Extreme Weather
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Causes and Behavior of a Tornadic Fire-Whirlwind
61 §OUTHWJE§T FOJRJE§T & JRANGJE JEXlPJEJREMlE '"'"T § TAT1,o~ 8 e r k e I e y , C a I i f o '{"1'~qiNNT':l E_ ;:;;~"~~~1 ,;i,.,. ..t"; .... ~~ :;~ ·-:-; , r~-.fi... .liCo)iw:;-;sl- Central Reference File II ....·~ 0 ........................................(). 7 ;s_ .·············· ··········· Causes and Behavior of a Tornadic Fire-Whirlwind ARTHUR R.PIRSKO, LEO M.SERGIUS, AND CARL W.HICKERSON ABSTRACT: A destructive whirlwind of tor Normally an early March nadic force was formed in a 600-acre brush fire burning on the lee side o f a ridge brush fire would not be much near Santa Barbara on March 7, 1964. The of a problem for experienced fire whirlwind, formed in a post-frontal unstable air mass, cut a mile long path, firefighters in the Santa Bar- injured 4 people, destroyed 2 houses, a barn, · bara area of the Los Padres and 4 automobiles, and wrecked a 100-tree avocado orchard. National Forest in southern California. But the Polo fire of March 7, 1964, spread several times faster than expected and culminated in a fire -whirl wind of tornadic violence (fig. 1). It represents a classic case of such fire behavior and was unusually well documented by surface and upper air observations. This fire damaged 600 acres of prime watershed land, and the fire -induced tornado injured 4 persons; destroyed 2 homes, a barn, and 3 automobiles; and toppled almost 100 avocado trees. BURNING CONDITIONS FUELS The fire area was predominantly 50-year old ceanothus (Cea nothus sp.) that stood 10 to 15 feet high (fig. 2). Minor amounts of California sagebrush (Artemisia californica) and scrub oak (Quer cus dumosa) were intermixed with the ceanothus. -
Synoptic Meteorology
Lecture Notes on Synoptic Meteorology For Integrated Meteorological Training Course By Dr. Prakash Khare Scientist E India Meteorological Department Meteorological Training Institute Pashan,Pune-8 186 IMTC SYLLABUS OF SYNOPTIC METEOROLOGY (FOR DIRECT RECRUITED S.A’S OF IMD) Theory (25 Periods) ❖ Scales of weather systems; Network of Observatories; Surface, upper air; special observations (satellite, radar, aircraft etc.); analysis of fields of meteorological elements on synoptic charts; Vertical time / cross sections and their analysis. ❖ Wind and pressure analysis: Isobars on level surface and contours on constant pressure surface. Isotherms, thickness field; examples of geostrophic, gradient and thermal winds: slope of pressure system, streamline and Isotachs analysis. ❖ Western disturbance and its structure and associated weather, Waves in mid-latitude westerlies. ❖ Thunderstorm and severe local storm, synoptic conditions favourable for thunderstorm, concepts of triggering mechanism, conditional instability; Norwesters, dust storm, hail storm. Squall, tornado, microburst/cloudburst, landslide. ❖ Indian summer monsoon; S.W. Monsoon onset: semi permanent systems, Active and break monsoon, Monsoon depressions: MTC; Offshore troughs/vortices. Influence of extra tropical troughs and typhoons in northwest Pacific; withdrawal of S.W. Monsoon, Northeast monsoon, ❖ Tropical Cyclone: Life cycle, vertical and horizontal structure of TC, Its movement and intensification. Weather associated with TC. Easterly wave and its structure and associated weather. ❖ Jet Streams – WMO definition of Jet stream, different jet streams around the globe, Jet streams and weather ❖ Meso-scale meteorology, sea and land breezes, mountain/valley winds, mountain wave. ❖ Short range weather forecasting (Elementary ideas only); persistence, climatology and steering methods, movement and development of synoptic scale systems; Analogue techniques- prediction of individual weather elements, visibility, surface and upper level winds, convective phenomena. -
ECSS 2009 Abstracts by Session
th 5 European Conference on Severe Storms 12 - 16 October 2009 - Landshut - GERMANY ECSS 2009 Abstracts by session ECSS 2009 - 5th European Conference on Severe Storms 12-16 October 2009 - Landshut – GERMANY List of the abstract accepted for presentation at the conference: O – Oral presentation P – Poster presentation Session 08: (Extra-)tropical cyclones: embedded thunderstorms and large-scale wind fields Page Type Abstract Title Author(s) Sensitivities of Mediterranean intense cyclones: analysis O L. Garcies, V. Homar and verification A study of generation of available potential energy in South 247 O A. Vetrov, N. Kalinin cyclones and hazard events over the Ural 249 O Lightning activity in hurricanes C. Price, Y. Yair, M. Asfur O Sting jets in climatological datasets O. Martinez-Alvarado, S. Gray 251 O Cold-season mesoscale convective systems in Germany C. Gatzen, T. Púčik Comparison of two cold-season mesoscale convective 253 P C. Gatzen, T. Púčik, D. Ryva systems Klaus over Basque Country: local characteristics and 255 P S. Gaztelumendi, J. Egaña Euskalmet operational aspects A. Schneidereit, K. Riemann- North-Atlantic extra-tropical cyclone intensities, wind 257 P Campe, R. Blender, K. Fraedrich, fields, and CAPE F. Lunkeit Klaus overview and comparison with other cases affecting 259 P J. Egaña, S. Gaztelumendi Basque country area A numerical study of the windstorm Klaus: role of the sea 261 P surface temperature and domain size N. Tartaglione, R. Caballero 245 246 5th European Conference on Severe Storms 12 - 16 October 2009 - Landshut - GERMANY A STUDY OF GENERATION OF AVAILABLE POTENTIAL ENERGY IN SOUTH CYCLONES AND HAZARD EVENTS OVER THE URAL A.Vetrov1, N. -
Lightning Injuries in Northern Ireland Aseel Sleiwah1, Jill Baker2, Christopher Gowers3, Derek M Elsom4, Abid Rashid5
Ulster Med J 2018;87(3):168-172 Clinical Paper Lightning injuries in Northern Ireland Aseel Sleiwah1, Jill Baker2, Christopher Gowers3, Derek M Elsom4, Abid Rashid5. Accepted: 25th January 2018 Provenance: externally peer-reviewed. ABSTRACT Introduction: Lightning injuries are uncommon in Northern Ireland (NI) with scarce reports detailing incidence and local experience. We present a case study of 3 patients involved in a single lightning strike with a review of the incidence of similar injuries in the province. Methods: Data from TORRO’s National Lightning Incidents Database between 1987 and 2016 (30 years) were searched to identify victims of lightning injuries in NI. Information on 3 patients with lightning injuries that were managed in our regional burns and plastic surgery service was collected and examined. A supplementary search in hospital records was conducted over the last 20 years to identify additional data. Results: Prior to our study, 6 victims of lightning injuries were identified of whom 5 survived and 1 died. Our 3 patients comprised of 2 children and 1 accompanying adult. All survived but the adult suffered cardiac arrest and required a prolonged period of cardiopulmonary resuscitation. Conclusion: While lightning injuries are rare in NI, this is the first report of more than one person affected by a single lightning incident in the province. In our limited experience, immediate public response and prolonged cardiopulmonary resuscitation efforts facilitated by automated defibrillators result in a favourable outcome. BACKGROUND: off-duty soldier struck on the Mourne Mountains in 2006. In the United Kingdom (UK), lightning strikes are relatively The hospital data search did not identify any other cases. -
Overview of ESSL's Severe Convective Storms Research Using The
Revision submitted to Atmos. Res., Manuscript No. ATMOSRES-D-07-00255R1 Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD Nikolai Dotzek1,2,*, Pieter Groenemeijer3,1, Bernold Feuerstein4,1, and Alois M. Holzer5,1 1 European Severe Storms Laboratory (ESSL), Münchner Str. 20, 82234 Wessling, Germany 2 Deutsches Zentrum für Luft- und Raumfahrt (DLR) - Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82234 Wessling, Germany 3 Institut für Meteorologie und Klimaforschung, Forschungszentrum/Universität Karlsruhe, Postfach 3640, 76021 Karlsruhe, Germany 4 Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany 5 HD1 Weather Forecasting Department, ORF Austrian Broadcasting Corporation, Argentinierstr. 30a, 1040 Wien, Austria Special Issue: Proc. 4th European Conf. on Severe Storms Received 2 December 2007, revised 12 October 2008 * Corresponding Author: Dr. Nikolai Dotzek, European Severe Storms Laboratory (ESSL), c/o DLR-IPA, Münchner Str. 20, 82234 Wessling, Germany. Tel: +49-8153-28-1845, Fax: +49-8153-28-1841, eMail: [email protected], http://essl.org/people/dotzek/ 1 1 Abstract 2 3 Severe thunderstorms constitute a major weather hazard in Europe, with an 4 estimated total damage of 5-8 billion euros each year nowadays. Even 5 though there is an upward trend in damage due to increases in vulnerability 6 and possibly also due to climate change impacts, a pan-European database 7 of severe thunderstorm reports in a homogeneous data format did not exist 8 until a few years ago. The development of this European Severe Weather 9 Database (ESWD) provided the final impetus for the establishment of the 10 European Severe Storms Laboratory (ESSL) as a non-profit research 11 organisation in 2006, after having started as an informal network in 2002. -
Biometeorology, ESPM 129 1 Lecture 16, Wind and Turbulence, Part 1
Biometeorology, ESPM 129 Lecture 16, Wind and Turbulence, Part 1, Surface Boundary Layer: Theory and Principles Instructor: Dennis Baldocchi Professor of Biometeorology Ecosystem Science Division Department of Environmental Science, Policy and Management 345 Hilgard Hall University of California, Berkeley Berkeley, CA 94720 October 8, 2014 Topics to be Covered: A. Processes A. Wind and Turbulence 1. Concepts a. Definition of Turbulence b. Reynold’s Number c. Conservation equation for wind d. TKE budget, conceptual Away out here they got a name For rain and wind and fire The rain is Tess, the fire Joe, And they call the wind Mariah Lerner and Lowe, ‘Paint your Wagon’ L16.1 Processes We experience wind and turbulence in every day life. It affects how airplanes fly, the efficiency of automobile travel and our ability to the predict weather and climate. Wind is moving air. Wind has speed and direction. Thereby, wind velocity is a vector quantity. It is distinct from its relative wind speed, which only has magnitude. Using the Cartesian coordinate system we define three wind velocities. The longitudinal wind velocity is u. This is the vector along the horizontal mean wind (x). The lateral wind velocity is v. This is the cross-wind component (y). The vertical (z) wind velocity is w. The instantaneous wind velocity is comprised of 3 components, the mean wind velocity, a periodic wave velocity and random fluctuating velocities. The mean wind advects 1 Biometeorology, ESPM 129 material. Waves tend to occur at night under stable thermal stratification. If they are regular they transport very little heat and mass. -
Storm Chasers a Reading A–Z Level R Leveled Book Word Count: 1,176 Storm Chasers
LEVELED BOOK • R Storm Chasers A Reading A–Z Level R Leveled Book Word Count: 1,176 Storm Chasers Written by Linda Johns Visit www.readinga-z.com www.readinga-z.com for thousands of books and materials. Photo Credits: Front cover, pages 4, 14 (bottom center), 20 (top, bottom center, bottom): courtesy of NOAA Photo Library, NOAA Central Library; OAR/ERL/National Severe Storms Laboratory (NSSL); back cover: courtesy of NOAA/Historic NWS Collection; title page: © Reven T.C. Wurman/Alamy; page 3: courtesy Storm of Mark Wolfe/FEMA; page 5: courtesy of Dr. Joseph Golden, NOAA; pages 7 (all), 16: courtesy of NOAA; page 10: © Eric Nguyen/Jim Reed Photography/ Science Source/Getty Images; page 11: courtesy of NWS; pages 12, 17: © Jim Reed/Science Faction/Getty Images; page 13: © iStockphoto.com/James Pauls; page 14 (top): courtesy of NWS Birmingham/NOAA; pages 14 (top center, bottom), 15 (top): courtesy of Mike Branick/NWSFO/NOAA; page 15 (bottom): Chasers courtesy of Chuck Doswell/FEMA; page 18: courtesy of Tim Burkitt/FEMA; page 20 (top center): © iStockphoto.com/Clint Spencer Storm Chasers Level R Leveled Book © Learning A–Z Correlation Written by Linda Johns Written by Linda Johns LEVEL R Illustrated by Cende Hill Fountas & Pinnell N All rights reserved. Reading Recovery 30 DRA 30 www.readinga-z.com www.readinga-z.com Storm chasers film a funnel cloud. Chasing the Wind What kind of person chases a storm? Most people run for cover when the weather turns nasty. But for storm chasers, high Table of Contents winds, funnel clouds, and lightning are part Chasing the Wind ........................4 of the job. -
The Voice in the Whirlwind: Lessons for Job -- Randomness and Natural
The Voice in the Whirlwind: Lessons for Job – Randomness and Natural Evil Richard F. Carlson (Redlands University Emeritus) This paper is a joint endeavor with my friend Jason Hine, a colleague with whom I have worked on a number of projects involving science, philosophy and Christian faith. The biblical book of Job recounts a man described to be, as we read in the very first verse, “blameless – a man of complete integrity.” and one who was very rich in possession, family and health. But calamity quickly strikes Job. A fire from heaven burns up Job’s sheep, a powerful wind sweeps in from the wilderness and collapses Job’s house killing his children, and later Job suffers boils from head to foot. Job’s attitude progresses – first a calm acceptance of his losses, but later he insists that he has been treated unfairly, a conclusion he reaches after receiving unhelpful and inappropriate counsel from four friends. Job then screams at God, demands a hearing and asks for justice. And then a surprise - God responds to Job. God, as the Voice in the whirlwind, opens his response by making one and only one criticism of Job – God says Job is ignorant and asks in Job 38:2, “Who is this that questions my wisdom with such ignorant words?” In the speeches that follow in chapters 38-41 God teaches Job aspects of creation, mainly through examples stated in terms of rhetorical questions. By doing so God points out to Job the divine strategy in planning, creating and overseeing the operation of the world. -
Tornado Basics
TORNADO BASICS NOAA/National Weather Service Tornado FAQ What is a tornado? According to the Glossary of Meteorology (AMS 2000), a tornado is "a violently rotating column of air, pendant from a cumuliform cloud or underneath a cumuliform cloud, and often (but not always) visible as a funnel cloud." Literally, in order for a vortex to be classified as a tornado, it must be in contact with the ground and the cloud base. Weather scientists haven't found it so simple in practice, however, to classify and define tornadoes. For example, the difference is unclear between an strong mesocyclone (parent thunderstorm circulation) on the ground, and a large, weak tornado. There is also disagreement as to whether separate touchdowns of the same funnel constitute separate tornadoes. It is well- known that a tornado may not have a visible funnel. Also, at what wind speed of the cloud-to-ground vortex does a tornado begin? How close must two or more different tornadic circulations become to qualify as a one multiple-vortex tornado, instead of separate tornadoes? There are no firm answers. BACK UP TO THE TOP How do tornadoes form? The classic answer -- "warm moist Gulf air meets cold Canadian air and dry air from the Rockies" -- is a gross oversimplification. Many thunderstorms form under those conditions (near warm fronts, cold fronts and drylines respectively), which never even come close to producing tornadoes. Even when the large-scale environment is extremely favorable for tornadic thunderstorms, as in an SPC "High Risk" outlook, not every thunderstorm spawns a tornado. The truth is that we don't fully understand. -
The Hurricane (Revised 1938)
H UNITED STATES DEPARTMENT OF AGRICULTURE MISCELLANEOUS PUBLICATION No. 197 WASHINGTON, D. C. FEBRUARY 1939 THE HURRICANE (REVISED 1938) Í B R A R Y By RECEIVED I. R. TANNEHILL ^ SEP 141939 ^ Principal Meteorologist, Weather Bureau ^' S. Deparrme/,i of AgdeuJiure UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1939 Price 5 cent! For sale by the Superintendent of Documents, Washington, D. C. CONTENTS Page Page Introduction 1 Barometric pressure 5 History 1 Rainfall, 7 Causes 2 Tides "íllllllllíllíl 7 Formative stages 2 The law of storms . 7 Places of origin 2 Dimensions of the hurricane 8 Progressive movement 4 Premonitory signs g Irregular movements 4 Frequency g Hurricane winds 5 Hurricane warnings 9 The ^'Eye of the Storm'' 5 Track charts 9 THE HURRICANE By I. R. TANNEHILL, principal meteorologist, Weather Bureau INTRODUCTION disturbances," with appropriate modifying words, such as slight, moderate, considerable, etc., to indicate the The word "hurricane," signifying "big wind," is said intensity. to be of Carib Indian origin. It has come into general In the discussion which follows, the word "hurri- use as the name for any tropical cyclone of the Atlantic cane" is employed in the technical sense to mean a storm Ocean, Gulf of Mexico, Caribbean Sea, Eastern Pa- of tropical origin with cyclonic wind circulation, and cific (off Central America and Mexico), and Southern refers more specifically to those which occur in the Pacific. It is identical with the typhoon of the China North Atlantic Ocean, the Gulf of Mexico, and the Sea, the baguio of the Philippines, and the cyclone of Caribbean Sea. -
Title (Times New Roman 14-Heading Centred)
th 5 European Conference on Severe Storms 12 - 16 October 2009 - Landshut - GERMANY ECSS 2009 Abstracts by session ECSS 2009 - 5th European Conference on Severe Storms 12-16 October 2009 - Landshut – GERMANY List of the abstract accepted for presentation at the conference: O – Oral presentation P – Poster presentation Session 11: Socio-economic aspects, e.g. damage analysis, wind speed vs. damage relation Page Type Abstract Title Author(s) Hail and wind damage in Finland: Societal impacts and J. Rauhala, J.-P. Tuovinen, D. M. 337 O preparedness Schultz Tropical cyclone losses in the USA and the impact of 339 O climate change — A trend analysis based on data from a S. Schmidt, C. Kemfert, P. Höppe new approach to adjusting storm losses Media communication of extreme events: a case study for 341 O L. H. Nunes Brazil Comparisons of low level radar winds, in situ 1-m winds, O J. Wurman, K. Kosiba and damage in tornadoes Reconstruction of near-surface tornado wind fields from 343 O V. Beck, N. Dotzek forest damage Radar parameters determining the kinetic energy of hail J. L. Sánchez, B. Gil, L. López, E. 345 O precipitation in the Iberian Peninsula García-Ortega A. Guerrero, M. van de Poll, K. 347 O The RMS U.S. and Canada Severe Convective Storm Model Nzerem Research aspects of Crisis Prevention and Risk & Crisis 349 O Management in Enterprises - Empirical data from A. Kulmhofer Austrian Enterprises N. Wever, G. Groen, R. Jilderda, O Climate and climate scenarios for Mainport Schiphol R. Leander, D. Wolters Cost-benefit Analysis of the Hail Suppression Project in 351 P M. -
On Vortex Shedding and Prediction of Vortex-Induced Vibrations of Circular Cylinders
INEI-NO NTNU Trondheim Norges teknisk-naturvitenskapelige universitet — , Doktor ingenieravhandling 1997:44 1049 Institutt for marine konstraksjoner MTA-rapport 1997:117 cylinders On Vortex Shedding and Prediction of Vortex-Induced Vibrations of Circular Cylinders A thesis submitted in partial fulfillment of the requirements for the degree of doktor ingenipr by Karl H. Halse Trondheim, February 1997 Department of Marine Structures Faculty of Marine Technology Norwegian University of Science and Technology DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Abstract This work addresses the vortex shedding phenomenon and the problem of predicting vortex- induced vibrations of slender marine structures. This high-frequency response form may con tribute significantly to the fatigue damage of a structure. As the development of hydrocarbons moves to deeper waters, the importance of accurately predicting the vortex-induced response has increased. Thus the need for proper response prediction methods is large. The problem of vortex-induced vibrations is a classical example of a fluid-structure interaction problem, which involves both fluid dynamics and structural mechanics. In this work an extensive review of existing research publications about vortex shedding from circular cylinders and the vortex-induced vibrations of cylinders is presented. Furthermore an overview of the different numerical approaches to modelling the fluid flow is given. A comparison study of existing response prediction methods revealed very large deviations be tween the response predicted by the different methods. Differences were observed both in re sponse shapes and in vibration amplitudes. Most of the existing prediction methods are based upon simple force expressions, where the flow velocity is the only parameter representing the flow.