Laboulbenia Slackensis and L. Littoralis Sp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Asymmetric Hindwing Foldings in Rove Beetles
Asymmetric hindwing foldings in rove beetles Kazuya Saitoa,1, Shuhei Yamamotob, Munetoshi Maruyamac, and Yoji Okabea aInstitute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan; bGraduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan; and cThe Kyushu University Museum, Fukuoka 812-8581, Japan Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved October 13, 2014 (received for review May 23, 2014) Foldable wings of insects are the ultimate deployable structures storage space (with some minor exceptions in soil- and cave- and have attracted the interest of aerospace engineering scientists dwelling species). The strategy is achieved by their extraordinary as well as entomologists. Rove beetles are known to fold their right–left asymmetric wing folding. As a result, rove beetles be- wings in the most sophisticated ways that have right–left asym- came highly diverse group, such that they account for 15% (i.e., metric patterns. However, the specific folding process and the rea- nearly 60,000 species) of all known species of Coleoptera. son for this asymmetry remain unclear. This study reveals how Despite the great potential of the process for engineering these asymmetric patterns emerge as a result of the folding pro- applications, few studies have been undertaken revealing the cess of rove beetles. A high-speed camera was used to reveal the details of this asymmetric wing folding. The wings of a rove beetle details of the wing-folding movement. The results show that these have two different crease patterns, but previous studies have characteristic asymmetrical patterns emerge as a result of simulta- described only one side. -
Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation
Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40049989 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION A dissertation presented by DANNY HAELEWATERS to THE DEPARTMENT OF ORGANISMIC AND EVOLUTIONARY BIOLOGY in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology HARVARD UNIVERSITY Cambridge, Massachusetts April 2018 ! ! © 2018 – Danny Haelewaters All rights reserved. ! ! Dissertation Advisor: Professor Donald H. Pfister Danny Haelewaters STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION ABSTRACT CHAPTER 1: Laboulbeniales is one of the most morphologically and ecologically distinct orders of Ascomycota. These microscopic fungi are characterized by an ectoparasitic lifestyle on arthropods, determinate growth, lack of asexual state, high species richness and intractability to culture. DNA extraction and PCR amplification have proven difficult for multiple reasons. DNA isolation techniques and commercially available kits are tested enabling efficient and rapid genetic analysis of Laboulbeniales fungi. Success rates for the different techniques on different taxa are presented and discussed in the light of difficulties with micromanipulation, preservation techniques and negative results. CHAPTER 2: The class Laboulbeniomycetes comprises biotrophic parasites associated with arthropods and fungi. -
The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al. -
The First New Zealand Insects Collected on Cook's
Pacific Science (1989), vol.43, 43, nono.. 1 © 1989 by UniversityUniversity of Hawaii Press.Pres s. All rights reserved TheThe First New Zealand Zealand InsectsInsects CollectedCollectedon Cook'sCook's Endeavour Voyage!Voyage! 2 J. R. H. AANDREWSNDREWS2 AND G.G . W. GIBBSGmBS ABSTRACT:ABSTRACT: The Banks collection of 40 insect species, species, described by J. J. C.C. Fabricius in 1775,1775, is critically examined to explore the possible methods of collection and to document changesto the inseinsectct fauna andto the original collection localities sincsincee 1769.The1769. The aassemblagessemblageof species is is regarded as unusual. unusual. It includes insects that are large large and colorful as well as those that are small and cryptic;cryptic; some species that were probably common were overlooked, but others that are today rare were taken.taken. It is concluded that the Cook naturalists caught about 15species with a butterfly net, but that the majority (all CoColeoptera)leoptera) were discoveredin conjunction with other biobiologicallogical specimens, especially plantsplants.. PossibPossiblele reasons for the omission ofwetwetasas,, stick insects, insects, etc.,etc., are discussed. discussed. This early collection shows that marked changesin abundance may have occurred in some speciespeciess since European colonizationcolonization.. One newrecord is is revealed:revealed: The cicada NotopsaltaNotopsaltasericea sericea (Walker) was found to be among the Fabricius specispeci mens from New Zealand,Zealand, but itsits description evidentlyevidently -
Asymmetric Hindwing Foldings in Rove Beetles
Asymmetric hindwing foldings in rove beetles Kazuya Saitoa,1, Shuhei Yamamotob, Munetoshi Maruyamac, and Yoji Okabea aInstitute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan; bGraduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan; and cThe Kyushu University Museum, Fukuoka 812-8581, Japan Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved October 13, 2014 (received for review May 23, 2014) Foldable wings of insects are the ultimate deployable structures storage space (with some minor exceptions in soil- and cave- and have attracted the interest of aerospace engineering scientists dwelling species). The strategy is achieved by their extraordinary as well as entomologists. Rove beetles are known to fold their right–left asymmetric wing folding. As a result, rove beetles be- wings in the most sophisticated ways that have right–left asym- came highly diverse group, such that they account for 15% (i.e., metric patterns. However, the specific folding process and the rea- nearly 60,000 species) of all known species of Coleoptera. son for this asymmetry remain unclear. This study reveals how Despite the great potential of the process for engineering these asymmetric patterns emerge as a result of the folding pro- applications, few studies have been undertaken revealing the cess of rove beetles. A high-speed camera was used to reveal the details of this asymmetric wing folding. The wings of a rove beetle details of the wing-folding movement. The results show that these have two different crease patterns, but previous studies have characteristic asymmetrical patterns emerge as a result of simulta- described only one side. -
<I>Camerunensis</I> Sp. Nov. Parasitic O
MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 © 2016. Mycotaxon, Ltd. July–September 2016—Volume 131, pp. 613–619 http://dx.doi.org/10.5248/131.613 Long-hidden in Thaxter’s treasure trove: Laboulbenia camerunensis sp. nov. parasitic on African Curculionidae Tristan W. Wang1, Danny Haelewaters2* & Donald H. Pfister2 1 Harvard College, 365 Kirkland Mailing Center, Cambridge, Massachusetts 02138, U.S.A. 2 Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, Massachusetts 02138, U.S.A. * Correspondence to: [email protected] Abstract—A new species, Laboulbenia camerunensis, parasitic on Curculio sp. from Cameroon, is described from a historical slide prepared by Roland Thaxter. It is the seventh species to be described from the family Curculionidae worldwide and the first from the African continent. The species is recognized by the characteristic outer appendage. The latter consists of two superimposed hyaline cells, separated by a black constricted septum, the suprabasal cell giving rise to two branches, the inner of which is simple and hyaline, and the outer tinged with brown. A second blackish constricted septum is found at the base of this outermost branch. Description, illustrations, and comparison to other species are given. Key words—Laboulbeniales, Laboulbeniomycetes, insect-associated fungi, taxonomy, weevils Introduction The order Laboulbeniales (Fungi, Ascomycota, Laboulbeniomycetes) consists of microscopic ectoparasites that develop on the exoskeleton of certain invertebrates. The hosts are primarily beetles but also include millipedes, mites, and a variety of insects (flies, ants, cockroaches, and others). Unlike other multicellular fungi, Laboulbeniales exhibit determinate growth, meaning that the fungal body (thallus) develops from a two-celled ascospore through a restricted and regulated number of mitotic divisions to produce an individual with a set number of distinctively arranged cells (Tavares 1985, Santamaría 1998). -
Laboulbeniales (Ascomycota) of the Canary Islands
VIERAEA Vol. 32 107-115 Santa Cruz de Tenerife, diciembre 2004 ISSN 0210-945X Laboulbeniales (Ascomycota) of the Canary Islands ERIK ARNDT * & SERGI SANTAMARÍA** *Anhalt University of Applied Sciences, Department LOEL, Strenzfelder Allee 28, D-06406 Bernburg, Germany. Correspondence address. *Unitat de Botànica, Departament de Biologia Animal, de Biologia Vegetal i d’Ecologia, Facultat de Ciències Universitat Autònoma de Barcelona, E-08193-Bellaterra (Barcelona), SPAIN ARNDT, E. & S. SANTAMARÍA (2004). Laboulbeniales (Ascomycota) de las islas Canarias. VIERAEA 32: 107-115. RESUMEN: Se presenta una lista con 23 especies y 8 géneros de Laboulbeniales (Ascomycota). Seis de ellas son primeras citas para las islas Canarias. La mayoría de las especies citadas infectan Carabidae (Coleoptera). Muchas de las especies de hospedantes (23) son endémicas, siendo sólo nueve las de hospedantes que también se encuentran fuera de la región Macaronésica. Los Carabidae, como familia más diversa de hospedantes, incluyen 21 especies endémicas y 6 de amplia distribución. Las pautas de distribución de Laboulbeniales dependen de dos factores ecológicos (humedad y biodiversidad de los hospedantes) que varían mucho entre las distintas islas. Palabras clave: Laboulbeniales, Carabidae, Staphylinidae, Anthicidae, Blattaria, Ephydridae, islas Canarias. ABSTRACT: The list includes 23 species of Laboulbeniales (Ascomycota) in 8 genera. Six species are new for the Canary Islands. The majority of recorded species infests Carabidae (Coleoptera). Most host species (23) are endemic, only nine hosts also occur outside the Macaronesian region. There are 21 endemic and 6 widespread host species in the Carabidae as most diverse host family. The distribution pattern of Laboulbeniales corresponds with two ecological factors (moisture and host biodiversity respectively) which vary strongly between the different islands. -
A Higher-Level Phylogenetic Classification of the Fungi
mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information, -
Laboulbenia Slackensis and L. Littoralis Sp. Nov
Laboulbenia slackensis and L. littoralis sp. nov. (Ascomycota, Laboulbeniales), two sibling species as a result of ecological speciation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation De Kesel, A., and D. Haelewaters. 2014. “Laboulbenia Slackensis and L. Littoralis Sp. Nov. (Ascomycota, Laboulbeniales), Two Sibling Species as a Result of Ecological Speciation.” Mycologia 106 (3) (May 1): 407–414. doi:10.3852/13-348. Published Version doi:10.3852/13-348 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:24981603 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Mycologia, 106(3), 2014, pp. 407–414. DOI: 10.3852/13-348 # 2014 by The Mycological Society of America, Lawrence, KS 66044-8897 Laboulbenia slackensis and L. littoralis sp. nov. (Ascomycota, Laboulbeniales), two sibling species as a result of ecological speciation Andre´ De Kesel1 the phylogenetic relatedness of taxa within a host National Botanic Garden of Belgium, Domein van range, specificity has been attributed generally to the Bouchout, BE-1860 Meise, Belgium need for certain substances from the host (Scheloske Danny Haelewaters 1969, Tavares 1979). Studies directed at understand- Department of Organismic and Evolutionary Biology, ing the mechanisms governing host specificity and Harvard University, 22 Divinity Avenue, Cambridge, explaining observed host ranges have been limited in Massachusetts 02138 part because these fungi can be manipulated only by growing infected insect colonies and artificially introducing a foreign host. -
Asymmetric Hindwing Foldings in Rove Beetles
Asymmetric hindwing foldings in rove beetles Kazuya Saitoa,1, Shuhei Yamamotob, Munetoshi Maruyamac, and Yoji Okabea aInstitute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan; bGraduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan; and cThe Kyushu University Museum, Fukuoka 812-8581, Japan Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved October 13, 2014 (received for review May 23, 2014) Foldable wings of insects are the ultimate deployable structures storage space (with some minor exceptions in soil- and cave- and have attracted the interest of aerospace engineering scientists dwelling species). The strategy is achieved by their extraordinary as well as entomologists. Rove beetles are known to fold their right–left asymmetric wing folding. As a result, rove beetles be- wings in the most sophisticated ways that have right–left asym- came highly diverse group, such that they account for 15% (i.e., metric patterns. However, the specific folding process and the rea- nearly 60,000 species) of all known species of Coleoptera. son for this asymmetry remain unclear. This study reveals how Despite the great potential of the process for engineering these asymmetric patterns emerge as a result of the folding pro- applications, few studies have been undertaken revealing the cess of rove beetles. A high-speed camera was used to reveal the details of this asymmetric wing folding. The wings of a rove beetle details of the wing-folding movement. The results show that these have two different crease patterns, but previous studies have characteristic asymmetrical patterns emerge as a result of simulta- described only one side. -
Laboulbeniales on Semi-Aquatic Hemiptera. Laboulbenia. Richard K
Aliso: A Journal of Systematic and Evolutionary Botany Volume 6 | Issue 3 Article 7 1967 Laboulbeniales on Semi-aquatic Hemiptera. Laboulbenia. Richard K. Benjamin Rancho Santa Ana Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Benjamin, Richard K. (1967) "Laboulbeniales on Semi-aquatic Hemiptera. Laboulbenia.," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 6: Iss. 3, Article 7. Available at: http://scholarship.claremont.edu/aliso/vol6/iss3/7 ALISO VoL. 6, No. 3, pp. 111-136 }UNE 30, 1967 LABOULBENIALES ON SEMI-AQUATIC HEMIPTERA. LA.BOULBENIA.. RICHARD K. BENJAMIN Rancho Santa Ana Botanic Garden Claremont, California INTRODUCTION The Hemiptera, or true bugs, a large and diverse assemblage of insects, are characterized by ( 1) mouth-parts articulated into an often elongate tubular beak adapted for feeding on plants or animals by piercing and sucking, ( 2) gradual metamorphosis, and ( 3) overlapping front wings having a hardened basal part, the corium, and a thin, transparent apex, the membrane. The order commonly is divided into two suborders, the Homoptera and the Heteroptera ( Brues, Melander & Carpenter, 1954; Ross, 1956). At present no member of the Homoptera (which includes such well-known bugs as the cicadas, tree hoppers, plant lice, etc.) is known to be parasitized by Laboulbeniales. These fungi occur on insects classi fied in the Heteroptera, but only 26 species have been described. Entomologists subdivide the Heteroptera into two major groups based, in part, on the length of the antennae. These are the Cryptocerata (short-horned bugs) in which the antennae are short and are concealed beneath the head and the Gymnocerata (long-horned bugs) in which the antennae typically are longer than the head and are exposed. -
Rove Beetles of Florida, Staphylinidae (Insecta: Coleoptera: Staphylinidae)1 J
EENY115 Rove Beetles of Florida, Staphylinidae (Insecta: Coleoptera: Staphylinidae)1 J. Howard Frank and Michael C. Thomas2 Introduction body form is much broader and the elytra almost cover (Scaphidiinae) or do cover (Scydmaenidae) the abdomen. Rove beetles are often abundant in habitats with large In most, the antennae are simple and typically have 11 numbers of fly larvae—especially decaying fruit, decaying antennomeres (“segments”), but in some (Pselaphinae) the seaweed, compost, carrion, and dung—where some are antennae are clubbed or (Micropeplinae) have a greatly important predators of maggots and others prey on mites or enlarged apical segment, or (some Aleocharinae) have 10 nematodes. Because they are abundant in decaying plants or (some Pselaphinae) even fewer antennomeres. Antennae and fruits, plant inspectors encounter them but often do are geniculate (“elbowed”) in a few members of Pselaphinae, not recognize them as beetles. This article is intended as Osoriinae, Oxytelinae, Paederinae, and Staphylininae. an introduction to the Florida representatives of this large, diverse, and important family of beetles. Characterization Adults range from less than 1 mm to 40 mm long (none here is to the level of subfamily (at least 18 subfamilies is more than about 20 mm in Florida), although almost occur in Florida) because characterization to the level all are less than about 7 mm long. Adults of some other of genus (or species) would be too complicated for a families also have short elytra, but in these (e.g., various publication of this kind. The best popular North American Histeridae; Limulodes and other Ptiliidae; Nicrophorus, identification guide to beetles (White 1983), likewise family Silphidae; Trypherus, family Cantharidae; Conotelus, characterizes Staphylinidae only to the level of subfamily family Nitidulidae; Rhipidius, family Rhipiphoridae; Meloe, (and its classification is outdated, and it does not provide family Meloidae; and Inopeplus, family Salpingidae) the references to the literature).