La Sal Mountain Alpine Arthropod Communities: Establishing Baseline Conditions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bees in Urban Landscapes: an Investigation of Habitat Utilization By
Bees in urban landscapes: An investigation of habitat utilization By Victoria Agatha Wojcik A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, & Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Joe R. McBride, Chair Professor Gregory S. Biging Professor Louise A. Mozingo Fall 2009 Bees in urban landscapes: An investigation of habitat utilization © 2009 by Victoria Agatha Wojcik ABSTRACT Bees in urban landscapes: An investigation of habitat utilization by Victoria Agatha Wojcik Doctor of Philosophy in Environmental Science, Policy, & Management University of California, Berkeley Professor Joe R. McBride, Chair Bees are one of the key groups of anthophilies that make use of the floral resources present within urban landscapes. The ecological patterns of bees in cities are under further investigation in this dissertation work in an effort to build knowledge capacity that can be applied to management and conservation. Seasonal occurrence patterns are common among bees and their floral resources in wildland habitats. To investigate the nature of these phenological interactions in cities, bee visitation to a constructed floral resource base in Berkeley, California was monitored in the first year of garden development. The constructed habitat was used by nearly one-third of the locally known bee species. Bees visiting this urban resource displayed distinct patterns of seasonality paralleling those of wildland bees, with some species exhibiting extended seasons. Differential bee visitation patterns are common between individual floral resources. The effective monitoring of bee populations requires an understanding of this variability. To investigate the patterns and trends in urban resource usage, the foraging of the community of bees visiting Tecoma stans resources in three tropical dry forest cities in Costa Rica was studied. -
Wild Bee Species Increase Tomato Production and Respond Differently to Surrounding Land Use in Northern California
BIOLOGICAL CONSERVATION 133 (2006) 81– 87 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/biocon Wild bee species increase tomato production and respond differently to surrounding land use in Northern California Sarah S. Greenleaf*, Claire Kremen1 Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States ARTICLE INFO ABSTRACT Article history: Pollination provided by bees enhances the production of many crops. However, the contri- Received 11 December 2005 bution of wild bees remains unmeasured for many crops, and the effects of anthropogenic Received in revised form change on many bee species are unstudied. We experimentally investigated how pollina- 5 May 2006 tion by wild bees affects tomato production in northern California. We found that wild bees Accepted 16 May 2006 substantially increase the production of field-grown tomato, a crop generally considered Available online 24 July 2006 self-pollinating. Surveys of the bee community on 14 organic fields that varied in proximity to natural habitat showed that the primary bee visitors, Anthophora urbana Cresson and Keywords: Bombus vosnesenskii Radoszkowski, were affected differently by land management prac- Agro-ecosystem tices. B. vosnesenskii was found primarily on farms proximate to natural habitats, but nei- Crop pollination ther proximity to natural habitat nor tomato floral abundance, temperature, or year Ecosystem services explained variation in the visitation rates of A. urbana. Natural habitat appears to increase Bombus vosnesenskii B. vosnesenskii populations and should be preserved near farms. Additional research is Anthophora urbana needed to determine how to maintain A. urbana. Species-specific differences in depen- Habitat conservation dency on natural habitats underscore the importance of considering the natural histories of individual bee species when projecting population trends of pollinators and designing management plans for pollination services. -
Pollinator–Friendly Parks
POLLINATOR–FRIENDLY PARKS How to Enhance Parks, Gardens, and Other Greenspaces for Native Pollinator Insects Matthew Shepherd, Mace Vaughan, and Scott Hoffman Black The Xerces Society for Invertebrate Conservation, Portland, OR The Xerces Society for Invertebrate Conservation is an international, nonprofit, member–supported organiza- tion dedicated to preserving wildlife and its habitat through the conservation of invertebrates. The Society promotes protection of invertebrates and their habitat through science–based advocacy, conservation, and education projects. Its work focuses on three principal areas—endangered species, watershed health, and pollinator conservation. Copyright © 2008 (2nd Edition) The Xerces Society for Invertebrate Conservation. 4828 SE Hawthorne Boulevard, Portland, OR 97215 Tel (503) 232-6639 Fax (503) 233-6794 www.xerces.org Acknowledgements Thank you to Bruce Barbarasch (Tualatin Hills Park & Recreation District, OR) and Lisa Hamerlynck (City of Lake Oswego, OR) for reviewing early drafts. Their guidance and suggestions greatly improved these guide- lines. Thank you to Eric Mader and Jessa Guisse for help with the plant lists, and to Caitlyn Howell and Logan Lauvray for editing assistance. Funding for our pollinator conservation program has been provided by the Bradshaw-Knight Foundation, the Bullitt Foundation, the Columbia Foundation, the CS Fund, the Disney Wildlife Conservation Fund, the Dudley Foundation, the Gaia Fund, NRCS Agricultural Wildlife Conservation Center, NRCS California, NRCS West National Technical Support Center, the Panta Rhea Foundation, the Richard and Rhoda Goldman Founda- tion, the Turner Foundation, the Wildwood Foundation, and Xerces Society members Photographs We are grateful to Jeff Adams, Scott Bauer/USDA–ARS, John Davis/GORGEous Nature, Chris Evans/ www.forestryimages.com, Bruce Newhouse, Jeff Owens/Metalmark Images, and Edward S. -
Phylogenetic Relationships and Historical Biogeography of Tribes and Genera in the Subfamily Nymphalinae (Lepidoptera: Nymphalidae)
Blackwell Science, LtdOxford, UKBIJBiological Journal of the Linnean Society 0024-4066The Linnean Society of London, 2005? 2005 862 227251 Original Article PHYLOGENY OF NYMPHALINAE N. WAHLBERG ET AL Biological Journal of the Linnean Society, 2005, 86, 227–251. With 5 figures . Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily Nymphalinae (Lepidoptera: Nymphalidae) NIKLAS WAHLBERG1*, ANDREW V. Z. BROWER2 and SÖREN NYLIN1 1Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden 2Department of Zoology, Oregon State University, Corvallis, Oregon 97331–2907, USA Received 10 January 2004; accepted for publication 12 November 2004 We infer for the first time the phylogenetic relationships of genera and tribes in the ecologically and evolutionarily well-studied subfamily Nymphalinae using DNA sequence data from three genes: 1450 bp of cytochrome oxidase subunit I (COI) (in the mitochondrial genome), 1077 bp of elongation factor 1-alpha (EF1-a) and 400–403 bp of wing- less (both in the nuclear genome). We explore the influence of each gene region on the support given to each node of the most parsimonious tree derived from a combined analysis of all three genes using Partitioned Bremer Support. We also explore the influence of assuming equal weights for all characters in the combined analysis by investigating the stability of clades to different transition/transversion weighting schemes. We find many strongly supported and stable clades in the Nymphalinae. We are also able to identify ‘rogue’ -
Las Abejas Del Género Agapostemon (Hymenoptera: Halictidae) Del Estado De Nuevo León, México
Revista Mexicana de Biodiversidad 83: 63-72, 2012 Las abejas del género Agapostemon (Hymenoptera: Halictidae) del estado de Nuevo León, México Bees of the genus Agapostemon (Hymenoptera: Halictidae) of the state of Nuevo León, Mexico Liliana Ramírez-Freire1 , Glafiro José Alanís-Flores1, Ricardo Ayala-Barajas2, Humberto Quiroz -Martínez1 y Carlos GerardoVelazco-Macías3 1Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Cd. Universitaria. Apartado postal 134-F, 66450 San Nicolás de los Garza, Nuevo León, México. 2Estación de Biología Chamela (Sede Colima) Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 21, 48980 San Patricio, Jalisco, México. 3Parques y Vida Silvestre. Av. Alfonso Reyes norte s/n, interior del Parque Niños Héroes, lateral izquierda, acceso 3, 64290 Monterrey, Nuevo León, México. [email protected] Resumen. Se realizó un estudio faunístico de las abejas del género Agapostemon (Halictidae) en el estado de Nuevo León, México para conocer las especies presentes, su distribución, relación con la flora y tipos de vegetación del estado. La metodología se basó en la revisión de literatura y de bases de datos de colecciones entomológicas, y en muestreos en campo donde se utilizó red entomológica y platos trampa de colores amarillo, azul, rosa (tonos fluorescentes) y blanco. Sólo en 20 de los 35 muestreos que se realizaron se obtuvieron ejemplares del género. Se recolectaron 11 especies, 2 de las cuales son registros nuevos para el estado (A. nasutus y A. splendens). El 12.31% de los ejemplares se obtuvo mediante el uso de red y el 87.84% con los platos trampa; el color amarillo fue el preferido por las abejas. -
Global Trends in Bumble Bee Health
EN65CH11_Cameron ARjats.cls December 18, 2019 20:52 Annual Review of Entomology Global Trends in Bumble Bee Health Sydney A. Cameron1,∗ and Ben M. Sadd2 1Department of Entomology, University of Illinois, Urbana, Illinois 61801, USA; email: [email protected] 2School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA; email: [email protected] Annu. Rev. Entomol. 2020. 65:209–32 Keywords First published as a Review in Advance on Bombus, pollinator, status, decline, conservation, neonicotinoids, pathogens October 14, 2019 The Annual Review of Entomology is online at Abstract ento.annualreviews.org Bumble bees (Bombus) are unusually important pollinators, with approx- https://doi.org/10.1146/annurev-ento-011118- imately 260 wild species native to all biogeographic regions except sub- 111847 Saharan Africa, Australia, and New Zealand. As they are vitally important in Copyright © 2020 by Annual Reviews. natural ecosystems and to agricultural food production globally, the increase Annu. Rev. Entomol. 2020.65:209-232. Downloaded from www.annualreviews.org All rights reserved in reports of declining distribution and abundance over the past decade ∗ Corresponding author has led to an explosion of interest in bumble bee population decline. We Access provided by University of Illinois - Urbana Champaign on 02/11/20. For personal use only. summarize data on the threat status of wild bumble bee species across bio- geographic regions, underscoring regions lacking assessment data. Focusing on data-rich studies, we also synthesize recent research on potential causes of population declines. There is evidence that habitat loss, changing climate, pathogen transmission, invasion of nonnative species, and pesticides, oper- ating individually and in combination, negatively impact bumble bee health, and that effects may depend on species and locality. -
The Social Parasite Bumblebee Bombus Hyperboreus Schönherr, 1809 Usurp Nest of Bombus Balteatus Dahlbom, 1832 (Hymenoptera, Apidae) in Norway
© Norwegian Journal of Entomology. 5 June 2009 The social parasite bumblebee Bombus hyperboreus Schönherr, 1809 usurp nest of Bombus balteatus Dahlbom, 1832 (Hymenoptera, Apidae) in Norway JAN OVE GJERSHAUG Gjershaug, J. O. 2009. The social parasite bumblebee Bombus hyperboreus Schönherr, 1809 usurp nest of Bombus balteatus Dahlbom, 1832 (Hymenoptera: , Apidae) in Norway. Norw. J. Entomol. 56, 28– 31. This paper presents the first documented case of nest parasitisme (usurpation) of the bumblebee Bombus balteatus Dahlbom, 1832 by the social parasite bumblebee Bombus hyperboreus Schönherr, 1809. One nest of B. balteatus was found and excavated in Hessdalen in Sør-Trøndelag, Norway in July 2003. The nest contained sexuals of Bombus hyperboreus together with workers of B. balteatus. Key words: bumblebees, Bombus hyperboreus, Bombus balteatus, social parasitism, usurpation Jan Ove Gjershaug, Norwegian Institute for Nature Research, Tungasletta 2, NO-7485 Trondheim, Norway. E-mail: [email protected] Introduction (Goulson 2003). Bombus hyperboreus (subgenus Alpinobombus Skorikov, 1914) resembles the Social parasitism is well known in bumblebees. Psithyrus bumblebees in having an obligate Late emerging queens sometimes take over dependency on social bumblebees, but differs (usurps) an established nest of others of their own from them in having pollen baskets and in doing species or related species. The usurper attacks pollen collecting. and kill the queen, and enslaves the killed queens daughters (Alford 1975). Usurpation is said to From arctic North America, B. hyperboreus occur only within species of the same subgenus frequently usurps B. polaris Curtis, 1835 (=B. (Hobbs 1965). Thus for example Bombus terrestris arcticus Kirby, 1821) (Milliron & Oliver 1966, (Linnaeus, 1758) will often attempt to usurp its Richards 1973). -
Portland Field Guide
FIELD GUIDE FRITZ HAEG’S ANIMAL ESTATES REGIONAL MODEL HOMES 5.0 PORTLAND, OREGON 5 . N 0 O P G O RE RTLAND, O ANIMAL ESTATES 5.0 PORTLAND, OREGON DOUGLAS F. COOLEY MEMORIAL ART GALLERY REED COLLEGE 26 AUGUST–5 OCTOBER 2008 FRITZ HAEG 04 INTRODUCTION 10 IN LIVABLE CITIES IS FRITZ HAEG PRESERVATION OF THE WILD MIKE HOUCK 06 BUILD A BETTER SNAG! 14 SNAGS AND LOGS STEPHANIE SNYDER CHARLOTTE CORKRAN ANIMAL CLIENTS 18 CLIENT 5.1 34 CLIENT 5.5 VAUX’S SWIFT NORTHWESTERN GARTER SNAKE CHAETURA VAUXI THAMNOPHIS SIRTALIS TETRATAENIA CONTENTS BOB SALLINGER TIERRA CURRY 2 2 CLIENT 5.2 38 CLIENT 5.6 WHITE-BREASTED NUTHATCH ORANGE-RUMPED BUMBLEBEE SITTA CAROLINENSIS BOMBUS MELANOPYGUS CHARLOTTE CORKRAN CHRISTOPHER MARSHALL 26 CLIENT 5.3 42 CLIENT 5.7 OLIVE-SIDED FLYCATCHER SNAIL-EATING GROUND BEETLE CONTOPUS COOPERI SCAPHINOTUS ANGULATUS CHARLOTTE CORKRAN CHRISTOPHER MARSHALL 30 CLIENT 5.4 SILVER-HAIRED BAT LASIONYCTERIS NOCTIVAGANS CHARLOTTE CORKRAN 46 FIELD NOTES 48 CREDITS CLIENT 5.1 VAUX’S SWIFT CHAETURA VAUXI The ongoing Animal Estates lished between the man-made and the wild. initiative creates dwellings for Animals and their habitats are woven back into our cities, strip malls, garages, offi ce parks, animals that have been displaced freeways, backyards, parking lots, and neigh- by humans. Each edition of borhoods. Animal Estates intends to provide a the project is accompanied by provocative twenty-fi rst-century model for the some combination of events, human-animal relationship that is more intimate, visible, and thoughtful. workshops, exhibitions, videos, printed materials, and a temporary PORTLAND headquarters presenting an ever- In the gallery, the temporary Animal Estates expanding urban wildlife archive. -
Butterflies and Moths of San Bernardino County, California
Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail -
Butterflies and Moths of Comal County, Texas, United States
Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail -
Response of Pollinators to the Tradeoff Between Resource Acquisition And
Oikos 000: 001–010, 2011 doi: 10.1111/j.1600-0706.2011.19910.x © 2011 The Authors. Oikos © 2011 Nordic Society Oikos Subject Editor: Koos Biesmierer. Accepted 25 July 2011 0 Response of pollinators to the tradeoff between resource 53 acquisition and predator avoidance 55 5 Ana L. Llandres, Eva De Mas and Miguel A. Rodríguez-Gironés 60 A. L. Llandres ([email protected]), E. De Mas and M. A. Rodríguez-Gironés, Dept of Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas (CSIC), Carretera de Sacramento, s/n, ES-04120, La Cañada de San Urbano, Almería, Spain. 10 65 Although the behaviour of animals facing the conflicting demands of increasing foraging success and decreasing predation risk has been studied in many taxa, the response of pollinators to variations in both factors has only been studied in isola- tion. We compared visit rates of two pollinator species, hoverflies and honeybees, to 40 Chrysanthemum segetum patches 15 in which we manipulated predation risk (patches with and without crab spiders) and nectar availability (rich and poor patches) using a full factorial design. Pollinators responded differently to the tradeoff between maximising intake rate and minimising predation risk: honeybees preferred rich safe patches and avoided poor risky patches while the number of hov- 70 erflies was highest at poor risky patches. Because honeybees were more susceptible to predation than hoverflies, our results suggest that, in the presence of competition for resources, less susceptible pollinators concentrate their foraging effort on 20 riskier resources, where competition is less severe. Crab spiders had a negative effect on the rate at which inflorescences were visited by honeybees. -
Field Checklist of the Butterflies of Sonora, Mexico
Field Checklist Field Checklist of of the Butterfl ies of Sonora, Mexico The Butterfl ies of Sonora, Mexico List Compiled by Jim P. Brock Checklists available at Mexico Birding Website March 2009 http://MexicoBirding.com Kurt Radamaker Checklist Locality __________________________________ Observer(s) _______________________________ of the 1 Date __________Time ______ Total Species ____ Butterfl ies of Mexico Weather __________________________________ Remarks __________________________________ This checklist is a direct result of the work of Jim P. Brock's col- lecting and research in Sonora, Mexico since 1984. Locality __________________________________ Observer(s) _______________________________ 2 Date __________Time ______ Total Species ____ Weather __________________________________ Remarks __________________________________ Locality __________________________________ Observer(s) _______________________________ 3 Date __________Time ______ Total Species ____ Weather __________________________________ Remarks __________________________________ Locality __________________________________ Observer(s) _______________________________ 4 Date __________Time ______ Total Species ____ Weather __________________________________ Remarks __________________________________ Locality __________________________________ Observer(s) _______________________________ 5 Date __________Time ______ Total Species ____ Weather __________________________________ Booklet Design by Remarks __________________________________ Kurt and Cindy Radamaker March 2009 1 2