International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email:
[email protected] Volume 5, Issue 4, April 2016 ISSN 2319 - 4847 Comparison of Heat Transfer Coefficients in Free and Forced Convection using Circular Annular Finned Tubes 1Dr. Abdul Jabbar N. Khalif, 2Israa Riyadh Aziz Al mousawi 1Assistant professor College of Engineering – AL Nahrain University 2Mechanical Engineer College of Engineering –ALNahrainUniversity ABSTRACT In this study, heat transfer coefficients in both free and forced convection heat transferusing vertical circular annular finned tubes were investigatedexperimentally. For this purpose three types of metals were used, namely,Aluminum, Copper, and Iron. These metals differ from each other intheir specific weight,cost and thermal conductivities which are 204 W/m.K for Aluminum, 386 W/m.K for Copper and 73 W/m.K for iron.Surface temperature employed during experiments varied between 40and 60 Co at 10 Co intervals. The spacing between fins is 1cm. It was found that the heat transfer coefficient increases with increasing air speed from (1to 3) m/s, and there is anoticeable increase in heat transfer coefficientwhen using Copper metal to manufacture the tube and the fins as compared to Aluminum and Ironmetals. 1. INTRODUCTION Finned surfaces are widely used in compact heat exchangers used in many applications such as air conditioners, aircrafts and chemical processing plants.Finned surfaces are also used in cooling electronic components.The general disposition of fins on the base surface is usually either longitudinal (straight fins) or circumferential (radial fins). Circular annular-finned tubes heat exchangers are also commonly used in industry.