Analytical and Geometric Approches of Non-Perturbative Quantum Field Theories

Total Page:16

File Type:pdf, Size:1020Kb

Analytical and Geometric Approches of Non-Perturbative Quantum Field Theories Analytical and Geometric approches of non-perturbative Quantum Field Theories Pierre J. Clavier1,2 1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, 75005, Paris, France 2 CNRS, UMR 7589, LPTHE, 75005, Paris, France Defended the 3rd of July 2015 arXiv:1511.09190v1 [math-ph] 30 Nov 2015 A la mémoire de André Clavier. Si l’eau pouvait éteindre un brasier amoureux, Ton amour qui me brûle est si fort douloureux, Que j’eusse éteint son feu de la mer de mes larmes. Pierre de Marbeuf. Et la mer et l’amour ont l’amer pour partage. Contents Remerciements v Résumé long vii Introduction 1 1 The Hopf algebra of renormalization 7 1.1 Algebraic preliminaries . .7 1.1.1 Algebra, coalgebra . .7 1.1.2 Bialgebra, Hopf algebra . .9 1.1.3 From bialgebras to Hopf algebras . 11 1.1.4 Characters group . 14 1.2 Connes–Kreimer Hopf algebra . 15 1.2.1 Elements of graph theory . 15 1.2.2 The Hopf algebra structure of Feynman graphs . 17 1.2.3 Birkhoff decomposition . 20 1.2.4 Regularized and renormalized Feynman rules . 23 1.3 Renormalization Group . 24 1.3.1 Renormalization group equation . 24 1.3.2 Correlation functions . 27 1.3.3 RGE for the correlation functions . 28 2 Linear Schwinger–Dyson equations 31 2.1 The massless Yukawa model . 31 2.1.1 The Schwinger–Dyson equation . 31 2.1.2 Parametric solution . 33 2.1.3 Lessons from the massless Yukawa model . 37 2.2 The massive Yukawa model . 37 2.2.1 The Schwinger–Dyson equation . 37 2.2.2 Solution in the ultraviolet limit . 40 2.2.3 Solution in the infrared limit . 42 2.3 Massive linear Wess–Zumino model . 44 2.3.1 The Schwinger–Dyson equation . 45 2.3.2 Parametric solution . 47 i ii CONTENTS 3 The massless Wess–Zumino model I: the physical plane 51 3.1 The equations . 51 3.1.1 The renormalization group equation . 51 3.1.2 The Schwinger–Dyson equation . 53 3.1.3 The one-loop Mellin transform . 54 3.2 Asymptotic solution . 57 3.2.1 Contributions from individual poles . 57 3.2.2 Derivation of the asymptotic solution . 60 3.3 Corrections to the asymptotics . 62 3.3.1 Change of variables . 62 3.3.2 Taking care of every poles: a guideline . 65 3.3.3 Solutions up to the fifth order . 67 3.3.4 Comparison to numerical results . 75 4 The massless Wess–Zumino model II: the Borel plane 77 4.1 Elements of Borel summation theory . 77 4.1.1 The need of Borel summation theory . 77 4.1.2 The Borel transform . 78 4.2 Mapping to the Borel plane . 79 4.2.1 Renormalization group equation . 79 4.2.2 Schwinger–Dyson equation . 81 4.2.3 Formal series vs. singularities . 83 4.3 Truncated Schwinger–Dyson equation . 87 4.3.1 Justification of the truncation . 87 4.3.2 Truncated equation . 88 4.3.3 Link to MZVs . 91 4.3.4 Numerical analysis . 92 4.4 Singularities of the solution . 94 4.4.1 Localization of the singularities . 94 4.4.2 Study of the negative singularities . 96 4.4.3 Study of the positive singularities . 98 4.4.4 Transcendental Content of the Borel transform . 99 4.4.5 Weight of the odd Zetas . 101 5 BV formalism 105 5.1 Foreword . 105 5.1.1 Open and closed symmetries . 106 5.1.2 Some geometric concepts . 108 5.1.3 A motivational introduction . 110 5.1.4 From configuration space to odd symplectic manifolds . 111 5.2 BV formalism as a theory of integration . 112 5.2.1 BV laplacian . 112 5.2.2 BV integral and a Stokes theorem . 113 5.2.3 On the advantage of the BV formalism . 115 5.3 Gauge-fixing in BV formalism . 116 5.3.1 An informative example . 116 CONTENTS iii 5.3.2 Lagrangian submanifold . 120 5.3.3 Gribov ambiguities . 122 5.4 Master equations . 124 5.4.1 BV laplacians in coordinate . 124 5.4.2 Quantum master equations . 127 5.4.3 Classical limit . 129 Conclusion 131 Appendices 135 A Geometric BRST formalism 135 A.1 BRST differential . 135 A.1.1 Set-up . 135 A.1.2 Koszul–Tate resolution . 136 A.1.3 Chevalley–Eilenberg complex . 137 A.1.4 BRST bi-complex . 137 A.2 Poisson superalgebra . 139 A.2.1 Poisson superalgebra . 139 A.2.2 BRST Poisson superalgebra . 141 A.3 QED . 142 A.3.1 Physical states of a theory . 142 A.3.2 Action of BRST differential on fields . 143 A.3.3 Field content of QED . 145 B From BV to BRST 147 B.1 Non-degenerate polyvectors . 147 B.2 Darboux–Morse theorem . 148 B.3 Quantum BV . 149 B.4 equivariante cohomology . 149 B.4.1 Polyvectors: BV formalism . 150 B.4.2 Differential forms: BRST model . 150 C Feynman integrals 153 C.1 Two-points integrals . 153 C.1.1 A new method for two-points integrals . 153 C.1.2 Sanity check . 155 C.1.3 Integral with numerator . 156 C.2 Three-point integral . 157 C.2.1 Formula and method . 157 C.2.2 First computations . 159 C.2.3 Mellin–Barnes . 159 C.2.4 Contour integrals and series . 161 C.2.5 Results . 163 Bibliography 169 iv CONTENTS Remerciements En premier lieu, bien sur, je voudrais remercier celui qui a fait des trois ans de ce doctorat une expérience incroyablement enrichissante, mon directeur de recherche, Marc Bellon. Merci Marc d’avoir été aussi présent, à l’écoute et toujours près à m’aider quand j’en avais besoin, mais également d’avoir accepté que je travaille seul sur certains projets. J’ai le sentiment d’avoir beaucoup appris sous votre égide et espère que nous continuerons à collaborer : il me reste encore tellement à apprendre ! Il me faut également exprimer ma reconnaissance à l’égard des rapporteurs, les professeurs Dominique Manchon et Dirk Kreimer, pour le temps qu’ils ont passé à lire ce manuscrit, et pour leurs commentaires qui ont largement contribué à améliorer la qualité globale de ce texte. Enfin, merci à tous les autres membres du jury d’avoir accepté d’en faire partie. Merci donc à Bernard Julia, Loïc Foissy, Fidel Schaposnik et Christian Brouder pour être présent le jour de la soutenance, j’espère ne pas leur donner de raison de regretter le déplacement. Merci également à ceux qui ont passé du temps à relire cette thèse, qui ont permis de lui donner une finition bien plus lisse que la première version. Merci donc à Nguyen Viet Dang, Marc Bellon,Astrid Cadet, Annick Clavier et Sophie Dorfman pour leurs efforts. Il va sans dire que je suis l’unique responsable de toutes les erreurs, imprécisions, bêtises, fautes et autres coquecigrues qui ont survécu à toutes ces lectures. La recherche n’est pas une activité solitaire. Je voudrais donc très chaleureusement remercier tout ceux avec qui j’ai eu la chance de discuter et d’échanger et qui ont tous permis à ma réflexion de se construire. En premier lieu bien sur, merci à Nguyen Viet Dang, Christian Brouder et Frédéric Hélein de m’avoir convaincu de travailler sur le for- malisme de Batalin—Vilkovisky, le cinquième chapitre de ce manuscrit n’aurait pas ex- isté sans eux. Et merci également d’avoir accepter de prendre le temps d’expliquer tant de choses à un pauvre physicien intéressé par des choses un peu formelles. Merci égale- ment, pêle-mêle, à Camille Laurent—Gengoux, Serguei Barannikov, Sylvain Lavau, Sofian Teber, Olivier Bouillot, Lucien Heurtier, Guillaume Bossard, Robin Zegers, Vincent Rivasseau... Je souhaite également remercier les membres du LPTHE, et en premier lieu ses directeurs successifs Olivier Babelon et Benoit Douçot pour avoir créé un tel climat favorable à la recherche. Merci également aux secrétaires Isabelle Nicolai, Françoise Got et Annie Richard pour leur patience vis-à-vis du thésard ignorant des choses administratives que j’ai été. Et, bien sur, merci à tous les chercheurs et à toutes les chercheuses du labo pour toute les discussions autour de la machine à café. Je suis également très reconnaissant aux anciens doctorants du labo de m’avoir v vi Remerciements accueilli comme ils l’ont fait, et d’avoir pris sous leurs ailes le jeune thésard (si si, thésard!) effrayé que j’étais. Merci donc à Emmanuele, Thomas (le grand) et Thibault. Un merci tout particulier à Gautier, sans qui tant d’heure auraient stupidement été perdues à travailler. Merci également à Bruno pour être le grand frère spirituel de tous les thésards du labo. Une pensée aussi pour les compagnons de galère, ceux qui ont commencés leurs doctorats en même temps que moi. Courage Sacha, Trésa, Harold et Tianhan, c’est bientôt à votre tour de passer à la casserole ! Merci aussi aux p’tits jeunes pour avoir rendu plus agréable l’année où j’étais le vieux du groupe. Merci aux bizuts Luc et Frédéric, merci à Matthieu et Oscar pour être de tels sujets d’amusement à travers leurs thèmes de recherches, merci à Thomas (le petit) pour avoir repris les séminaires des doctorants du LPTHE, et un grand merci à Hugo pour avoir été la hotline mathematica/LaTeX pendant quasiment un an. Je me permets maintenant de remercier tous les copains du M2. Les collocs d’abord : merci Pierre, Ced, Laetitia et Nico pour ces.
Recommended publications
  • Perturbative Algebraic Quantum Field Theory
    Perturbative algebraic quantum field theory Klaus Fredenhagen Katarzyna Rejzner II Inst. f. Theoretische Physik, Department of Mathematics, Universität Hamburg, University of Rome Tor Vergata Luruper Chaussee 149, Via della Ricerca Scientifica 1, D-22761 Hamburg, Germany I-00133, Rome, Italy [email protected] [email protected] arXiv:1208.1428v2 [math-ph] 27 Feb 2013 2012 These notes are based on the course given by Klaus Fredenhagen at the Les Houches Win- ter School in Mathematical Physics (January 29 - February 3, 2012) and the course QFT for mathematicians given by Katarzyna Rejzner in Hamburg for the Research Training Group 1670 (February 6 -11, 2012). Both courses were meant as an introduction to mod- ern approach to perturbative quantum field theory and are aimed both at mathematicians and physicists. Contents 1 Introduction 3 2 Algebraic quantum mechanics 5 3 Locally covariant field theory 9 4 Classical field theory 14 5 Deformation quantization of free field theories 21 6 Interacting theories and the time ordered product 26 7 Renormalization 26 A Distributions and wavefront sets 35 1 Introduction Quantum field theory (QFT) is at present, by far, the most successful description of fundamental physics. Elementary physics , to a large extent, explained by a specific quantum field theory, the so-called Standard Model. All the essential structures of the standard model are nowadays experimentally verified. Outside of particle physics, quan- tum field theoretical concepts have been successfully applied also to condensed matter physics. In spite of its great achievements, quantum field theory also suffers from several longstanding open problems. The most serious problem is the incorporation of gravity.
    [Show full text]
  • Arxiv:1306.6519V5 [Math-Ph] 13 May 2014 5.1 Vacuum State
    Construction of KMS States in Perturbative QFT and Renormalized Hamiltonian Dynamics Klaus Fredenhagen and Falk Lindner II. Institute for Theoretical Physics, University of Hamburg [email protected], [email protected] Abstract We present a general construction of KMS states in the framework of pertur- bative algebraic quantum field theory (pAQFT). Our approach may be understood as an extension of the Schwinger-Keldysh formalism. We obtain in particular the Wightman functions at positive temperature, thus solving a problem posed some time ago by Steinmann [55]. The notorious infrared divergences observed in a di- agrammatic expansion are shown to be absent due to a consequent exploitation of the locality properties of pAQFT. To this avail, we introduce a novel, Hamiltonian description of the interacting dynamics and find, in particular, a precise relation between relativistic QFT and rigorous quantum statistical mechanics. Dedicated to the memory of Othmar Steinmann ∗27.11.1932 †11.03.2012 Contents 1 Introduction 2 2 Perturbed dynamics 4 3 Time averaged Hamiltonian description of the dynamics 7 4 KMS states for the interacting dynamics: General discussion 13 4.1 The case of finite volume . 13 4.2 The case of infinite volume . 17 5 Cluster properties of the massive scalar field 19 arXiv:1306.6519v5 [math-ph] 13 May 2014 5.1 Vacuum state . 20 5.2 Thermal equilibrium states . 23 6 Conclusion 29 A Proof of the KMS condition 31 1 B Propositions for the adiabatic limit 34 1 Introduction According to the standard model of cosmology, the early universe was for some time in an equilibrium state with high temperature.
    [Show full text]
  • Dark Matter and Weak Signals of Quantum Spacetime
    PHYSICAL REVIEW D 95, 065009 (2017) Dark matter and weak signals of quantum spacetime † ‡ Sergio Doplicher,1,* Klaus Fredenhagen,2, Gerardo Morsella,3, and Nicola Pinamonti4,§ 1Dipartimento di Matematica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Roma, Italy 2II Institut für Theoretische Physik, Universität Hamburg, D-22761 Hamburg, Germany 3Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, I-00133 Roma, Italy 4Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, I-16146 Genova, Italy, and INFN Sezione di Genova, Genova, Italy (Received 29 December 2016; published 13 March 2017) In physically motivated models of quantum spacetime, a Uð1Þ gauge theory turns into a Uð∞Þ gauge theory; hence, free classical electrodynamics is no longer free and neutral fields may have electromagnetic interactions. We discuss the last point for scalar fields, as a way to possibly describe dark matter; we have in mind the gravitational collapse of binary systems or future applications to self-gravitating Bose-Einstein condensates as possible sources of evidence of quantum gravitational phenomena. The effects considered so far, however, seem too faint to be detectable at present. DOI: 10.1103/PhysRevD.95.065009 I. INTRODUCTION but their superpositions would, in general, not be—they would lose energy in favor of mysterious massive modes One of the main difficulties of present-day physics is the (see also [6]). lack of observation of quantum aspects of gravity. Quantum A naive computation showed, by that mechanism, that a gravity has to be searched without a guide from nature; the monochromatic wave train passing through a partially observed universe must be explained as carrying traces of reflecting mirror should lose, in favor of those ghost quantum gravitational phenomena in the only “laboratory” modes, a fraction of its energy—a very small fraction, suitable to those effects, i.e., the universe itself a few unfortunately, of the order of one part in 10−130 [5].
    [Show full text]
  • Quantum Field Theory: Where We Are 3
    Quantum Field Theory: Where We Are Klaus Fredenhagen1, Karl-Henning Rehren2, and Erhard Seiler3 1 II. Institut f¨ur Theoretische Physik, Universit¨at Hamburg, 22761 Hamburg, Germany [email protected] 2 Institut f¨ur Theoretische Physik, Universit¨at G¨ottingen, 37077 G¨ottingen, Germany [email protected] 3 Max-Planck-Institut f¨ur Physik, 80805 M¨unchen, Germany [email protected] Summary. We comment on the present status, the concepts and their limitations, and the successes and open problems of the various approaches to a relativistic quantum theory of elementary particles, with a hindsight to questions concerning quantum gravity and string theory. arXiv:hep-th/0603155v1 20 Mar 2006 1 Introduction Quantum field theory aims at a synthesis of quantum physics with the prin- ciples of classical field theory, in particular the principle of locality. Its main Contribution to: An Assessment of Current Paradigms in the Physics of Fun- damental Phenomena, to be published by Springer Verlag (2006). 2 Klaus Fredenhagen, Karl-Henning Rehren, and Erhard Seiler realm is the theory of elementary particles where it led to a far reaching under- standing of the structure of physics at subatomic scales with an often amaz- ingly good agreement between theoretical predictions and experiments. Typ- ical observables in QFT are current densities or energy flow densities which correspond to what is measured in particle physics detectors. The original aim of QFT was to compute expectation values and correlation functions of the observables, and to derive scattering cross sections in high-energy physics. In the course of development, QFT has widened its scope, notably towards the inclusion of gravitational interactions.
    [Show full text]
  • Operator Algebras and Applications, Volume 38-Part 1
    http://dx.doi.org/10.1090/pspum/038.1 PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS Volume 38, Part 1 OPERATOR ALGEBRAS AND APPLICATIONS AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND 1982 PROCEEDINGS OF THE SYMPOSIUM IN PURE MATHEMATICS OF THE AMERICAN MATHEMATICAL SOCIETY HELD AT QUEENS UNIVERSITY KINGSTON, ONTARIO JULY 14-AUGUST 2, 1980 EDITED BY RICHARD V. KADISON Prepared by the American Mathematical Society with partial support from National Science Foundation grant MCS 79-27061 Library of Congress Cataloging in Publication Data Symposium in Pure Mathematics (1980: Queens University, Kingston, Ont.) Operator algebras and applications. (Proceedings of symposia in pure mathematics; v. 38) Includes bibliographies and index. 1. Operator algebras-Congresses. I. Kadison, Richard V., 1925— II. Title. III. Series. QA326.S95 1982 512'.55 82-11561 ISBN 0-8218-1441-9 (v. 1) ISBN 0-8218-1444-3 (v. 2) ISBN 0-8218-1445-1 (set) 1980 Mathematics Subject Classification. Primary 46L05, 46L10; Secondary 43A80, 81E05, 82A15. Copyright © 1982 by the American Mathematical Society Printed in the United States of America All rights reserved except those granted to the United States Government. This book may not be reproduced in any form without the permission of the publishers. TABLE OF CONTENTS PARTI Author index xi Preface RICHARD V. KADISON xvn* Operator algebras—the first forty years 1 RICHARD V. KADISON On the structure theory of C*-algebras: some old and new problems 19 EDWARD G. EFFROS Homological invariants of extensions of C*-algebras 35 JONATHAN ROSENBERG Geometric resolutions and the Kunneth formula for C*-algebras 77 CLAUDE SCHOCHET The J£-groups for free products of C*-algebras 81 JOACHIM CUNTZ The internal structure of simple C*-algebras 85 JOACHIM CUNTZ K homology and index theory 117 PAUL BAUM AND RONALD G.
    [Show full text]
  • Advances in Algebraic Quantum Field Theory
    Advances in Algebraic Quantum Field Theory Klaus Fredenhagen II. Institut f¨urTheoretische Physik, Hamburg Klaus Fredenhagen Advances in Algebraic Quantum Field Theory Embedding of physical systems into larger systems requires characterization of subsystems understanding relations between subsystems (independence versus determinism, correlations, entanglement) Characterization of subsystems by their material content (\a system of two electrons") turns out to be problematic: Particle number not well defined during interaction Because of nontrivial particle statistics systems with n particles cannot identified in a natural way as subsystems of a system with m > n particles (e.g. Hanbury Brown Twist effect: Photons from different sources are entangled) Klaus Fredenhagen Advances in Algebraic Quantum Field Theory Haag (1957): Algebras of observables measurable in some finitely extended region of spacetime are good subsystems. Needs an a priori notion of spacetime and therefore cannot directly be applied to quantum gravity, but turned out to cover the essence of relativistic quantum field theory, in particular due to the stability of this concept in time because of the finite velocity of light. In nonrelativistic physics the identification of an algebra which is invariant under time evolution for an interesting dynamics is more difficult. (see no go theorems by Narnhofer and Thirring and the recent work of Buchholz (resolvent algebra) for progress). Klaus Fredenhagen Advances in Algebraic Quantum Field Theory Haag-Kastler Axioms Haag's concept of algebras of local observables can be summarized as follows: A quantum system is represented by a C*-algebra with unit, i.e. an algebra with unit over the complex numbers with an antilinear involution A 7! A∗ and a norm which satisfies the condition jjA∗Ajj = jjAjj2 such that the algebra is complete with respect to the induced topology.
    [Show full text]
  • QFT on Curved Spacetimes: Axiomatic Framework and Applications
    QFT on curved spacetimes: axiomatic framework and applications Klaus Fredenhagen Katarzyna Rejzner II Inst. f. Theoretische Physik, Department of Mathematics, Universität Hamburg, University of Rome Tor Vergata Luruper Chaussee 149, Via della Ricerca Scientifica 1, D-22761 Hamburg, Germany I-00133, Rome, Italy [email protected] [email protected] 2013 These notes are based on the course given by Klaus Fredenhagen at the Les Houches Winter School in Mathematical Physics (January 29 - February 3, 2012) and courses given by Katarzyna Rejzner in 2012 (Hamburg) and 2013 (Rome). Contents 1 Introduction 3 2 Algebraic quantum mechanics 5 3 Locally covariant field theory 9 3.1 Preliminaries . .9 3.2 Haag-Kastler axioms . 12 3.3 Axioms of LCQFT . 13 3.4 Example: CCR algebra of a free scalar field . 17 4 Classical field theory 18 5 Deformation quantization of free field theories 25 6 Interacting theories and the time ordered product 30 7 Renormalization 30 A Distributions and wavefront sets 39 1 Introduction Quantum field theory (QFT) is at present, by far, the most successful description of fun- damental physics. Elementary physics is, to a large extent, explained by a specific model in quantum field theory, the so-called Standard Model. All the essential structures of the Standard Model are nowadays experimentally verified. Outside of particle physics, quan- tum field theoretical concepts have been successfully applied also to condensed matter physics. In spite of its great achievements, quantum field theory also suffers from several longstanding open problems. The most serious problem is the incorporation of gravity. For some time, many people believed that such an incorporation would require a rad- ical change in the foundation of the theory.
    [Show full text]
  • KMS States on Conformal QFT
    KMS states on conformal QFT Yoh Tanimoto Abstract. Some recent results on KMS states on chiral components of two- dimensional conformal quantum field theories are reviewed. A chiral component is realized as a conformal net of von Neumann algebras on a circle, and there are two natural choices of dynamics: rotations and translations. For rotations, the natural choice is the universal C∗-algebra. We classify KMS states on a large class of conformal nets by their superse- lection sectors. They can be decomposed into Gibbs states with respect to the conformal Hamiltonian. For translations, one can consider the quasilocal C∗-algebra and we construct a distinguished geometric KMS state on it, which results from diffeomorphism covariance. We prove that this geometric KMS state is the only KMS state on a completely rational net. For some non-rational nets, we present various different KMS states. x1. Introduction The theory of operator algebras has been developed in a particularly close relationship with its application to physics. Among intersting con- nections, let us focus on the KMS condition. In statistical physics (see e.g. [17]), one considers a system of interest in contact with a heat bath. The heat bath is a system much larger than the system of interest and has a fixed temperature. They can only exchange energy, and after some time, the whole system arrives at an equilibrium state. As the system of interest is small compared with the heat bath, we may assume that the temperature in the equilibrium is that of the heat bath, say 1/β. If the system of interest is a quantum mechanical system on a Hilbert space H with the Hamiltonian H (such that e−βH is of trace class), the equilibrium state restricted to it can be 2010 Mathematics Subject Classification.
    [Show full text]
  • Shadows of Quantum Spacetime and Pale Glares of Dark Matter Universit
    Shadows of Quantum Spacetime and pale glares of Dark Matter Sergio Doplicher Universit`adi Roma \Sapienza" Local Quantum Physics and beyond In memoriam Rudolf Haag Hamburg; September26 − 27; 2016 1. Introduction. Why QST 2. Quantum Minkowski Space 3. QFT on QST 4. Comments on QST and Cosmology 5. QST: where to look for its shadows? 1 Introduction. Why QST QM finitely many d. o. f. ∆q∆p & ~ positions = observables, dual to momentum; in QFT, local observables: A 2 A(O); O (double cones) - spacetime specifications, in terms of coordinates - accessible through measurements of local observables. Allows to formulate LOCALITY: AB = BA 2 whenever A 2 A(O1);B 2 A(O2); and O1; O2 are spacelike separated. RUDOLF HAAG'S FAR REACHING VIEW (mid Fifties): CENTRAL PRINCIPLE OF QFT. Experiments:OK at all accessible scales; Theory: in QFT OK at all scales, ONLY if we neglect GRAVITATIONAL FORCES BETWEEN ELEMENTARY PARTICLES. (Rudolf's intuition, ' 80ies: otherwise, A(O) ought to be irreducible!) If we DON'T neglect Gravity: Heisenberg: localizing an event in a small region costs energy (QM); Einstein: energy generates a gravitational field (CGR). QM + CGR: PRINCIPLE OF Gravitational Stability against localization of events [DFR, 1994, 95]: The gravitational field generated by the concentra- tion of energy required by the Heisenberg Uncer- tainty Principle to localize an event in spacetime should not be so strong to hide the event itself to any distant observer - distant compared to the Planck scale. Spherically symmetric localization in space with accu- racy a: an uncontrollable energy E of order 1=a has to be transferred; Schwarzschild radius R ' E (in universal units where ~ = c = G = 1).
    [Show full text]
  • Curriculum Vitae Nicola Pinamonti
    October 2016 Curriculum Vitae Nicola Pinamonti Phone: Work address: +39 010 353 6936 Department of Mathematics University of Genova via Dodecaneso, 35 Email: I-16146 Genova, Italy; [email protected], [email protected]; Present Position Associate Professor of Mathematical Physics at the Department of Mathematics of the University of Genova. Education 2003 Ph.D. course in Physics at the Physics Department of the Trento University (Italy) Advisor: Prof. Luciano Vanzo. (Trento, Italy, 2000–2003) Ph.D. Thesis: “On some aspects of two-dimensional classical and quantum black hole”. Defended at the Department of Physics of the University of Trento (Italy) (February 27, 2003). 1999 Graduation course in Physics at the Trento University (Italy) (Trento, Italy, 1994–1999) Thesis Title: “Descrizione quantistica di un evento in una teoria con simmetria conforme.” (“Quantum description of an event in a theory with conformal symmetry”) Discussed in Trento, Italy (July 26, 1999), Advisor: Prof. Marco Toller marks 110 / 110. Further Education 2000 Conservatorio Statale di Musica “Bonporti” of Trento (Italy) (1995-2000) Classical Trumpet diploma. 1994 Liceo Scientifico Statale “B. Russell” Cles (Italy) (High School) (1989–1994) Maturità Scientifica marks 56 / 60. Spoken Languages Italian: First language English: Fluent German: Fluent Working Experiences and Fellowships 2014 Associate Professor in Mathematical Physics at the Department of Mathematics of the Uni- versity of Genova (Genova (Italy), since 01/07/2014) 2011 Ricercatore Universitario (Assistant Professor) in Mathematical Physics at the Depart- ment of Mathematics of the University of Genova (Genova (Italy), 30/12/2010 - 30/06/2014) 2010 Post-doctoral position: Department of Mathematics, University of Tor Vergata Roma Supervisor: Prof.
    [Show full text]
  • Quantum Field Theory on Curved Spacetimes
    Lecture Notes in Physics 786 Quantum Field Theory on Curved Spacetimes Concepts and Mathematical Foundations Bearbeitet von Christian Bär, Klaus Fredenhagen 1. Auflage 2012. Taschenbuch. x, 160 S. Paperback ISBN 978 3 642 26051 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 272 g Weitere Fachgebiete > Physik, Astronomie > Quantenphysik schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Preface An outstanding problem of theoretical physics is the incorporation of gravity into quantum physics. After the increasing experimental evidence for the validity of Einstein’s theory of general relativity, a theory based on the differential geometry of Lorentzian manifolds, and the discovery of the standard model of elementary particle physics, relying on the formalism of quantum field theory, the question of mutual compatibility of these theoretical concepts gains more and more importance. This becomes in particular urgent in modern cosmology where both theories have to be applied simultaneously. Early attempts of incorporating gravity into quantum field theory by treating the gravitational field as one of the quantum fields run into conceptual and practical problems. This fact led to rather radical new attempts going beyond the established theories, the most prominent ones being string theory and loop quantum gravity. But after some decades of work a satisfactory theory of quantum gravity is still not available; moreover, there are indications that the original field theoretical approach may be better suited than originally expected.
    [Show full text]
  • Quantum Physics, Quantum Spacetime and Quantum Geometry
    Quantum Physics, Quantum Spacetime and Quantum Geometry Sergio Doplicher Universit`adi Roma \Sapienza" February 16, 2016 Colloquium "Levi - Civita", 17 Febbraio 2016 1. Why Quantum 2. Why Quantum Spacetime 3. Quantum Minkowski Space 4. Quantum Geometry 5. QFT on QST 6. Comments on QST and Cosmology 1 Why Quantum 2 In a physical theory, the observable quantities are described by the selfad- joint elements in a C* Algebra A (a Banach * algebra s.t. jjA∗Ajj = jjAjj2; equivalently a uniformly closed * algebra of linear bounded operators on a Hilbert space); the physical states are described by states of that alge- bra (i.e. positive normalized linear functionals) and the expectation value of the observable A in the state ! is given by !(A). 3 Thus the uncertainty of A in ! is (∆A)2 =< (A− < A > I)2 > : If AB = BA, then A and B are compatible; otherwise, in any state of the system, ∆A∆B & (1=2)j < AB − BA > j: (Elementary consequence of Schwarz's inequality for the positive semidefinite sesquilinear form assigning to A; B the number !(A∗B)). If the C* Algebra generated by the observables is com- mutative, it can be identified with C0(Ω) for some lo- cally compact space Ω, the phase space of a Classical Theory. Noncommutativity of A is equivalent to the presence of any (hence of all) the following properties: 1. There is a pair of observables which cannot be mea- sured simultaneously. 2. There is an observable A and a pure state where A does not take a precise value (Quantum fluctuations).
    [Show full text]