PUBLICATIONS Journal of Geophysical Research: Earth Surface RESEARCH ARTICLE Debris entrainment and landform genesis 10.1002/2015JF003509 during tidewater glacier surges Special Section: Harold Lovell1,2,3, Edward J. Fleming2,4,5, Douglas I. Benn2,6, Bryn Hubbard7, Sven Lukas1, Glacier Surging and Ice Brice R. Rea8, Riko Noormets2, and Anne E. Flink2 Streaming 1School of Geography, Queen Mary University of London, London, UK, 2Department of Geology, University Centre in 3 Key Points: Svalbard (UNIS), Longyearbyen, Norway, Now at Department of Geography, University of Portsmouth, Portsmouth, UK, • We investigate basal ice and englacial 4School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK, 5Cambridge Arctic structures at a surge-type glacier Shelf Program, Cambridge University, Cambridge, UK, 6School of Geography and Geosciences, University of Saint Andrews, • The formation of both is linked to Saint Andrews, UK, 7Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK, 8School of tectonic processes during the surge • Melt-out of englacial structures Geosciences, University of Aberdeen, Aberdeen, UK produces proglacial ridge networks Abstract The englacial entrainment of basal debris during surges presents an opportunity to investigate processes acting at the glacier bed. The subsequent melt-out of debris-rich englacial structures during the Correspondence to: quiescent phase produces geometrical ridge networks on glacier forelands that are diagnostic of surge H. Lovell,
[email protected] activity. We investigate the link between debris entrainment and proglacial geomorphology by analyzing basal ice, englacial structures, and ridge networks exposed at the margins of Tunabreen, a tidewater surge-type glacier in Svalbard. The basal ice facies display clear evidence for brittle and ductile tectonic deformation, Citation: Lovell, H., E.