were set for future co- operative research projects between HOORC and TUM during August 2000 to August 2001. Besides the theoretical introduction to the ecology of the study area ‘Okavango Delta’, this period was primarily used to gain first practical experience on the vegetation and the fire ecology of the Okavango Delta during the stays in Botswana in October 2000 and March/April/Mai 2001.
    [Show full text]
  • The Hydrology of the Okavango Delta, Botswana—Processes, Data and Modelling
    Regional review: the hydrology of the Okavango Delta, Botswana—processes, data and modelling Christian Milzow & Lesego Kgotlhang & Peter Bauer-Gottwein & Philipp Meier & Wolfgang Kinzelbach Abstract The wetlands of the Okavango Delta accom- Introduction modate a multitude of ecosystems with a large diversity in fauna and flora. They not only provide the traditional The Okavango wetlands, commonly called the Okavango livelihood of the local communities but are also the basis Delta, are spread on top of an alluvial fan located in of a tourism industry that generates substantial revenue for northern Botswana, in the western branch of the East the whole of Botswana. For the global community, the African Rift Valley. Waters forming the Okavango River wetlands retain a tremendous pool of biodiversity. As the originate in the highlands of Angola, flow southwards, upstream states Angola and Namibia are developing, cross the Namibian Caprivi-Strip and eventually spread however, changes in the use of the water of the Okavango into the terminal wetlands on Botswanan territory cover- River and in the ecological status of the wetlands are to be ing the alluvial fan (Fig. 1). Whereas the climate in the expected. To predict these impacts, the hydrology of the headwater region is subtropical and humid with an annual Delta has to be understood. This article reviews scientific precipitation of up to 1,300 mm, it is semi-arid in Botswana work done for that purpose, focussing on the hydrological with precipitation amounting to only 450 mm/year in the modelling of surface water and groundwater. Research Delta area. High potential evapotranspiration rates cause providing input data to hydrological models is also over 95% of the wetland inflow and local precipitation to be presented.
    [Show full text]
  • The Okavango; a River Supporting Its People, Environment and Economic Development
    The Okavango; a river supporting its people, environment and economic development Article (Accepted Version) Kgathi, D L, Kniveton, D, Ringrose, S, Turton, A R, Vanderpost, C H M, Lundqvist, J and Seely, M (2006) The Okavango; a river supporting its people, environment and economic development. Journal of Hydrology, 331 (1-2). pp. 3-17. ISSN 0022-1694 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/1690/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk Special Issue Journal of Hydrology The Hydrology of the Okavango Basin and Delta in a development perspective Guest editors: Dominic Kniveton, and Martin Todd Paper 1.
    [Show full text]
  • Biodiversity in Sub-Saharan Africa and Its Islands Conservation, Management and Sustainable Use
    Biodiversity in Sub-Saharan Africa and its Islands Conservation, Management and Sustainable Use Occasional Papers of the IUCN Species Survival Commission No. 6 IUCN - The World Conservation Union IUCN Species Survival Commission Role of the SSC The Species Survival Commission (SSC) is IUCN's primary source of the 4. To provide advice, information, and expertise to the Secretariat of the scientific and technical information required for the maintenance of biologi- Convention on International Trade in Endangered Species of Wild Fauna cal diversity through the conservation of endangered and vulnerable species and Flora (CITES) and other international agreements affecting conser- of fauna and flora, whilst recommending and promoting measures for their vation of species or biological diversity. conservation, and for the management of other species of conservation con- cern. Its objective is to mobilize action to prevent the extinction of species, 5. To carry out specific tasks on behalf of the Union, including: sub-species and discrete populations of fauna and flora, thereby not only maintaining biological diversity but improving the status of endangered and • coordination of a programme of activities for the conservation of bio- vulnerable species. logical diversity within the framework of the IUCN Conservation Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitoring 1. To participate in the further development, promotion and implementation the status of species and populations of conservation concern. of the World Conservation Strategy; to advise on the development of IUCN's Conservation Programme; to support the implementation of the • development and review of conservation action plans and priorities Programme' and to assist in the development, screening, and monitoring for species and their populations.
    [Show full text]
  • Wildland Fire Management Handbook for Sub-Sahara Africa
    cover final.qxd 2004/03/29 11:57 AM Page 1 Africa is a fire continent. Since the early evolution of humanity, fire has been harnessed as a land-use tool. Wildland Fire Management Many ecosystems of Sub-Sahara Africa that have been WILDLAND FIRE MANAGEMENT HANDBOOK WILDLAND FIRE MANAGEMENT shaped by fire over millennia provide a high carrying HANDBOOK WILDLAND FIRE MANAGEMENT Handbook for Sub-Sahara Africa capacity for human populations, wildlife and domestic livestock. The rich biodiversity of tropical and sub- tropical savannas, grasslands and fynbos ecosystems is attributed to the regular influence of fire. However, as a Edited by Johann G Goldammer & Cornelis de Ronde result of land-use change, increasing population FOR SUB-SAHARA AFRICA pressure and increased vulnerability of agricultural land, FOR SUB-SAHARA AFRICA timber plantations and residential areas, many wildfires have a detrimental impact on ecosystem stability, economy and human security. The Wildland Fire Management Handbook for Sub-Sahara Africa aims to address both sides of wildland fire, the best possible use of prescribed fire for maintaining and stabilising eco- systems, and the state-of-the-art in wildfire fire prevention and control. The book has been prepared by a group of authors with different backgrounds in wildland fire science and fire management. This has resulted in a book that is unique in its style and contents – carefully positioned between a scientific textbook and a guidebook for fire manage- ment practices, this volume will prove invaluable to fire management practitioners and decision-makers alike. The handbook also makes a significant contribution towards facilitating capacity building in fire manage- ment across the entire Sub-Sahara Africa region.
    [Show full text]
  • Africa Resource Guide Trunk Contents
    AFRICA RESOURCE GUIDE TRUNK CONTENTS Upon receiving the map, please check the trunk for all contents on this list. If anything is missing or damaged, please call or email Liesl Pimentel immediately at 1-480-243-0753 or [email protected]. When you are done with the map, carefully check the trunk for all the contents on this list. Please report any missing or damaged items before the map is picked up. PROPS CARDS [ ] Inflatable globe [ ] A Legend-ary Exploration Cards (36) [ ] Electric air pump [ ] Country Cards (52) [ ] Menu holders (40) [ ] Cardinal Directions Cards (32) [ ] Blue nylon scale bar straps (4) [ ] African Animal Safari Cards (32) [ ] Red nylon Equator strap [ ] Physical Features Cards (24) [ ] Bingo chips [ ] Map Keys (4) [ ] Cones: 12 each, Red, Yellow, Green, Blue [ ] Plastic chains: 1 each, Red, Yellow, Green, Blue, Orange [ ] Knotted rope, Yellow Borrowers will be [ ] Hoops (20) financially responsible [ ] Poly spots—Small: 8 each, Yellow, Blue, Red, for replacement costs Green of any missing or [ ] Poly spot—Large: Orange (1) damaged items. [ ] Lanyards: 10 each, Red, Yellow, Green, Blue [ ] Straps (extra) with buckles for tying map for transit (2) [ ] Extra Quick Link (for replacement if lost/broken) Copyright © 2015 National Geographic Society The National Geographic Society is one of the All rights reserved. world’s largest nonprofit scientific and educational organizations. Founded in 1888 to “increase and diffuse geographic knowledge,” the Society’s mis- STAFF FOR THIS PROJECT sion is to inspire people to care about the planet. Dan Beaupré, VP, Experiences, Education and It reaches more than 400 million people worldwide each month Children’s Media through its official journal, National Geographic, and other mag- Julie Agnone, VP, Operations, Education and azines; National Geographic Channel; television documentaries; music; radio; films; books; DVDs; maps; exhibitions; live events; Children’s Media school publishing programs; interactive media; and merchan- Amanda Larsen, Managing Art Director dise.
    [Show full text]
  • The Afar Volcanic Province Within the East African Rift System: Introduction
    Downloaded from http://sp.lyellcollection.org/ by guest on September 29, 2021 The Afar volcanic province within the East African Rift System: introduction G. YIRGU 1, C.J. EBINGER 2 & P.K.H. MAGUIRE 3 1Department of Geology and Geophysics, University of Addis Ababa, PO Box 176, Addis Ababa, Ethiopia (e-mail: yirgu, g @ geol. aau. edu. et) 2Department of Geology, Royal Holloway, University of London, Egham, TW20 OEX, UK (e-mail: c. ebinger@ gl. rhul.ac, uk) 3Department of Geology, University of Leicester, Leicester LE1 7RH, UK (e-mail: pkm @ le.ac, uk) Continental rifting processes continually reshape Over 1000000km 3 of basalts and more the Earth's surface, producing sediment-filled rift minor rhyolites cover the c. 1000km-wide basins, or rupturing the tectonic plates to form Ethiopia-Yemen plateau, which has experienced a new ocean basins. Rift architecture and tectonics maximum basement uplift of c. 1600 m above the focus volcanic and seismic hazards, as well as mean altitude of the African plate to the west (Pik geothermal energy resources, while rift systems in et al. 2003). The Ethiopian Rift, which transects Africa have controlled faunal dispersal patterns the plateau, forms the third arm of the Red Sea- and influenced human evolution in the past. The Gulf of Aden triple junction within the Eocene- response of a plate to extension and heating pro- Oligocene so-called Afar volcanic province (also vides fundamental clues into the plate rheology, known as the Ethiopia-Yemen flood basalt pro- and the underlying mantle convection patterns. A vince) (Fig. 1). Thus, the region records both the number of models have been proposed to explain evolution of Earth' s youngest flood basalt province, the success and failure of continental rift zones, its most youthful passive continental margins, as but there remains no consensus on how strain loca- well as archetypal continental rift zones.
    [Show full text]
  • 1 Trophic Characteristics of Aquatic Habitats with Different Flooding
    Trophic characteristics of aquatic habitats with different flooding regimes in the Okavango Delta, Botswana Thesis submitted for the degree of Doctor of Philosophy by Richard Mazebedi University College London, Department of Geography March 2019 1 Declaration I, Richard Mazebedi, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis 2 Abstract In periodically flooded wetland systems, the seasonal flooding regime is the main driver of ecosystem functions. The relationship between a wetlands’ hydrology and ecosystem properties is therefore crucial to understand. Food web structure is an important ecosystem property that determines the stability of aquatic populations and hence the resilience of ecosystems to potential threats. While theoretical concepts predicting energy flow and food web dynamics in wetland ecosystems exist, there is still need for empirical research to validate the predictions to better inform local wetland management. My thesis examined the variability of algal primary productivity and, using stable isotope ratios of carbon and nitrogen (δ13C and δ15N respectively), the aquatic food web structure of differently flooded aquatic habitats within the Okavango Delta, in Botswana. The results from in-situ algal productivity incubations, showed that primary productivity rate is higher at Lake Ngami compared with Nxaraga lagoon and Phelo floodplain due to greater levels of dissolved nutrients at the lake. The relative importance of basal carbon sources for fish biomass production varied across study sites, but overall, algal sources were the principal basal carbon sources for fish across the study sites. The relative importance of carbon from macrophytes was greatest at Phelo floodplain during high flood.
    [Show full text]
  • Flood-Controlled Cycle of Life in the Okavango Delta
    Sentinel Vision EVT-111 Flood-controlled cycle of life in the Okavango delta 28 September 2017 Sentinel-3 OLCI FR acquired on 17 November 2016 at 08:01:14 UTC Sentinel-1 CSAR IW acquired on 18 November 2016 from 16:56:01 t o 16:56:26 UTC Sentinel-2 MSI acquired on 02 December 2016 at 08:23:12 UTC ... Author(s): Sentinel Vision team, VisioTerra, France - [email protected] 2D Layerstack Keyword(s): Floodplain, marsh, alluvial fan, endorheic basin, salt pan, salinisation, ramsar wetland, UNESCO World heritage, wildlife conservation area, fire, burn scarKalahari desert, Okavango, Botswana, Namibia, Angola Fig. 1 - S3 OLCI (02.07.2017) - 20,16,10 composite - Kalahari basin with Angola highlands, Etosha & Makgadikgadi pans & Okavango delta. 2D view The Kalahari desert encompasses most of Botswana and Namibia. It is a semi-arid endorheic basin located on a flat 1000m high plateau. It contains two large seasonally inundated flat pans, the Makgadikgadi Pan in Botswana and Etosha Pan in Namibia. The Angolan high plateau ultimately feeds the Zambezi River, the Congo river, the Cunene River but a network of gently sloping rivers also feed the only permanent river of the Kalahari, the Okavango. For most of its journey through the Kalahari, the Okavango river crosses an alternation of sand dunes (blue in the S-1) and the iron oxide-rich laterite-filled furrows. The Okavango river basin - source United Nation. According to the tour guide Africabespoke: "At some stage in the latest 65 million year period large Rivers flowed into the Kalahari Basin, creating a giant lake which in turn emptied into the Indian Ocean via the Limpopo River.
    [Show full text]
  • Free Flowing Rivers, Sustaining Livelihoods
    Free-Flowing Rivers Sustaining Livelihoods, Cultures and Ecosystems About International Rivers International Rivers protects rivers and defends the rights of communities that depend on them. We seek a world where healthy rivers and the rights of local river communities are valued and protected. We envision a world where water and energy needs are met without degrading nature or increasing poverty, and where people have the right to participate in decisions that affect their lives. We are a global organization with regional offices in Asia, Africa and Latin America. We work with river-dependent and dam-affected communities to ensure their voices are heard and their rights are respected. We help to build well-resourced, active networks of civil society groups to demonstrate our collective power and create the change we seek. We undertake independent, investigative research, generating robust data and evidence to inform policies and campaigns. We remain independent and fearless in campaigning to expose and resist destructive projects, while also engaging with all relevant stakeholders to develop a vision that protects rivers and the communities that depend upon them. This report was published as part of the Transboundary Rivers of South Asia (TROSA) program. TROSA is a regional water governance program supported by the Government of Sweden and managed by Oxfam. International Rivers is a regional partner of the TROSA program. Views and opinions expressed in this report are those of International Rivers and do not necessarily reflect those of Oxfam, other TROSA partners or the Government of Sweden. Author: Parineeta Dandekar Editor: Fleachta Phelan Design: Cathy Chen Cover photo: Parineeta Dandekar - Fish of the Free-flowing Dibang River, Arunachal Pradesh.
    [Show full text]
  • Snow Cover Dynamics in Andean Watersheds of Chile (32.0–39.5◦ S) During the Years 2000–2016
    Hydrol. Earth Syst. Sci., 21, 5111–5126, 2017 https://doi.org/10.5194/hess-21-5111-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Snow cover dynamics in Andean watersheds of Chile (32.0–39.5◦ S) during the years 2000–2016 Alejandra Stehr1,2 and Mauricio Aguayo1,2 1Centre for Environmental Sciences EULA-CHILE, University of Concepción, Concepción, Chile 2Faculty of Environmental Sciences, University of Concepción, Concepción, Chile Correspondence to: Alejandra Stehr ([email protected]) Received: 15 July 2016 – Discussion started: 20 September 2016 Revised: 18 June 2017 – Accepted: 18 August 2017 – Published: 11 October 2017 Abstract. Andean watersheds present important snowfall ac- and MOD10A2, showing that the MODIS snow product can cumulation mainly during the winter, which melts during the be taken as a feasible remote sensing tool for SCA estimation spring and part of the summer. The effect of snowmelt on the in southern–central Chile. Regarding SCD, no significant re- water balance can be critical to sustain agriculture activities, duction in SCA for the period 2000–2016 was detected, with hydropower generation, urban water supplies and wildlife. the exception of the Aconcagua and Rapel watersheds. In ad- In Chile, 25 % of the territory between the region of Val- dition to that, an important decline in SCA in the five wa- paraiso and Araucanía comprises areas where snow precipi- tersheds for the period of 2012 and 2016 was also evident, tation occurs. As in many other difficult-to-access regions of which is coincidental with the rainfall deficit for the same the world, there is a lack of hydrological data of the Chilean years.
    [Show full text]