Laboulbenia Slackensis and L. Littoralis Sp

Total Page:16

File Type:pdf, Size:1020Kb

Laboulbenia Slackensis and L. Littoralis Sp Mycologia, 106(3), 2014, pp. 407–414. DOI: 10.3852/13-348 # 2014 by The Mycological Society of America, Lawrence, KS 66044-8897 Laboulbenia slackensis and L. littoralis sp. nov. (Ascomycota, Laboulbeniales), two sibling species as a result of ecological speciation Andre´ De Kesel1 the phylogenetic relatedness of taxa within a host National Botanic Garden of Belgium, Domein van range, specificity has been attributed generally to the Bouchout, BE-1860 Meise, Belgium need for certain substances from the host (Scheloske Danny Haelewaters 1969, Tavares 1979). Studies directed at understand- Department of Organismic and Evolutionary Biology, ing the mechanisms governing host specificity and Harvard University, 22 Divinity Avenue, Cambridge, explaining observed host ranges have been limited in Massachusetts 02138 part because these fungi can be manipulated only by growing infected insect colonies and artificially introducing a foreign host. An alternative way to Abstract: Laboulbenia littoralis is described from the investigate host specificity is to examine unrelated halobiont Cafius xantholoma (Coleoptera, Staphylini- insects living in the same habitat. Laboulbeniales dae); it previously was misidentified and not properly infecting co-habiting and stenotopic hosts, which are documented. Morphologically the new species be- characterized by having a very strict habitat choice, longs to a group of carabidicolous taxa similar to are interesting in terms of host specificity and Laboulbenia pedicellata and especially Laboulbenia ecological speciation. The latter, according to the slackensis. It is generally accepted that the specificity modern evolutionary synthesis, is the result of of Laboulbeniales is based on their need for the micro-evolutionary process of divergent natural substances from the host. In this relatively strict selection between populations exploiting different context, shifts between unrelated hosts are difficult to resources or environments, ultimately leading to explain. We present morphological and ecological reproductive isolation (e.g. Mayr 1942, Dobzhansky evidence supporting the hypothesis that these fungi 1951, Schluter 2000). are capable of shifting between unrelated hosts as Host and parasite phylogenies often align as a long as they share the same habitat. Adaptation to a result of codivergence (shared history) (Legendre particular environment, combined with a reduced et al. 2002, Downie and Gullan 2005, Futuyma 2005, dependence from specific nutrients of the host, Page 1994) but explaining how morphologically explains the proposed interfamilial host shift. similar Laboulbeniales can occur on phylogenetically Key words: Cafius, ecological specificity, host unrelated hosts is challenging. Field data indicate that shift, parasitic fungi, plurivory, reproductive isolation, plurivorous Laboulbeniales, such as Laboulbenia taxonomy ecitonis G. Blum, can be found only on unrelated hosts occupying the same ecological niche, including INTRODUCTION Staphylinidae, Histeridae, mites (Acari, Mesostigmata, Uropodidae) and ants (Hymenoptera, Formicidae) Laboulbeniales are obligate ectoparasites associated (Benjamin 1971). Plurivory is still unexplained and with arthropods. The order consists of 140 genera many factors are thought to be involved, including (Rossi and Santamarı´a 2012) and about 2050 species, accidental transmission (Scheloske 1969) and adap- 80% of them reported from Coleoptera (Weir and tation to common nutrients available from the Blackwell 2005). Among these, the Carabidae cohabiting hosts (Scheloske 1969, Benjamin 1971). (ground beetles) and Staphylinidae (rove beetles) Rossi (2011) and Arndt et al. (2003) suggest that host are the most common hosts, accounting for 17 and 47 shifts of Laboulbenia species have occurred between genera of Laboulbeniales respectively (Frank 1982, Cicindelinae and other Carabidae living in the same Tavares 1985, Rossi and Santamarı´a 2008). With more habitat, resulting in a number of morphologically than 600 species (Kirk et al. 2008, Rossi 2011) the similar taxa. Benjamin (1971) suggested in this genus Laboulbenia Mont. & C.P. Robin is the largest context that ‘‘successful colonization of a new host within the Laboulbeniales. is probably a rare event, but it is possible, even likely, Most Laboulbeniales have a high degree of host that fortuitous parasite transfer has played a role in specificity (Benjamin 1971, Tavares 1985). Based on the evolution of new species groups and even genera.’’ Mutations also are thought to allow host Submitted 18 Oct 2013; accepted for publication 18 Dec 2013. shifts, yielding cryptic species with different nutri- 1 Corresponding author. E-mail: [email protected] tional requirements (Rossi 2011). The transmission 407 408 MYCOLOGIA experiments from Ce´pe`de and Picard (1907) showed 1971), and slides were sealed with transparent fingernail that L. vulgaris Peyr. and L. pedicellata Thaxt. (as L. polish. Both insects and microscope slides are deposited at gracilipes Ce´pe`de & F. Picard) were not able to the National Herbarium of Belgium (BR). French and interchange hosts, even though the hosts belong to Italian host specimens were studied at the American Museum of Natural History (New York); respective micro- the same genus (Bembidion Latreille 1802). The major scope slides are deposited at the Farlow Herbarium, effect of rearing conditions in transmission experi- Harvard University (FH). Drawings and measurements were ments with Laboulbeniales has been shown in made with an Olympus BX51 light microscope with drawing experiments with L. slackensis Ce´pe`de & F. Picard, tube, digital camera and AnalySIS 5 imaging software (Soft which under natural conditions is a host-specific Imaging System GmbH). Host taxonomy and classification parasite, apparently restricted to the salt mash- follows Vorst (2010), unless otherwise cited. inhabiting Pogonus chalceus (Marsham, 1802) (De Biometrics.—Differences in thallus dimensions and shapes Kesel 1993, 1996). Nonetheless, data from transmis- were tested following De Kesel & Van den Neucker (2005). sion experiments show that it can infect several other We measured 15 variables and four ratios from at least 30 Carabidae; it was demonstrated that the development mature thalli of each species. These parameters were used of thalli on these hosts was influenced by the rearing (abbreviations and explanations are given between paren- conditions rather than by the host species (De Kesel theses): total thallus length (TL, from foot to perithecial 1996). apex); length of the receptacle (RL, from foot to insertion To date we know, from both field observations and cell); perithecium length (PL, without cell VI); perithecium laboratory experiments, that the habitat (imposed or width (PW); height of cell I (cell I); height of cell II (cell II); chosen by the host) seems to determine the success of height of cell III (cell III); height of cell IV (cell IV); height of the paraphysopodium (par); width of the insertion cell ectoparasites. This observation is an important (IC) and length of the appendages (app, intact whenever element in considering the ecological specificity of possible). The length of these septa was measured: septum Laboulbeniales (Scheloske 1969, Majewski 1994b, De I–II, septum II–VI; septum II–III; septum of cell III with Kesel 1996). It helps to understand the difference and cells IV and V. To better understand shapes and propor- meaning of a usual host and an occasional host, tions, these ratios also were calculated: PL/PW; cell I/cell II; including why in certain habitats a parasite can be cell IV/par and II–VI/II–III. Differences were tested with found on an atypical host. Altogether the habitat Student’s t test (Sokal and Rohlf 1981) with Statistica 10.0. preference of the host as an important driving force Host species was used as a grouping variable. The behind specialization and speciation of Laboulbe- significance value was P , 0.05. Thalli included in the niales also is recognized. With this in mind we analysis came from all parts of host integument, regardless searched for L. slackensis in its natural habitat of host species or sex. (coastal environments and saltmarshes), aiming to find it on a number of Carabidae. Instead we found RESULTS infected populations of the staphylinid beetle Cafius Statistical analysis.—Significant differences between xantholoma bearing thalli of the newly described Laboulbenia littoralis and L. slackensis were observed Laboulbenia littoralis, morphologically similar to L. for parameters, PL, PW, cell I, cell II, cell III, cell IV, slackensis. par, IC, app, I–II, II–VI, II–III, III– (IV+V); and ratios, The present paper deals with a number of PL/PW, cell I/cell II, cell IV/par, II–VI/II–III morphologically similar Laboulbenia species occur- (TABLE I). Tested differences were not significant ring on unrelated hosts from these coastal habitats. for two remaining parameters, TL and RL. Our results provide new evidence for habitat-related interfamilial host shifts in the genus Laboulbenia. TAXONOMY MATERIALS AND METHODS Laboulbenia littoralis De Kesel & Haelew., sp. nov. FIG.1 Morphology.—Insects were obtained from seaweed and plant debris from above the high water mark along east MycoBank MB801461 coast beaches in Belgium and the Netherlands. At each site Illustrations: Balazuc (1974 Fig. 18, ut L. cafii), De 40–80 L debris were carefully transferred to a bag and Kesel (1997 Pl. 20 and 1998 Pl. 1.5 ut L. cafii). transported to the laboratory. The samples were placed in
Recommended publications
  • Asymmetric Hindwing Foldings in Rove Beetles
    Asymmetric hindwing foldings in rove beetles Kazuya Saitoa,1, Shuhei Yamamotob, Munetoshi Maruyamac, and Yoji Okabea aInstitute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan; bGraduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan; and cThe Kyushu University Museum, Fukuoka 812-8581, Japan Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved October 13, 2014 (received for review May 23, 2014) Foldable wings of insects are the ultimate deployable structures storage space (with some minor exceptions in soil- and cave- and have attracted the interest of aerospace engineering scientists dwelling species). The strategy is achieved by their extraordinary as well as entomologists. Rove beetles are known to fold their right–left asymmetric wing folding. As a result, rove beetles be- wings in the most sophisticated ways that have right–left asym- came highly diverse group, such that they account for 15% (i.e., metric patterns. However, the specific folding process and the rea- nearly 60,000 species) of all known species of Coleoptera. son for this asymmetry remain unclear. This study reveals how Despite the great potential of the process for engineering these asymmetric patterns emerge as a result of the folding pro- applications, few studies have been undertaken revealing the cess of rove beetles. A high-speed camera was used to reveal the details of this asymmetric wing folding. The wings of a rove beetle details of the wing-folding movement. The results show that these have two different crease patterns, but previous studies have characteristic asymmetrical patterns emerge as a result of simulta- described only one side.
    [Show full text]
  • Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation
    Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40049989 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION A dissertation presented by DANNY HAELEWATERS to THE DEPARTMENT OF ORGANISMIC AND EVOLUTIONARY BIOLOGY in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology HARVARD UNIVERSITY Cambridge, Massachusetts April 2018 ! ! © 2018 – Danny Haelewaters All rights reserved. ! ! Dissertation Advisor: Professor Donald H. Pfister Danny Haelewaters STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION ABSTRACT CHAPTER 1: Laboulbeniales is one of the most morphologically and ecologically distinct orders of Ascomycota. These microscopic fungi are characterized by an ectoparasitic lifestyle on arthropods, determinate growth, lack of asexual state, high species richness and intractability to culture. DNA extraction and PCR amplification have proven difficult for multiple reasons. DNA isolation techniques and commercially available kits are tested enabling efficient and rapid genetic analysis of Laboulbeniales fungi. Success rates for the different techniques on different taxa are presented and discussed in the light of difficulties with micromanipulation, preservation techniques and negative results. CHAPTER 2: The class Laboulbeniomycetes comprises biotrophic parasites associated with arthropods and fungi.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • The First New Zealand Insects Collected on Cook's
    Pacific Science (1989), vol.43, 43, nono.. 1 © 1989 by UniversityUniversity of Hawaii Press.Pres s. All rights reserved TheThe First New Zealand Zealand InsectsInsects CollectedCollectedon Cook'sCook's Endeavour Voyage!Voyage! 2 J. R. H. AANDREWSNDREWS2 AND G.G . W. GIBBSGmBS ABSTRACT:ABSTRACT: The Banks collection of 40 insect species, species, described by J. J. C.C. Fabricius in 1775,1775, is critically examined to explore the possible methods of collection and to document changesto the inseinsectct fauna andto the original collection localities sincsincee 1769.The1769. The aassemblagessemblageof species is is regarded as unusual. unusual. It includes insects that are large large and colorful as well as those that are small and cryptic;cryptic; some species that were probably common were overlooked, but others that are today rare were taken.taken. It is concluded that the Cook naturalists caught about 15species with a butterfly net, but that the majority (all CoColeoptera)leoptera) were discoveredin conjunction with other biobiologicallogical specimens, especially plantsplants.. PossibPossiblele reasons for the omission ofwetwetasas,, stick insects, insects, etc.,etc., are discussed. discussed. This early collection shows that marked changesin abundance may have occurred in some speciespeciess since European colonizationcolonization.. One newrecord is is revealed:revealed: The cicada NotopsaltaNotopsaltasericea sericea (Walker) was found to be among the Fabricius speci­speci­ mens from New Zealand,Zealand, but itsits description evidentlyevidently
    [Show full text]
  • Asymmetric Hindwing Foldings in Rove Beetles
    Asymmetric hindwing foldings in rove beetles Kazuya Saitoa,1, Shuhei Yamamotob, Munetoshi Maruyamac, and Yoji Okabea aInstitute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan; bGraduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan; and cThe Kyushu University Museum, Fukuoka 812-8581, Japan Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved October 13, 2014 (received for review May 23, 2014) Foldable wings of insects are the ultimate deployable structures storage space (with some minor exceptions in soil- and cave- and have attracted the interest of aerospace engineering scientists dwelling species). The strategy is achieved by their extraordinary as well as entomologists. Rove beetles are known to fold their right–left asymmetric wing folding. As a result, rove beetles be- wings in the most sophisticated ways that have right–left asym- came highly diverse group, such that they account for 15% (i.e., metric patterns. However, the specific folding process and the rea- nearly 60,000 species) of all known species of Coleoptera. son for this asymmetry remain unclear. This study reveals how Despite the great potential of the process for engineering these asymmetric patterns emerge as a result of the folding pro- applications, few studies have been undertaken revealing the cess of rove beetles. A high-speed camera was used to reveal the details of this asymmetric wing folding. The wings of a rove beetle details of the wing-folding movement. The results show that these have two different crease patterns, but previous studies have characteristic asymmetrical patterns emerge as a result of simulta- described only one side.
    [Show full text]
  • <I>Camerunensis</I> Sp. Nov. Parasitic O
    MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 © 2016. Mycotaxon, Ltd. July–September 2016—Volume 131, pp. 613–619 http://dx.doi.org/10.5248/131.613 Long-hidden in Thaxter’s treasure trove: Laboulbenia camerunensis sp. nov. parasitic on African Curculionidae Tristan W. Wang1, Danny Haelewaters2* & Donald H. Pfister2 1 Harvard College, 365 Kirkland Mailing Center, Cambridge, Massachusetts 02138, U.S.A. 2 Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, Massachusetts 02138, U.S.A. * Correspondence to: [email protected] Abstract—A new species, Laboulbenia camerunensis, parasitic on Curculio sp. from Cameroon, is described from a historical slide prepared by Roland Thaxter. It is the seventh species to be described from the family Curculionidae worldwide and the first from the African continent. The species is recognized by the characteristic outer appendage. The latter consists of two superimposed hyaline cells, separated by a black constricted septum, the suprabasal cell giving rise to two branches, the inner of which is simple and hyaline, and the outer tinged with brown. A second blackish constricted septum is found at the base of this outermost branch. Description, illustrations, and comparison to other species are given. Key words—Laboulbeniales, Laboulbeniomycetes, insect-associated fungi, taxonomy, weevils Introduction The order Laboulbeniales (Fungi, Ascomycota, Laboulbeniomycetes) consists of microscopic ectoparasites that develop on the exoskeleton of certain invertebrates. The hosts are primarily beetles but also include millipedes, mites, and a variety of insects (flies, ants, cockroaches, and others). Unlike other multicellular fungi, Laboulbeniales exhibit determinate growth, meaning that the fungal body (thallus) develops from a two-celled ascospore through a restricted and regulated number of mitotic divisions to produce an individual with a set number of distinctively arranged cells (Tavares 1985, Santamaría 1998).
    [Show full text]
  • Laboulbeniales (Ascomycota) of the Canary Islands
    VIERAEA Vol. 32 107-115 Santa Cruz de Tenerife, diciembre 2004 ISSN 0210-945X Laboulbeniales (Ascomycota) of the Canary Islands ERIK ARNDT * & SERGI SANTAMARÍA** *Anhalt University of Applied Sciences, Department LOEL, Strenzfelder Allee 28, D-06406 Bernburg, Germany. Correspondence address. *Unitat de Botànica, Departament de Biologia Animal, de Biologia Vegetal i d’Ecologia, Facultat de Ciències Universitat Autònoma de Barcelona, E-08193-Bellaterra (Barcelona), SPAIN ARNDT, E. & S. SANTAMARÍA (2004). Laboulbeniales (Ascomycota) de las islas Canarias. VIERAEA 32: 107-115. RESUMEN: Se presenta una lista con 23 especies y 8 géneros de Laboulbeniales (Ascomycota). Seis de ellas son primeras citas para las islas Canarias. La mayoría de las especies citadas infectan Carabidae (Coleoptera). Muchas de las especies de hospedantes (23) son endémicas, siendo sólo nueve las de hospedantes que también se encuentran fuera de la región Macaronésica. Los Carabidae, como familia más diversa de hospedantes, incluyen 21 especies endémicas y 6 de amplia distribución. Las pautas de distribución de Laboulbeniales dependen de dos factores ecológicos (humedad y biodiversidad de los hospedantes) que varían mucho entre las distintas islas. Palabras clave: Laboulbeniales, Carabidae, Staphylinidae, Anthicidae, Blattaria, Ephydridae, islas Canarias. ABSTRACT: The list includes 23 species of Laboulbeniales (Ascomycota) in 8 genera. Six species are new for the Canary Islands. The majority of recorded species infests Carabidae (Coleoptera). Most host species (23) are endemic, only nine hosts also occur outside the Macaronesian region. There are 21 endemic and 6 widespread host species in the Carabidae as most diverse host family. The distribution pattern of Laboulbeniales corresponds with two ecological factors (moisture and host biodiversity respectively) which vary strongly between the different islands.
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • Laboulbenia Slackensis and L. Littoralis Sp. Nov
    Laboulbenia slackensis and L. littoralis sp. nov. (Ascomycota, Laboulbeniales), two sibling species as a result of ecological speciation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation De Kesel, A., and D. Haelewaters. 2014. “Laboulbenia Slackensis and L. Littoralis Sp. Nov. (Ascomycota, Laboulbeniales), Two Sibling Species as a Result of Ecological Speciation.” Mycologia 106 (3) (May 1): 407–414. doi:10.3852/13-348. Published Version doi:10.3852/13-348 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:24981603 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Mycologia, 106(3), 2014, pp. 407–414. DOI: 10.3852/13-348 # 2014 by The Mycological Society of America, Lawrence, KS 66044-8897 Laboulbenia slackensis and L. littoralis sp. nov. (Ascomycota, Laboulbeniales), two sibling species as a result of ecological speciation Andre´ De Kesel1 the phylogenetic relatedness of taxa within a host National Botanic Garden of Belgium, Domein van range, specificity has been attributed generally to the Bouchout, BE-1860 Meise, Belgium need for certain substances from the host (Scheloske Danny Haelewaters 1969, Tavares 1979). Studies directed at understand- Department of Organismic and Evolutionary Biology, ing the mechanisms governing host specificity and Harvard University, 22 Divinity Avenue, Cambridge, explaining observed host ranges have been limited in Massachusetts 02138 part because these fungi can be manipulated only by growing infected insect colonies and artificially introducing a foreign host.
    [Show full text]
  • Asymmetric Hindwing Foldings in Rove Beetles
    Asymmetric hindwing foldings in rove beetles Kazuya Saitoa,1, Shuhei Yamamotob, Munetoshi Maruyamac, and Yoji Okabea aInstitute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan; bGraduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan; and cThe Kyushu University Museum, Fukuoka 812-8581, Japan Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved October 13, 2014 (received for review May 23, 2014) Foldable wings of insects are the ultimate deployable structures storage space (with some minor exceptions in soil- and cave- and have attracted the interest of aerospace engineering scientists dwelling species). The strategy is achieved by their extraordinary as well as entomologists. Rove beetles are known to fold their right–left asymmetric wing folding. As a result, rove beetles be- wings in the most sophisticated ways that have right–left asym- came highly diverse group, such that they account for 15% (i.e., metric patterns. However, the specific folding process and the rea- nearly 60,000 species) of all known species of Coleoptera. son for this asymmetry remain unclear. This study reveals how Despite the great potential of the process for engineering these asymmetric patterns emerge as a result of the folding pro- applications, few studies have been undertaken revealing the cess of rove beetles. A high-speed camera was used to reveal the details of this asymmetric wing folding. The wings of a rove beetle details of the wing-folding movement. The results show that these have two different crease patterns, but previous studies have characteristic asymmetrical patterns emerge as a result of simulta- described only one side.
    [Show full text]
  • Laboulbeniales on Semi-Aquatic Hemiptera. Laboulbenia. Richard K
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 6 | Issue 3 Article 7 1967 Laboulbeniales on Semi-aquatic Hemiptera. Laboulbenia. Richard K. Benjamin Rancho Santa Ana Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Benjamin, Richard K. (1967) "Laboulbeniales on Semi-aquatic Hemiptera. Laboulbenia.," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 6: Iss. 3, Article 7. Available at: http://scholarship.claremont.edu/aliso/vol6/iss3/7 ALISO VoL. 6, No. 3, pp. 111-136 }UNE 30, 1967 LABOULBENIALES ON SEMI-AQUATIC HEMIPTERA. LA.BOULBENIA.. RICHARD K. BENJAMIN Rancho Santa Ana Botanic Garden Claremont, California INTRODUCTION The Hemiptera, or true bugs, a large and diverse assemblage of insects, are characterized by ( 1) mouth-parts articulated into an often elongate tubular beak adapted for feeding on plants or animals by piercing and sucking, ( 2) gradual metamorphosis, and ( 3) overlapping front wings having a hardened basal part, the corium, and a thin, transparent apex, the membrane. The order commonly is divided into two suborders, the Homoptera and the Heteroptera ( Brues, Melander & Carpenter, 1954; Ross, 1956). At present no member of the Homoptera (which includes such well-known bugs as the cicadas, tree hoppers, plant lice, etc.) is known to be parasitized by Laboulbeniales. These fungi occur on insects classi­ fied in the Heteroptera, but only 26 species have been described. Entomologists subdivide the Heteroptera into two major groups based, in part, on the length of the antennae. These are the Cryptocerata (short-horned bugs) in which the antennae are short and are concealed beneath the head and the Gymnocerata (long-horned bugs) in which the antennae typically are longer than the head and are exposed.
    [Show full text]
  • Rove Beetles of Florida, Staphylinidae (Insecta: Coleoptera: Staphylinidae)1 J
    EENY115 Rove Beetles of Florida, Staphylinidae (Insecta: Coleoptera: Staphylinidae)1 J. Howard Frank and Michael C. Thomas2 Introduction body form is much broader and the elytra almost cover (Scaphidiinae) or do cover (Scydmaenidae) the abdomen. Rove beetles are often abundant in habitats with large In most, the antennae are simple and typically have 11 numbers of fly larvae—especially decaying fruit, decaying antennomeres (“segments”), but in some (Pselaphinae) the seaweed, compost, carrion, and dung—where some are antennae are clubbed or (Micropeplinae) have a greatly important predators of maggots and others prey on mites or enlarged apical segment, or (some Aleocharinae) have 10 nematodes. Because they are abundant in decaying plants or (some Pselaphinae) even fewer antennomeres. Antennae and fruits, plant inspectors encounter them but often do are geniculate (“elbowed”) in a few members of Pselaphinae, not recognize them as beetles. This article is intended as Osoriinae, Oxytelinae, Paederinae, and Staphylininae. an introduction to the Florida representatives of this large, diverse, and important family of beetles. Characterization Adults range from less than 1 mm to 40 mm long (none here is to the level of subfamily (at least 18 subfamilies is more than about 20 mm in Florida), although almost occur in Florida) because characterization to the level all are less than about 7 mm long. Adults of some other of genus (or species) would be too complicated for a families also have short elytra, but in these (e.g., various publication of this kind. The best popular North American Histeridae; Limulodes and other Ptiliidae; Nicrophorus, identification guide to beetles (White 1983), likewise family Silphidae; Trypherus, family Cantharidae; Conotelus, characterizes Staphylinidae only to the level of subfamily family Nitidulidae; Rhipidius, family Rhipiphoridae; Meloe, (and its classification is outdated, and it does not provide family Meloidae; and Inopeplus, family Salpingidae) the references to the literature).
    [Show full text]