The Messenger
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ultraviolet and Visual Flux and Line Variations of One of the Least Variable Bp Stars HD 64740
Astronomy & Astrophysics manuscript no. hd64740 c ESO 2018 August 28, 2018 Ultraviolet and visual flux and line variations of one of the least variable Bp stars HD 64740⋆ J. Krtiˇcka1, J. Jan´ık1, H. Markov´a1, Z. Mikul´aˇsek1,2, J. Zverko1, M. Prv´ak1, and M. Skarka1 1 Department of Theoretical Physics and Astrophysics, Masaryk University, Kotl´aˇrsk´a2, CZ-611 37 Brno, Czech Republic 2 Observatory and Planetarium of J. Palisa, VSBˇ – Technical University, Ostrava, Czech Republic Received ABSTRACT Context. The light variability of hot magnetic chemically peculiar stars is typically caused by the flux redistribution in spots with peculiar abundance. This raises the question why some stars with surface abundance spots show significant rotational light variability, while others do not. Aims. We study the Bp star HD 64740 to investigate how its remarkable inhomogeneities in the surface distribution of helium and silicon, and the corresponding strong variability of many spectral lines, can result in one of the faintest photometric variabilities among the Bp stars. Methods. We used model atmospheres and synthetic spectra calculated for the silicon and helium abundances from surface abundance maps to predict the ultraviolet and visual light and line variability of HD 64740. The predicted fluxes and line profiles were compared with the observed ones derived with the IUE, HST, and Hipparcos satellites and with spectra acquired using the FEROS spectrograph at the 2.2m MPG/ESO telescope in La Silla. Results. We are able to reproduce the observed visual light curve of HD 64740 assuming an inhomogeneous distribution of iron correlated with silicon distribution. -
Messier Objects
Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun. -
Arxiv:1904.06897V1 [Astro-Ph.SR] 15 Apr 2019
MNRAS 000,1–16 (2019) Preprint 16 April 2019 Compiled using MNRAS LATEX style file v3.0 The Sejong Open cluster Survey (SOS) VI. A small star-forming region in the high Galactic latitude molecular cloud MBM 110 Hwankyung Sung1?, Michael S. Bessell2, Inseok Song3 1Department of Physics and Astronomy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea 2Research School of Astronomy & Astrophysics, The Australian National University, Canberra, ACT 2611, Australia 3Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA Last updated 2019 March 25 ABSTRACT We present optical photometric, spectroscopic data for the stars in the high Galactic latitude molecular cloud MBM 110. For the complete membership selection of MBM 110, we also analyze WISE mid-infrared data and Gaia astrometric data. Membership of individual stars is critically evaluated using the data mentioned above. The Gaia parallax of stars in MBM 110 is 2.667 ± 0.095 mas (d = 375 ± 13pc), which confirms that MBM 110 is a small star-forming region in the Orion-Eridanus superbubble. The age of MBM 110 is between 1.9 Myr and 3.1 Myr depending on the adopted pre-main sequence evolution model. The total stellar mass of MBM 110 is between 16 M (members only) and 23 M (including probable members). The star formation efficiency is estimated to be about 1.4%. We discuss the importance of such small star formation regions in the context of the global star formation rate and suggest that a galaxy’s star formation rate calculated from the Hα luminosity may underestimate the actual star formation rate. -
Emission Nebulae
PART 3 Galaxies Gas, Stars and stellar motion in the “Milky Way” The Interstellar Medium The Sombrero Galaxy • Space is far from empty! • This dust can obscure visible light – Clouds of cold gas from stars and appear to be vast – Clouds of dust tracts of empty space • In a galaxy, gravity pulls the dust • Fortunately, it doesn’t hide all into a disk along and within the galactic plane wavelengths of light! Emission Nebulae • We frequently see nebulae (clouds of interstellar gas and dust) glowing faintly with a red or pink color • Ultraviolet radiation from nearby hot stars heats the nebula, causing it to emit photons • This is an emission nebula! Reflection Nebulae • When the cloud of gas and dust is simply illuminated by nearby stars, the light reflects, creating a reflection nebula • Typically glows blue Dark Nebulae • Nebulae that are not illuminated or heated by nearby stars are opaque – they block most of the visible light passing through it. • This is a dark nebula Interstellar Reddening • As starlight passes through a dust cloud, the dust particles scatter blue photons, allowing red photons to pass through easily • The star appears red (reddening) – it looks older and dimmer (extinction) than it really is. If one region of the sky shows nearby stars but no distant stars or galaxies, our view is probably blocked by a) nothing, but directed toward a particularly empty region of space. b) an emission nebula of ionized gas. c) an interstellar gas and dust cloud. d) a concentration of dark matter. Rotation in the Milky Way • The Milky Way does not rotate like a solid disk! – Inner parts rotate about the center faster than outer parts – Similar to the way planets rotate around the Sun – This is called differential rotation. -
Gas and Dust in the Magellanic Clouds
Gas and dust in the Magellanic clouds A Thesis Submitted for the Award of the Degree of Doctor of Philosophy in Physics To Mangalore University by Ananta Charan Pradhan Under the Supervision of Prof. Jayant Murthy Indian Institute of Astrophysics Bangalore - 560 034 India April 2011 Declaration of Authorship I hereby declare that the matter contained in this thesis is the result of the inves- tigations carried out by me at Indian Institute of Astrophysics, Bangalore, under the supervision of Professor Jayant Murthy. This work has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: ii Certificate This is to certify that the thesis entitled ‘Gas and Dust in the Magellanic clouds’ submitted to the Mangalore University by Mr. Ananta Charan Pradhan for the award of the degree of Doctor of Philosophy in the faculty of Science, is based on the results of the investigations carried out by him under my supervi- sion and guidance, at Indian Institute of Astrophysics. This thesis has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: iii Dedicated to my parents ========================================= Sri. Pandab Pradhan and Smt. Kanak Pradhan ========================================= Acknowledgements It has been a pleasure to work under Prof. Jayant Murthy. I am grateful to him for giving me full freedom in research and for his guidance and attention throughout my doctoral work inspite of his hectic schedules. I am indebted to him for his patience in countless reviews and for his contribution of time and energy as my guide in this project. -