Cordes Paraquantiques Dans Un Espace Temps Noncommutatif

Total Page:16

File Type:pdf, Size:1020Kb

Cordes Paraquantiques Dans Un Espace Temps Noncommutatif Republique´ Algerienne´ Democratique´ et Populaire Ministere` de L'Enseignement Superieur´ et de la Recherche Scientifique UNIVERSITE´ DES FRERES` MENTOURI CONSTANTINE Faculte´ des Sciences exactes Departement´ de Physique No d'ordre : S´erie: These` Present´ ee´ pour Obtenir le Doctorat LMD Specialit´ e´ : Physique Theorique´ Cordes Paraquantiques dans un Espace Temps Noncommutatif Par : Mohamed Ali Seridi Devant le jury : Pr´esident : L. Chetouani Prof. Universit´eFr`eresMentouri Rapporteur : N. Belaloui Prof. Universit´eFr`eresMentouri Examinateurs : A. Bouda Prof. Universit´ede B´ejaia T. Boudjedaa Prof. Universit´ede Jijel K. Ait Moussa Prof. Universit´eFr`eresMentouri A. Benslama Prof. Universit´eFr`eresMentouri soutenu le : 20/01/2016 i Remerciements J e tiens tout d'abord `aexprimer mes vifs remerciements `amon directeur de th`ese le Professeur Nadir Belaloui, qui m'a soutenu attentivement depuis le Master et du- rant toutes ces cinq derni`eres ann´eesde Doctorat, pour sa rigueur scientifiques qui m'a guid´ee,ses conseils, ses encouragements, son aide et son support qui m'a permis de participer `abien des manifestations scientifiques r´ecentes de haut niveau. Je n'oublie- rai jamais sa personnalit´ecalme et gentille et le fait qu'il n'a ´economis´eaucun effort `a donner pour mener `aterme ce travail de recherche. J 'exprime tous mes remerciements `al'ensemble des membres du jury, sp´ecialement `amon professeur Lyazid Chetouani de m'avoir honor´e`apr´esiderce jury. Egalement, tous mes respects vont aux examinateurs h^otesqui ont accept´ede participer et donner de l'int´er^etpour discuter cette th`ese: Mr. Ahmed Bouda, professeur `al'universit´ede B´ejaia. Mr. Tahar Boudjedaa, professeur `al'universit´ede Jijel Un grand merci ´egalement`a mes enseignants et pour avoir honor´epar leur pr´esence la soutenance de cette th`ese: Mr. Karim Ait Moussa, professeur `al'universit´edes fr`eres Mentouri pour son aide consid´erable que j'appr´eciefortement. Mr. Achour Benslama, professeur `al'universit´e des fr`eres Mentouri pour les discussions fructueuses `ades moments critiques lors de la r´ealisationde ce travail. A ceux qui ont cru en moi, et qui n'ont jamais h´esit´e`ame donner tout le support dont j'avais besoin, mes parents, qui m'ont donn´ela vie, l'´education. Ma petite famille : je ne trouve pas comment remercier ma grande sœur Fairouz pour sa g´en´erosit´e,qui m'a soutenu jusqu'au bout et surtout support´edans tout ce que j'ai entrepris, ´egalementMouna qui a tout le m´eritede m'avoir orient´evers la physique et m'avoir aid´e`atrouver le trajet `asuivre. A mon fr`ere et ami Salah, `aqui j'exprime tous mes remerciements pour son int´er^etet son soutient moral qu'il m'a t´emoign´e`atout moment. Le plus grand remerciement `ama grande m`ere Laarfa pour ses pri`eres `aDieu `atoujours trouver des solutions `ames soucis. A nos anc^etres qui n'ont jamais ´et´eabsents de nos bons souvenirs. Un Sp´ecialRemerciement A tous ceux qui m'ont soutenu jusqu'au bout. Table des mati`eres Table des mati`eres ii Liste des tableaux iv 1 Introduction1 1.1 Th´eoriedes Cordes Bosoniques........................2 1.1.1 Particule Ponctuelle..........................2 1.1.2 Corde Relativiste............................4 1.1.3 Expansion en Modes d'Oscillateurs..................6 1.2 Quantification de la Corde Bosonique....................7 1.2.1 Jauge Covariante............................8 1.2.2 Jauge Transverse............................9 1.3 Paraquantification............................... 10 1.3.1 Oscillateurs du Type Bosonique.................... 11 1.3.2 Repr´esentation de Green........................ 14 1.4 Propos de la Th`ese.............................. 15 2 Cordes Parabosoniques Ouvertes et Param`etresde la Noncommutati- vit´e 18 2.1 Le Mod`ele.................................... 18 2.1.1 Alg`ebrede Virasoro.......................... 21 2.1.2 Spectre de Masse............................ 22 3 Cordes Parabosoniques Ouvertes entre Deux Dp-Branes Parall`elesdans un Espace Temps Noncommutatif 25 3.1 Alg`ebrede Virasoro.............................. 26 3.2 Spectre de Masse................................ 27 3.2.1 Red´efinitionde l'Espace de Fock................... 27 3.2.2 Op´erateurde Masse.......................... 28 4 Cordes Parabosoniques Ouvertes entre Deux Dp-Dq Branes Parall`eles dans un Espace Temps Noncommutatif 30 4.1 Relations Trilin´erairesModifi´eeset Configurations D-Branes........ 30 4.2 Alg`ebrede Virasoro.............................. 31 4.3 Spectre de Masse................................ 32 ii Table des mati`eres iii 4.3.1 Red´efinitionde l'Espace de Fock................... 32 4.3.2 Op´erateurde Masse.......................... 32 4.3.3 Discussion................................ 33 4.3.3.1 Mod`elesans Tachyon.................... 33 5 Cordes Parabosoniques Ferm´eesdans un Espace Temps Noncommu- tatif et R´eductiondu Spectre 36 5.1 Alg`ebrede Virasoro.............................. 37 5.2 Red´efinitionde l'Espace de Fock....................... 38 5.3 Spectre de Masse................................ 38 5.4 Op´erateurde Masse.............................. 39 5.4.1 Restauration du Graviton et R´eductiondu Spectre......... 40 6 R´esum´e 43 A Calcul de Quelques Relations Trilin´eaires 45 I J K A.1 Calcul de αm; αn; αl + ........................... 45 h I J K i A.2 Calcul de αm; x0 ; αl + ........................... 48 h I J K i A.3 Calcul de αm; x0 ; x0 + : .......................... 50 h I J K i A.4 Calcul de x0; αn; αl + : .......................... 51 h I J K i A.5 Calcul de x0; x0 ; αl + ........................... 53 h I J K i A.6 Calcul de x0; x0 ; x0 + ........................... 55 h i B Calcul de l'Alg`ebrede Virasoro 57 C Calcul de Quelques Masses 59 C.1 1er Niveau Excit´e............................... 59 C.2 2eme Niveau Excit´e............................... 60 C.3 3eme Niveau Excit´e............................... 61 Bibliographie 65 Liste des tableaux 2.1 Spectre de Masse : Cas Corde Ouverte..................... 24 3.1 Spectre de Masse : Cas Dp-Branes...................... 28 3.2 Spectre de Masse Modifi´e: Cas Dp-Branes.................. 29 4.1 Spectre de Masse : Cas Dp-Dq Branes..................... 33 4.2 Spectre de Masse Modifi´e: Cas Dp-Dq Branes................ 34 5.1 Spectre de Masse : Cas Corde Ferm´ee..................... 41 iv A` MES PARENTS . v Chapitre 1 Introduction En physique moderne, la g´en´eralisationdes concepts fondamentaux joue un r^oleim- portant dans la progression de la recherche et la d´ecouverte de nouvelles physiques. Diff´erentes ´etapes de l’unification ont conduits `aune meilleure maitrise des diff´erentes th´eoriesde la physique moderne. D`esle 19`emesi`ecle,les premi`erestentatives ont conduit `ala th´eoriede l'´electromagn´etisme´etabliepar Maxwell-Faraday. La constance de la c´el´erit´ede la lumi`eredans cette th´eories'av`ere^etrela pierre angulaire pour l'unification des notions d'espace et du temps par A. Einstein dans ses th´eoriesde la relativit´eres- treinte en 1905 et g´en´eraleen 1915. Dans le cadre de la th´eoriequantique des champs, la th´eoriede jauge nonab´elienne fond´eepar Yang-Mills en 1950 a pu d´ecrirel'ensemble des trois autres types d'interactions fondamentales. Elle est `ala base conceptuelle du mod`ele standard de la physique des particules, elle a r´eussi`aunifier l'´electrodynamique et la m´ecaniquequantique dans le contexte de QED et l'interaction faible dans la th´eoriedu mod`elestandard de Weinberg-Salam. Avant QCD, le mod`eledual ´etaitla seule th´eorie qui d´ecrivait l'interaction forte entre les hadrons. Il comportait cependant deux obstacles `asavoir : la th´eorien'est coh´erente du point de vue math´ematiqueque si la dimension de l'espace temps est sup´erieure`a4 en plus de la pr´esencedans le spectre d'une particule de spin 2 et de masse nulle qui n'avait pas sa place dans cette th´eorie.Une classification des hadrons par rapport aux spins et aux masses correspondantes des particules du spectre est possible dans la th´eoriede Regge qui regroupe les particules sur des trajectoires dans le plan `atravers la relation : 2 0 2 J = αM = α0 + α M : (1.1) o`u α0 : constante universelle 0:9(GeV ) 2 ' − α0 : param`etrequi d´epend de la famille de Regge choisie. 1 Cordes Paraquantiques dans un Espace Temps Noncommutatif 2 L'apparition de QCD a mis `amal le mod`eledual, ce qui a conduit `ason abondant jusqu'au moment o`uon d´ecouvreque son spectre peut ^etreretrouv´e`atravers l'´etude de la dynamique d'une corde et la possibilit´ed'associer la particule qui posait probl`eme au graviton en plus du fait qu'en s'inspirant de l'id´eede Kaluza Klein, le deuxi`eme obstacle s'av´ereraitplut^otun atout qui pourrait conduire `aune probable unification de la gravitation avec le mod`elestandard. Ce qui voulait dire que les cordes sont beaucoup plus ´el´ementaires (´echelle de Planck) que celles initialement construites pour relier deux quarks dans un hadron. C'est la naissance de ce qui a ´et´ebaptis´eecomme la nouvelle th´eoriedes cordes, d'abord, la th´eoriede la corde bosonique qui d´ecritaussi bien le photon que le graviton mais qui devait se propager dans un espace temps `a26 dimensions et que la pr´esence de tachyons dans le spectre en plus du fait qu'elle ne d´ecritque des particules bosoniques affaiblissait la th´eorie.Pour rem´edier`aceci, il a fallu introduire des degr´esde libert´esfermioniques. Un pas a ´et´efait en abaissant la dimension de l'espace temps de 26 `a10, mais ceci n'a pas directement r´esolule probl`eme,vu qu'il y a eu deux mod`elesdiff´erents, l'un ne d´ecrivant que des bosons ; c'est le mod`elede Neuveu- Schwarz, l'autre ne d´ecrivant que des fermions ; c'est le mod`elede Ramond.
Recommended publications
  • Perturbative Algebraic Quantum Field Theory
    Perturbative algebraic quantum field theory Klaus Fredenhagen Katarzyna Rejzner II Inst. f. Theoretische Physik, Department of Mathematics, Universität Hamburg, University of Rome Tor Vergata Luruper Chaussee 149, Via della Ricerca Scientifica 1, D-22761 Hamburg, Germany I-00133, Rome, Italy [email protected] [email protected] arXiv:1208.1428v2 [math-ph] 27 Feb 2013 2012 These notes are based on the course given by Klaus Fredenhagen at the Les Houches Win- ter School in Mathematical Physics (January 29 - February 3, 2012) and the course QFT for mathematicians given by Katarzyna Rejzner in Hamburg for the Research Training Group 1670 (February 6 -11, 2012). Both courses were meant as an introduction to mod- ern approach to perturbative quantum field theory and are aimed both at mathematicians and physicists. Contents 1 Introduction 3 2 Algebraic quantum mechanics 5 3 Locally covariant field theory 9 4 Classical field theory 14 5 Deformation quantization of free field theories 21 6 Interacting theories and the time ordered product 26 7 Renormalization 26 A Distributions and wavefront sets 35 1 Introduction Quantum field theory (QFT) is at present, by far, the most successful description of fundamental physics. Elementary physics , to a large extent, explained by a specific quantum field theory, the so-called Standard Model. All the essential structures of the standard model are nowadays experimentally verified. Outside of particle physics, quan- tum field theoretical concepts have been successfully applied also to condensed matter physics. In spite of its great achievements, quantum field theory also suffers from several longstanding open problems. The most serious problem is the incorporation of gravity.
    [Show full text]
  • Arxiv:1306.6519V5 [Math-Ph] 13 May 2014 5.1 Vacuum State
    Construction of KMS States in Perturbative QFT and Renormalized Hamiltonian Dynamics Klaus Fredenhagen and Falk Lindner II. Institute for Theoretical Physics, University of Hamburg [email protected], [email protected] Abstract We present a general construction of KMS states in the framework of pertur- bative algebraic quantum field theory (pAQFT). Our approach may be understood as an extension of the Schwinger-Keldysh formalism. We obtain in particular the Wightman functions at positive temperature, thus solving a problem posed some time ago by Steinmann [55]. The notorious infrared divergences observed in a di- agrammatic expansion are shown to be absent due to a consequent exploitation of the locality properties of pAQFT. To this avail, we introduce a novel, Hamiltonian description of the interacting dynamics and find, in particular, a precise relation between relativistic QFT and rigorous quantum statistical mechanics. Dedicated to the memory of Othmar Steinmann ∗27.11.1932 †11.03.2012 Contents 1 Introduction 2 2 Perturbed dynamics 4 3 Time averaged Hamiltonian description of the dynamics 7 4 KMS states for the interacting dynamics: General discussion 13 4.1 The case of finite volume . 13 4.2 The case of infinite volume . 17 5 Cluster properties of the massive scalar field 19 arXiv:1306.6519v5 [math-ph] 13 May 2014 5.1 Vacuum state . 20 5.2 Thermal equilibrium states . 23 6 Conclusion 29 A Proof of the KMS condition 31 1 B Propositions for the adiabatic limit 34 1 Introduction According to the standard model of cosmology, the early universe was for some time in an equilibrium state with high temperature.
    [Show full text]
  • Dark Matter and Weak Signals of Quantum Spacetime
    PHYSICAL REVIEW D 95, 065009 (2017) Dark matter and weak signals of quantum spacetime † ‡ Sergio Doplicher,1,* Klaus Fredenhagen,2, Gerardo Morsella,3, and Nicola Pinamonti4,§ 1Dipartimento di Matematica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Roma, Italy 2II Institut für Theoretische Physik, Universität Hamburg, D-22761 Hamburg, Germany 3Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, I-00133 Roma, Italy 4Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, I-16146 Genova, Italy, and INFN Sezione di Genova, Genova, Italy (Received 29 December 2016; published 13 March 2017) In physically motivated models of quantum spacetime, a Uð1Þ gauge theory turns into a Uð∞Þ gauge theory; hence, free classical electrodynamics is no longer free and neutral fields may have electromagnetic interactions. We discuss the last point for scalar fields, as a way to possibly describe dark matter; we have in mind the gravitational collapse of binary systems or future applications to self-gravitating Bose-Einstein condensates as possible sources of evidence of quantum gravitational phenomena. The effects considered so far, however, seem too faint to be detectable at present. DOI: 10.1103/PhysRevD.95.065009 I. INTRODUCTION but their superpositions would, in general, not be—they would lose energy in favor of mysterious massive modes One of the main difficulties of present-day physics is the (see also [6]). lack of observation of quantum aspects of gravity. Quantum A naive computation showed, by that mechanism, that a gravity has to be searched without a guide from nature; the monochromatic wave train passing through a partially observed universe must be explained as carrying traces of reflecting mirror should lose, in favor of those ghost quantum gravitational phenomena in the only “laboratory” modes, a fraction of its energy—a very small fraction, suitable to those effects, i.e., the universe itself a few unfortunately, of the order of one part in 10−130 [5].
    [Show full text]
  • Quantum Field Theory: Where We Are 3
    Quantum Field Theory: Where We Are Klaus Fredenhagen1, Karl-Henning Rehren2, and Erhard Seiler3 1 II. Institut f¨ur Theoretische Physik, Universit¨at Hamburg, 22761 Hamburg, Germany [email protected] 2 Institut f¨ur Theoretische Physik, Universit¨at G¨ottingen, 37077 G¨ottingen, Germany [email protected] 3 Max-Planck-Institut f¨ur Physik, 80805 M¨unchen, Germany [email protected] Summary. We comment on the present status, the concepts and their limitations, and the successes and open problems of the various approaches to a relativistic quantum theory of elementary particles, with a hindsight to questions concerning quantum gravity and string theory. arXiv:hep-th/0603155v1 20 Mar 2006 1 Introduction Quantum field theory aims at a synthesis of quantum physics with the prin- ciples of classical field theory, in particular the principle of locality. Its main Contribution to: An Assessment of Current Paradigms in the Physics of Fun- damental Phenomena, to be published by Springer Verlag (2006). 2 Klaus Fredenhagen, Karl-Henning Rehren, and Erhard Seiler realm is the theory of elementary particles where it led to a far reaching under- standing of the structure of physics at subatomic scales with an often amaz- ingly good agreement between theoretical predictions and experiments. Typ- ical observables in QFT are current densities or energy flow densities which correspond to what is measured in particle physics detectors. The original aim of QFT was to compute expectation values and correlation functions of the observables, and to derive scattering cross sections in high-energy physics. In the course of development, QFT has widened its scope, notably towards the inclusion of gravitational interactions.
    [Show full text]
  • Operator Algebras and Applications, Volume 38-Part 1
    http://dx.doi.org/10.1090/pspum/038.1 PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS Volume 38, Part 1 OPERATOR ALGEBRAS AND APPLICATIONS AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND 1982 PROCEEDINGS OF THE SYMPOSIUM IN PURE MATHEMATICS OF THE AMERICAN MATHEMATICAL SOCIETY HELD AT QUEENS UNIVERSITY KINGSTON, ONTARIO JULY 14-AUGUST 2, 1980 EDITED BY RICHARD V. KADISON Prepared by the American Mathematical Society with partial support from National Science Foundation grant MCS 79-27061 Library of Congress Cataloging in Publication Data Symposium in Pure Mathematics (1980: Queens University, Kingston, Ont.) Operator algebras and applications. (Proceedings of symposia in pure mathematics; v. 38) Includes bibliographies and index. 1. Operator algebras-Congresses. I. Kadison, Richard V., 1925— II. Title. III. Series. QA326.S95 1982 512'.55 82-11561 ISBN 0-8218-1441-9 (v. 1) ISBN 0-8218-1444-3 (v. 2) ISBN 0-8218-1445-1 (set) 1980 Mathematics Subject Classification. Primary 46L05, 46L10; Secondary 43A80, 81E05, 82A15. Copyright © 1982 by the American Mathematical Society Printed in the United States of America All rights reserved except those granted to the United States Government. This book may not be reproduced in any form without the permission of the publishers. TABLE OF CONTENTS PARTI Author index xi Preface RICHARD V. KADISON xvn* Operator algebras—the first forty years 1 RICHARD V. KADISON On the structure theory of C*-algebras: some old and new problems 19 EDWARD G. EFFROS Homological invariants of extensions of C*-algebras 35 JONATHAN ROSENBERG Geometric resolutions and the Kunneth formula for C*-algebras 77 CLAUDE SCHOCHET The J£-groups for free products of C*-algebras 81 JOACHIM CUNTZ The internal structure of simple C*-algebras 85 JOACHIM CUNTZ K homology and index theory 117 PAUL BAUM AND RONALD G.
    [Show full text]
  • Advances in Algebraic Quantum Field Theory
    Advances in Algebraic Quantum Field Theory Klaus Fredenhagen II. Institut f¨urTheoretische Physik, Hamburg Klaus Fredenhagen Advances in Algebraic Quantum Field Theory Embedding of physical systems into larger systems requires characterization of subsystems understanding relations between subsystems (independence versus determinism, correlations, entanglement) Characterization of subsystems by their material content (\a system of two electrons") turns out to be problematic: Particle number not well defined during interaction Because of nontrivial particle statistics systems with n particles cannot identified in a natural way as subsystems of a system with m > n particles (e.g. Hanbury Brown Twist effect: Photons from different sources are entangled) Klaus Fredenhagen Advances in Algebraic Quantum Field Theory Haag (1957): Algebras of observables measurable in some finitely extended region of spacetime are good subsystems. Needs an a priori notion of spacetime and therefore cannot directly be applied to quantum gravity, but turned out to cover the essence of relativistic quantum field theory, in particular due to the stability of this concept in time because of the finite velocity of light. In nonrelativistic physics the identification of an algebra which is invariant under time evolution for an interesting dynamics is more difficult. (see no go theorems by Narnhofer and Thirring and the recent work of Buchholz (resolvent algebra) for progress). Klaus Fredenhagen Advances in Algebraic Quantum Field Theory Haag-Kastler Axioms Haag's concept of algebras of local observables can be summarized as follows: A quantum system is represented by a C*-algebra with unit, i.e. an algebra with unit over the complex numbers with an antilinear involution A 7! A∗ and a norm which satisfies the condition jjA∗Ajj = jjAjj2 such that the algebra is complete with respect to the induced topology.
    [Show full text]
  • QFT on Curved Spacetimes: Axiomatic Framework and Applications
    QFT on curved spacetimes: axiomatic framework and applications Klaus Fredenhagen Katarzyna Rejzner II Inst. f. Theoretische Physik, Department of Mathematics, Universität Hamburg, University of Rome Tor Vergata Luruper Chaussee 149, Via della Ricerca Scientifica 1, D-22761 Hamburg, Germany I-00133, Rome, Italy [email protected] [email protected] 2013 These notes are based on the course given by Klaus Fredenhagen at the Les Houches Winter School in Mathematical Physics (January 29 - February 3, 2012) and courses given by Katarzyna Rejzner in 2012 (Hamburg) and 2013 (Rome). Contents 1 Introduction 3 2 Algebraic quantum mechanics 5 3 Locally covariant field theory 9 3.1 Preliminaries . .9 3.2 Haag-Kastler axioms . 12 3.3 Axioms of LCQFT . 13 3.4 Example: CCR algebra of a free scalar field . 17 4 Classical field theory 18 5 Deformation quantization of free field theories 25 6 Interacting theories and the time ordered product 30 7 Renormalization 30 A Distributions and wavefront sets 39 1 Introduction Quantum field theory (QFT) is at present, by far, the most successful description of fun- damental physics. Elementary physics is, to a large extent, explained by a specific model in quantum field theory, the so-called Standard Model. All the essential structures of the Standard Model are nowadays experimentally verified. Outside of particle physics, quan- tum field theoretical concepts have been successfully applied also to condensed matter physics. In spite of its great achievements, quantum field theory also suffers from several longstanding open problems. The most serious problem is the incorporation of gravity. For some time, many people believed that such an incorporation would require a rad- ical change in the foundation of the theory.
    [Show full text]
  • KMS States on Conformal QFT
    KMS states on conformal QFT Yoh Tanimoto Abstract. Some recent results on KMS states on chiral components of two- dimensional conformal quantum field theories are reviewed. A chiral component is realized as a conformal net of von Neumann algebras on a circle, and there are two natural choices of dynamics: rotations and translations. For rotations, the natural choice is the universal C∗-algebra. We classify KMS states on a large class of conformal nets by their superse- lection sectors. They can be decomposed into Gibbs states with respect to the conformal Hamiltonian. For translations, one can consider the quasilocal C∗-algebra and we construct a distinguished geometric KMS state on it, which results from diffeomorphism covariance. We prove that this geometric KMS state is the only KMS state on a completely rational net. For some non-rational nets, we present various different KMS states. x1. Introduction The theory of operator algebras has been developed in a particularly close relationship with its application to physics. Among intersting con- nections, let us focus on the KMS condition. In statistical physics (see e.g. [17]), one considers a system of interest in contact with a heat bath. The heat bath is a system much larger than the system of interest and has a fixed temperature. They can only exchange energy, and after some time, the whole system arrives at an equilibrium state. As the system of interest is small compared with the heat bath, we may assume that the temperature in the equilibrium is that of the heat bath, say 1/β. If the system of interest is a quantum mechanical system on a Hilbert space H with the Hamiltonian H (such that e−βH is of trace class), the equilibrium state restricted to it can be 2010 Mathematics Subject Classification.
    [Show full text]
  • Shadows of Quantum Spacetime and Pale Glares of Dark Matter Universit
    Shadows of Quantum Spacetime and pale glares of Dark Matter Sergio Doplicher Universit`adi Roma \Sapienza" Local Quantum Physics and beyond In memoriam Rudolf Haag Hamburg; September26 − 27; 2016 1. Introduction. Why QST 2. Quantum Minkowski Space 3. QFT on QST 4. Comments on QST and Cosmology 5. QST: where to look for its shadows? 1 Introduction. Why QST QM finitely many d. o. f. ∆q∆p & ~ positions = observables, dual to momentum; in QFT, local observables: A 2 A(O); O (double cones) - spacetime specifications, in terms of coordinates - accessible through measurements of local observables. Allows to formulate LOCALITY: AB = BA 2 whenever A 2 A(O1);B 2 A(O2); and O1; O2 are spacelike separated. RUDOLF HAAG'S FAR REACHING VIEW (mid Fifties): CENTRAL PRINCIPLE OF QFT. Experiments:OK at all accessible scales; Theory: in QFT OK at all scales, ONLY if we neglect GRAVITATIONAL FORCES BETWEEN ELEMENTARY PARTICLES. (Rudolf's intuition, ' 80ies: otherwise, A(O) ought to be irreducible!) If we DON'T neglect Gravity: Heisenberg: localizing an event in a small region costs energy (QM); Einstein: energy generates a gravitational field (CGR). QM + CGR: PRINCIPLE OF Gravitational Stability against localization of events [DFR, 1994, 95]: The gravitational field generated by the concentra- tion of energy required by the Heisenberg Uncer- tainty Principle to localize an event in spacetime should not be so strong to hide the event itself to any distant observer - distant compared to the Planck scale. Spherically symmetric localization in space with accu- racy a: an uncontrollable energy E of order 1=a has to be transferred; Schwarzschild radius R ' E (in universal units where ~ = c = G = 1).
    [Show full text]
  • Curriculum Vitae Nicola Pinamonti
    October 2016 Curriculum Vitae Nicola Pinamonti Phone: Work address: +39 010 353 6936 Department of Mathematics University of Genova via Dodecaneso, 35 Email: I-16146 Genova, Italy; [email protected], [email protected]; Present Position Associate Professor of Mathematical Physics at the Department of Mathematics of the University of Genova. Education 2003 Ph.D. course in Physics at the Physics Department of the Trento University (Italy) Advisor: Prof. Luciano Vanzo. (Trento, Italy, 2000–2003) Ph.D. Thesis: “On some aspects of two-dimensional classical and quantum black hole”. Defended at the Department of Physics of the University of Trento (Italy) (February 27, 2003). 1999 Graduation course in Physics at the Trento University (Italy) (Trento, Italy, 1994–1999) Thesis Title: “Descrizione quantistica di un evento in una teoria con simmetria conforme.” (“Quantum description of an event in a theory with conformal symmetry”) Discussed in Trento, Italy (July 26, 1999), Advisor: Prof. Marco Toller marks 110 / 110. Further Education 2000 Conservatorio Statale di Musica “Bonporti” of Trento (Italy) (1995-2000) Classical Trumpet diploma. 1994 Liceo Scientifico Statale “B. Russell” Cles (Italy) (High School) (1989–1994) Maturità Scientifica marks 56 / 60. Spoken Languages Italian: First language English: Fluent German: Fluent Working Experiences and Fellowships 2014 Associate Professor in Mathematical Physics at the Department of Mathematics of the Uni- versity of Genova (Genova (Italy), since 01/07/2014) 2011 Ricercatore Universitario (Assistant Professor) in Mathematical Physics at the Depart- ment of Mathematics of the University of Genova (Genova (Italy), 30/12/2010 - 30/06/2014) 2010 Post-doctoral position: Department of Mathematics, University of Tor Vergata Roma Supervisor: Prof.
    [Show full text]
  • Quantum Field Theory on Curved Spacetimes
    Lecture Notes in Physics 786 Quantum Field Theory on Curved Spacetimes Concepts and Mathematical Foundations Bearbeitet von Christian Bär, Klaus Fredenhagen 1. Auflage 2012. Taschenbuch. x, 160 S. Paperback ISBN 978 3 642 26051 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 272 g Weitere Fachgebiete > Physik, Astronomie > Quantenphysik schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Preface An outstanding problem of theoretical physics is the incorporation of gravity into quantum physics. After the increasing experimental evidence for the validity of Einstein’s theory of general relativity, a theory based on the differential geometry of Lorentzian manifolds, and the discovery of the standard model of elementary particle physics, relying on the formalism of quantum field theory, the question of mutual compatibility of these theoretical concepts gains more and more importance. This becomes in particular urgent in modern cosmology where both theories have to be applied simultaneously. Early attempts of incorporating gravity into quantum field theory by treating the gravitational field as one of the quantum fields run into conceptual and practical problems. This fact led to rather radical new attempts going beyond the established theories, the most prominent ones being string theory and loop quantum gravity. But after some decades of work a satisfactory theory of quantum gravity is still not available; moreover, there are indications that the original field theoretical approach may be better suited than originally expected.
    [Show full text]
  • Quantum Physics, Quantum Spacetime and Quantum Geometry
    Quantum Physics, Quantum Spacetime and Quantum Geometry Sergio Doplicher Universit`adi Roma \Sapienza" February 16, 2016 Colloquium "Levi - Civita", 17 Febbraio 2016 1. Why Quantum 2. Why Quantum Spacetime 3. Quantum Minkowski Space 4. Quantum Geometry 5. QFT on QST 6. Comments on QST and Cosmology 1 Why Quantum 2 In a physical theory, the observable quantities are described by the selfad- joint elements in a C* Algebra A (a Banach * algebra s.t. jjA∗Ajj = jjAjj2; equivalently a uniformly closed * algebra of linear bounded operators on a Hilbert space); the physical states are described by states of that alge- bra (i.e. positive normalized linear functionals) and the expectation value of the observable A in the state ! is given by !(A). 3 Thus the uncertainty of A in ! is (∆A)2 =< (A− < A > I)2 > : If AB = BA, then A and B are compatible; otherwise, in any state of the system, ∆A∆B & (1=2)j < AB − BA > j: (Elementary consequence of Schwarz's inequality for the positive semidefinite sesquilinear form assigning to A; B the number !(A∗B)). If the C* Algebra generated by the observables is com- mutative, it can be identified with C0(Ω) for some lo- cally compact space Ω, the phase space of a Classical Theory. Noncommutativity of A is equivalent to the presence of any (hence of all) the following properties: 1. There is a pair of observables which cannot be mea- sured simultaneously. 2. There is an observable A and a pure state where A does not take a precise value (Quantum fluctuations).
    [Show full text]