Eigenvalues of Cayley Graphs

Total Page:16

File Type:pdf, Size:1020Kb

Eigenvalues of Cayley Graphs Eigenvalues of Cayley graphs Xiaogang Liu Department of Applied Mathematics Northwestern Polytechnical University Xi’an, Shaanxi 710072, P. R. China [email protected] Sanming Zhou School of Mathematics and Statistics The University of Melbourne Parkville, VIC 3010, Australia [email protected] January 22, 2019 Abstract We survey some of the known results on eigenvalues of Cayley graphs and their applica- tions, together with related results on eigenvalues of Cayley digraphs and generalizations of Cayley graphs. Keywords: Spectrum of a graph; Eigenvalues of a graph; Cayley graphs; Integral graphs; Energy of a graph; Ramanujan graph; Second largest eigenvalue of a graph; Distance-regular graphs; Strongly regular graphs; Perfect state transfer AMS Subject Classification (2010): 05C50, 05C25 Contents 1 Introduction 4 1.1 Outlineofthepaper ............................... ... 5 1.2 Terminologyandnotation . ..... 7 arXiv:1809.09829v2 [math.CO] 22 Jan 2019 2 Eigenvalues of Cayley graphs 9 2.1 Characters...................................... 9 2.2 EigenvaluesofCayleygraphs . ...... 10 2.3 Eigenvalues of vertex-transitive graphs . ............ 12 3 Integral Cayley graphs 13 3.1 Characterizations of integral Cayley graphs . ............ 13 3.1.1 Integral circulant graphs, unitary Cayley graphs, and gcd graphs . 13 3.1.2 Integral Cayley graphs on abelian groups . ....... 15 1 3.1.3 IntegralnormalCayleygraphs . 16 3.1.4 Integral Cayley multigraphs . ..... 16 3.2 A few families of integral Cayley graphs on abelian groups............. 18 3.2.1 Unitary finite Euclidean graphs . ..... 18 3.2.2 NEPS of complete graphs, gcd graphs of abelian groups, and generalized Hamminggraphs................................ 19 3.2.3 Sudoku graphs and positional Sudoku graphs . ....... 20 3.2.4 Pandiagonal Latin square graphs . ..... 21 3.3 Integral Cayley graphs on non-abelian groups . ........... 21 3.3.1 Cayleygraphsondihedralgroups. ..... 21 3.3.2 Cayley graphs on dicyclic groups . ..... 23 3.3.3 Cayley graphs on a family of groups with order 6n ............. 24 3.3.4 Cayleygraphsonsymmetricgroups . 24 3.4 Integral Cayley graphs of small degrees . .......... 27 3.5 Automorphism groups of integral Cayley graphs . ........... 28 3.5.1 Cayleyintegralgroups . 28 3.5.2 Cayley integral simple groups . ..... 29 3.5.3 Automorphism groups of integral circulant graphs . .......... 30 3.6 Cayley digraphs integral over the Gauss field or other numberfields . .. .. 31 4 Cospectral Cayley graphs 32 4.1 Cospectral Cayley graphs on non-abelian groups . ........... 32 4.2 Cospectralityandisomorphism . ....... 33 5 Cayley graphs on finite commutative rings 35 5.1 Unitary Cayley graphs of finite commutative rings . ........... 36 5.2 Quadratic unitary Cayley graphs of finite commutative rings ........... 37 5.3 A family of Cayley graphs on finite chain rings . ......... 39 6 Energies of Cayley graphs 39 6.1 Energies of integral circulant graphs . .......... 40 6.2 Extremal energies of integral circulant graphs . ............. 45 6.3 Energiesofcirculantgraphs . ....... 47 6.4 Energies of unitary Cayley graphs and quadratic unitary Cayley graphs of finite commutativerings ................................... 48 6.5 Energies of Cayley graphs on finite chain rings and gcd graphs of unique factor- izationdomains..................................... 50 6.6 Skew energy of orientations of hypercubes . .......... 51 2 6.7 Others.......................................... 51 7 Ramanujan Cayley graphs 52 7.1 Ramanujan integral circulant graphs . ......... 52 7.2 Ramanujan Cayley graphs on dihedral groups . ......... 55 7.3 Ramanujan Cayley graphs on finite commutative rings . ........... 55 7.4 RamanujanEuclideangraphs . ..... 57 7.5 Ramanujanfiniteupperhalfplanegraphs . ........ 59 7.6 Heisenberggraphs ................................ 61 7.7 Platonicgraphsandbeyond . ..... 61 7.8 A family of Ramanujan Cayley graphs on Zp[i] ................... 62 7.9 Bounds for the degrees of Ramanujan Cayley graphs . .......... 62 8 Second largest eigenvalue of Cayley graphs 64 8.1 CayleygraphsonCoxetergroups . ...... 64 8.2 Normal Cayley graphs on highly transitive groups . ........... 66 8.3 Three Cayley graphs on alternating groups . ......... 66 8.4 Cayleygraphsonabeliangroups . ...... 67 8.5 A family of Cayley graphs with small second largest eigenvalues . 67 8.6 FirsttypeFrobeniusgraphs . ...... 68 8.7 Distance-j Hamming graphs and distance-j Johnsongraphs . 68 8.8 Algebraicallydefinedgraphs. ....... 69 9 Perfect state transfer in Cayley graphs 71 9.1 Perfect state transfer in Cayley graphs on abelian groups ............. 72 9.2 A few families of Cayley graphs on abelian groups admitting perfect state transfer 73 9.2.1 Perfect state transfer in integral circulant graphs . ............. 73 9.2.2 Perfect state transfer in cubelike graphs . ......... 73 9.2.3 Perfect state transfer in gcd graphs of abelian groups ............ 75 9.3 Perfect state transfer in Cayley graphs on finite commutative (chain) rings and gcd graphs of unique factorization domains . ....... 76 10 Distance-regular Cayley graphs 77 10.1 Distance-regular Cayley graphs . ......... 78 10.2 Distance-regular Cayley graphs with least eigenvalues 2 ............. 81 − 11 Generalizations of Cayley graphs 82 11.1 Eigenvalues of n-Cayleygraphs ............................ 82 11.2 Strongly regular n-Cayleygraphs ........................... 84 3 11.3 Cayleysumgraphs ................................ 85 11.4 Group-subgrouppairgraphs. ....... 87 12 Directed Cayley graphs 87 12.1 Eigenvalues of directed Cayley graphs . .......... 87 12.2 Two families of directed Cayley graphs . .......... 89 12.3 Two more families of directed Cayley graphs . .......... 89 13 Miscellaneous 91 13.1 RandomCayleygraphs . .. .. .. .. .. .. .. .. 91 13.2 Distance eigenvalues of Cayley graphs . .......... 92 13.3Others......................................... 93 1 Introduction The study of eigenvalues of graphs is an important part of modern graph theory. In particular, eigenvalues of Cayley graphs have attracted increasing attention due to their prominent roles in algebraic graph theory and applications in many areas such as expanders, chemical graph theory, quantum computing, etc. A large number of results on spectra of Cayley graphs have been produced over the last more than four decades. This paper is a survey of the literature on eigenvalues of Cayley graphs and their applications. All definitions below are standard and can be found in, for example, [59, 92, 133]. A finite undirected graph consists of a finite set whose elements are called the vertices and a collection of unordered pairs of (not necessarily distinct) vertices each called an edge. As usual, for a graph G, we use V (G) and E(G) to denote its vertex and edge sets, respectively, and we call the size of V (G) the order of G. An edge u, v of G is usually denoted by uv or vu. If uv is an edge { } of G, we say that u and v are joined by this edge, u and v are adjacent in G, and both u and v are incident to the edge uv. An edge joining a vertex to itself is called a loop, and two or more edges joining the same pair of distinct vertices are called parallel edges. The degree of u in G, denoted by dG(u) or simply d(u) if there is no risk of confusion, is the number of edges of G incident to u, each loop counting twice. A graph without loops is called a multigraph, and a graph is simple if it has no loops or parallel edges. Let G be a finite undirected graph of order n. The adjacency matrix of G, denoted by A(G), is the n n matrix with rows and columns indexed by the vertices of G such that the (u, v)-entry × is equal to the number of edges joining u and v, with each loop counting as two edges. The eigenvalues of A(G) are called the eigenvalues of G, and the collection of eigenvalues of G with multiplicities is called the spectrum of G. Since G is undirected, A(G) is a real symmetric matrix and hence the eigenvalues of G are all real numbers. If λ1, λ2, . , λr are distinct eigenvalues of G and m1,m2,...,mr the corresponding multiplicities, then the spectrum of G is denoted by λ λ . λ Spec(G)= 1 2 r m m ... m 1 2 r or m1 m2 mr (λ1 , λ2 , . , λr ), 4 where in the latter notation we usually omit mi if mi = 1 for some i. An eigenvalue with multiplicity 1 is called a simple eigenvalue. The spectral radius of a graph is the maximum modulus of its eigenvalues. Two graphs are said to be cospectral if they have the same spectrum. Let D(G) be the n n diagonal matrix whose (u, u)-entry is equal to the degree d(u) of u in × G, for each u V (G). The matrices D(G) A(G) and D(G)+ A(G) are called the Laplacian ∈ − matrix and signless Laplacian matrix of G, respectively, and their eigenvalues are called the Laplacian eigenvalues and signless Laplacian eigenvalues of G, respectively. In the case when G is k-regular for some integer k 0, that is, each vertex has degree k, a real number x is an ≥ eigenvalue of G if and only if k x is a Laplacian eigenvalue of G. Since all graphs considered in − this paper are regular, this implies that all results to be reviewed in the paper can be presented in terms of Laplacian eigenvalues. Henceforth we will mostly talk about eigenvalues of graphs. Similar to undirected graphs, a finite directed graph (or digraph) can be defined by specifying a finite set of vertices and a collection of ordered pairs of (not necessarily distinct) vertices; each ordered pair (u, v) in the collection is called an arc from u to v. The underlying graph of a digraph is the undirected graph obtained by replacing each arc by an edge with the same end- vertices. The adjacency matrix of a finite digraph G is the matrix whose (u, v)-entry is equal to the number of arcs from u to v, and the eigenvalues of this matrix are called the eigenvalues of G. Note that, unlike the undirected case, a digraph may have complex eigenvalues as its adjacency matrix is not necessarily symmetric. A digraph without loops is called a multidigraph.
Recommended publications
  • Connectivities and Diameters of Circulant Graphs
    CONNECTIVITIES AND DIAMETERS OF CIRCULANT GRAPHS Paul Theo Meijer B.Sc. (Honors), Simon Fraser University, 1987 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (MATHEMATICS) in the Department of Mathematics and Statistics @ Paul Theo Meijer 1991 SIMON FRASER UNIVERSITY December 1991 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. Approval Name: Paul Theo Meijer Degree: Master of Science (Mathematics) Title of Thesis: Connectivities and Diameters of Circulant Graphs Examining Committee: Chairman: Dr. Alistair Lachlan Dr. grian Alspach, Professor ' Senior Supervisor Dr. Luis Goddyn, Assistant Professor - ph Aters, Associate Professor . Dr. Tom Brown, Professor External Examiner Date Approved: December 4 P 1991 PART IAL COPYH IGIiT L ICLNSI: . , I hereby grant to Sirnori Fraser- llr~ivorsitytho righl to lend my thesis, project or extended essay (tho title of which is shown below) to users of the Simon Frasor University Libr~ry,and to make part ial or single copies only for such users or in response to a request from the library of any other university, or other educational insfitution, on 'its own behalf or for one of its users. I further agree that percnission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission. Title of Thesis/Project/Extended Essay (date) Abstract Let S = {al, az, .
    [Show full text]
  • Compression of Vertex Transitive Graphs
    Compression of Vertex Transitive Graphs Bruce Litow, ¤ Narsingh Deo, y and Aurel Cami y Abstract We consider the lossless compression of vertex transitive graphs. An undirected graph G = (V; E) is called vertex transitive if for every pair of vertices x; y 2 V , there is an automorphism σ of G, such that σ(x) = y. A result due to Sabidussi, guarantees that for every vertex transitive graph G there exists a graph mG (m is a positive integer) which is a Cayley graph. We propose as the compressed form of G a ¯nite presentation (X; R) , where (X; R) presents the group ¡ corresponding to such a Cayley graph mG. On a conjecture, we demonstrate that for a large subfamily of vertex transitive graphs, the original graph G can be completely reconstructed from its compressed representation. 1 Introduction The complex networks that describe systems in nature and society are typ- ically very large, often with hundreds of thousands of vertices. Examples of such networks include the World Wide Web, the Internet, semantic net- works, social networks, energy transportation networks, the global economy etc., (see e.g., [16]). Given a graph that represents such a large network, an important problem is its lossless compression, i.e., obtaining a smaller size representation of the graph, such that the original graph can be fully restored from its compressed form. We note that, in general, graphs are incompressible, i.e., the vast majority of graphs with n vertices require ­(n2) bits in any representation. This can be seen by a simple counting argument. There are 2n¢(n¡1)=2 labelled, undirected graphs, and at least 2n¢(n¡1)=2=n! unlabelled, undirected graphs.
    [Show full text]
  • Pretty Theorems on Vertex Transitive Graphs
    Pretty Theorems on Vertex Transitive Graphs Growth For a graph G a vertex x and a nonnegative integer n we let B(x; n) denote the ball of radius n around x (i.e. the set u V (G): dist(u; v) n . If G is a vertex transitive graph then f 2 ≤ g B(x; n) = B(y; n) for any two vertices x; y and we denote this number by f(n). j j j j Example: If G = Cayley(Z2; (0; 1); ( 1; 0) ) then f(n) = (n + 1)2 + n2. f ± ± g 0 f(3) = B(0, 3) = (1 + 3 + 5 + 7) + (5 + 3 + 1) = 42 + 32 | | Our first result shows a property of the function f which is a relative of log concavity. Theorem 1 (Gromov) If G is vertex transitive then f(n)f(5n) f(4n)2 ≤ Proof: Choose a maximal set Y of vertices in B(u; 3n) which are pairwise distance 2n + 1 ≥ and set y = Y . The balls of radius n around these points are disjoint and are contained in j j B(u; 4n) which gives us yf(n) f(4n). On the other hand, the balls of radius 2n around ≤ the points in Y cover B(u; 3n), so the balls of radius 4n around these points cover B(u; 5n), giving us yf(4n) f(5n). Combining our two inequalities yields the desired bound. ≥ Isoperimetric Properties Here is a classical problem: Given a small loop of string in the plane, arrange it to maximize the enclosed area.
    [Show full text]
  • Algebraic Graph Theory: Automorphism Groups and Cayley Graphs
    Algebraic Graph Theory: Automorphism Groups and Cayley graphs Glenna Toomey April 2014 1 Introduction An algebraic approach to graph theory can be useful in numerous ways. There is a relatively natural intersection between the fields of algebra and graph theory, specifically between group theory and graphs. Perhaps the most natural connection between group theory and graph theory lies in finding the automorphism group of a given graph. However, by studying the opposite connection, that is, finding a graph of a given group, we can define an extremely important family of vertex-transitive graphs. This paper explores the structure of these graphs and the ways in which we can use groups to explore their properties. 2 Algebraic Graph Theory: The Basics First, let us determine some terminology and examine a few basic elements of graphs. A graph, Γ, is simply a nonempty set of vertices, which we will denote V (Γ), and a set of edges, E(Γ), which consists of two-element subsets of V (Γ). If fu; vg 2 E(Γ), then we say that u and v are adjacent vertices. It is often helpful to view these graphs pictorially, letting the vertices in V (Γ) be nodes and the edges in E(Γ) be lines connecting these nodes. A digraph, D is a nonempty set of vertices, V (D) together with a set of ordered pairs, E(D) of distinct elements from V (D). Thus, given two vertices, u, v, in a digraph, u may be adjacent to v, but v is not necessarily adjacent to u. This relation is represented by arcs instead of basic edges.
    [Show full text]
  • Conformally Homogeneous Surfaces
    e Bull. London Math. Soc. 43 (2011) 57–62 C 2010 London Mathematical Society doi:10.1112/blms/bdq074 Exotic quasi-conformally homogeneous surfaces Petra Bonfert-Taylor, Richard D. Canary, Juan Souto and Edward C. Taylor Abstract We construct uniformly quasi-conformally homogeneous Riemann surfaces that are not quasi- conformal deformations of regular covers of closed orbifolds. 1. Introduction Recall that a hyperbolic manifold M is K- quasi-conformally homogeneous if for all x, y ∈ M, there is a K-quasi-conformal map f : M → M with f(x)=y. It is said to be uniformly quasi- conformally homogeneous if it is K-quasi-conformally homogeneous for some K. We consider only complete and oriented hyperbolic manifolds. In dimensions 3 and above, every uniformly quasi-conformally homogeneous hyperbolic manifold is isometric to the regular cover of a closed hyperbolic orbifold (see [1]). The situation is more complicated in dimension 2. It remains true that any hyperbolic surface that is a regular cover of a closed hyperbolic orbifold is uniformly quasi-conformally homogeneous. If S is a non-compact regular cover of a closed hyperbolic 2-orbifold, then any quasi-conformal deformation of S remains uniformly quasi-conformally homogeneous. However, typically a quasi-conformal deformation of S is not itself a regular cover of a closed hyperbolic 2-orbifold (see [1, Lemma 5.1].) It is thus natural to ask if every uniformly quasi-conformally homogeneous hyperbolic surface is a quasi-conformal deformation of a regular cover of a closed hyperbolic orbifold. The goal of this note is to answer this question in the negative.
    [Show full text]
  • On the Density of a Graph and Its Blowup
    On the Density of a Graph and its Blowup Asaf Shapira ¤ Raphael Yustery Abstract It is well-known that, of all graphs with edge-density p, the random graph G(n; p) contains the smallest density of copies of Kt;t, the complete bipartite graph of size 2t. Since Kt;t is a t-blowup of an edge, the following intriguing open question arises: Is it true that of all graphs with triangle 3 density p , the random graph G(n; p) contains close to the smallest density of Kt;t;t, which is the t-blowup of a triangle? Our main result gives an indication that the answer to the above question is positive by showing that for some blowup, the answer must be positive. More formally we prove that if G 3 has triangle density p , then there is some 2 · t · T (p) for which the density of Kt;t;t in G is at (3+o(1))t2 least p , which (up to the o(1) term) equals the density of Kt;t;t in G(n; p). We also raise several open problems related to these problems and discuss some applications to other areas. 1 Introduction One of the main family of problems studied in extremal graph theory is how does the lack and/or number of copies of one graph H in a graph G a®ect the lack and/or number of copies of another graph H0 in G. Perhaps the most well known problems of this type are Ramsey's Theorem and Tur¶an'sTheorem.
    [Show full text]
  • The Merris Index of a Graph∗
    Electronic Journal of Linear Algebra ISSN 1081-3810 A publication of the International Linear Algebra Society Volume 10, pp. 212-222, August 2003 ELA THE MERRIS INDEX OF A GRAPH∗ FELIX GOLDBERG† AND GREGORY SHAPIRO† Abstract. In this paper the sharpness of an upper bound, due to Merris, on the independence number of a graph is investigated. Graphs that attain this bound are called Merris graphs.Some families of Merris graphs are found, including Kneser graphs K(v, 2) and non-singular regular bipar- tite graphs. For example, the Petersen graph and the Clebsch graph turn out to be Merris graphs. Some sufficient conditions for non-Merrisness are studied in the paper. In particular it is shown that the only Merris graphs among the joins are the stars. It is also proved that every graph is isomorphic to an induced subgraph of a Merris graph and conjectured that almost all graphs are not Merris graphs. Key words. Laplacian matrix, Laplacian eigenvalues, Merris index, Merris graph, Independence number. AMS subject classifications. 05C50, 05C69, 15A42. 1. Introduction. Let G be a finite simple graph. The Laplacian matrix L(G) (which we often write as simply L) is defined as the difference D(G) − A(G), where A(G) is the adjacency matrix of G and D(G) is the diagonal matrix of the vertex degrees of G. It is not hard to show that L is a singular M-matrix and that it is positive semidefinite. The eigenvalues of L will be denoted by 0 = λ1 ≤ λ2 ≤ ...≤ λn. It is easy to show that λ2 =0ifandonlyifG is not connected.
    [Show full text]
  • Closest 4-Leaf Power Is Fixed-Parameter Tractable$
    Discrete Applied Mathematics 156 (2008) 3345–3361 www.elsevier.com/locate/dam Closest 4-leaf power is fixed-parameter tractableI Michael Dom∗, Jiong Guo, Falk Huffner,¨ Rolf Niedermeier Institut fur¨ Informatik, Friedrich-Schiller-Universitat¨ Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany Received 3 August 2006; received in revised form 18 December 2007; accepted 9 January 2008 Available online 4 March 2008 Abstract The NP-complete CLOSEST 4-LEAF POWER problem asks, given an undirected graph, whether it can be modified by at most r edge insertions or deletions such that it becomes a 4-leaf power. Herein, a 4-leaf power is a graph that can be constructed by considering an unrooted tree—the 4-leaf root—with leaves one-to-one labeled by the graph vertices, where we connect two graph vertices by an edge iff their corresponding leaves are at distance at most 4 in the tree. Complementing previous work on CLOSEST 2-LEAF POWER and CLOSEST 3-LEAF POWER, we give the first algorithmic result for CLOSEST 4-LEAF POWER, showing that CLOSEST 4-LEAF POWER is fixed-parameter tractable with respect to the parameter r. c 2008 Elsevier B.V. All rights reserved. Keywords: Fixed-parameter tractability; Graph algorithm; Graph modification; Graph power; Leaf power; Forbidden subgraph characterization 1. Introduction Graph powers form a classical concept in graph theory, and the rich literature dates back to the sixties of the previous century (see [5, Section 10.6] and [27] for surveys). The k-power of an undirected graph G D .V; E/ is the undirected graph Gk D .V; E0/ with .u; v/ 2 E0 iff there is a path of length at most k between u and v in G.
    [Show full text]
  • THE CRITICAL GROUP of a LINE GRAPH: the BIPARTITE CASE Contents 1. Introduction 2 2. Preliminaries 2 2.1. the Graph Laplacian 2
    THE CRITICAL GROUP OF A LINE GRAPH: THE BIPARTITE CASE JOHN MACHACEK Abstract. The critical group K(G) of a graph G is a finite abelian group whose order is the number of spanning forests of the graph. Here we investigate the relationship between the critical group of a regular bipartite graph G and its line graph line G. The relationship between the two is known completely for regular nonbipartite graphs. We compute the critical group of a graph closely related to the complete bipartite graph and the critical group of its line graph. We also discuss general theory for the critical group of regular bipartite graphs. We close with various examples demonstrating what we have observed through experimentation. The problem of classifying the the relationship between K(G) and K(line G) for regular bipartite graphs remains open. Contents 1. Introduction 2 2. Preliminaries 2 2.1. The graph Laplacian 2 2.2. Theory of lattices 3 2.3. The line graph and edge subdivision graph 3 2.4. Circulant graphs 5 2.5. Smith normal form and matrices 6 3. Matrix reductions 6 4. Some specific regular bipartite graphs 9 4.1. The almost complete bipartite graph 9 4.2. Bipartite circulant graphs 11 5. A few general results 11 5.1. The quotient group 11 5.2. Perfect matchings 12 6. Looking forward 13 6.1. Odd primes 13 6.2. The prime 2 14 6.3. Example exact sequences 15 References 17 Date: December 14, 2011. A special thanks to Dr. Victor Reiner for his guidance and suggestions in completing this work.
    [Show full text]
  • Arxiv:1802.04921V2 [Math.CO]
    STABILITY OF CIRCULANT GRAPHS YAN-LI QIN, BINZHOU XIA, AND SANMING ZHOU Abstract. The canonical double cover D(Γ) of a graph Γ is the direct product of Γ and K2. If Aut(D(Γ)) = Aut(Γ) × Z2 then Γ is called stable; otherwise Γ is called unstable. An unstable graph is nontrivially unstable if it is connected, non-bipartite and distinct vertices have different neighborhoods. In this paper we prove that every circulant graph of odd prime order is stable and there is no arc- transitive nontrivially unstable circulant graph. The latter answers a question of Wilson in 2008. We also give infinitely many counterexamples to a conjecture of Maruˇsiˇc, Scapellato and Zagaglia Salvi in 1989 by constructing a family of stable circulant graphs with compatible adjacency matrices. Key words: circulant graph; stable graph; compatible adjacency matrix 1. Introduction We study the stability of circulant graphs. Among others we answer a question of Wilson [14] and give infinitely many counterexamples to a conjecture of Maruˇsiˇc, Scapellato and Zagaglia Salvi [9]. All graphs considered in the paper are finite, simple and undirected. As usual, for a graph Γ we use V (Γ), E(Γ) and Aut(Γ) to denote its vertex set, edge set and automorphism group, respectively. For an integer n > 1, we use nΓ to denote the graph consisting of n vertex-disjoint copies of Γ. The complete graph on n > 1 vertices is denoted by Kn, and the cycle of length n > 3 is denoted by Cn. In this paper, we assume that each symbol representing a group or a graph actually represents the isomorphism class of the same.
    [Show full text]
  • Cores of Vertex-Transitive Graphs
    Cores of Vertex-Transitive Graphs Ricky Rotheram Submitted in total fulfilment of the requirements of the degree of Master of Philosophy October 2013 Department of Mathematics and Statistics The University of Melbourne Parkville, VIC 3010, Australia Produced on archival quality paper Abstract The core of a graph Γ is the smallest graph Γ∗ for which there exist graph homomor- phisms Γ ! Γ∗ and Γ∗ ! Γ. Thus cores are fundamental to our understanding of general graph homomorphisms. It is known that for a vertex-transitive graph Γ, Γ∗ is vertex-transitive, and that jV (Γ∗)j divides jV (Γ)j. The purpose of this thesis is to determine the cores of various families of vertex-transitive and symmetric graphs. We focus primarily on finding the cores of imprimitive symmetric graphs of order pq, where p < q are primes. We choose to investigate these graphs because their cores must be symmetric graphs with jV (Γ∗)j = p or q. These graphs have been completely classified, and are split into three broad families, namely the circulants, the incidence graphs and the Maruˇsiˇc-Scapellato graphs. We use this classification to determine the cores of all imprimitive symmetric graphs of order pq, using differ- ent approaches for the circulants, the incidence graphs and the Maruˇsiˇc-Scapellato graphs. Circulant graphs are examples of Cayley graphs of abelian groups. Thus, we generalise the approach used to determine the cores of the symmetric circulants of order pq, and apply it to other Cayley graphs of abelian groups. Doing this, we show that if Γ is a Cayley graph of an abelian group, then Aut(Γ∗) contains a transitive subgroup generated by semiregular automorphisms, and either Γ∗ is an odd cycle or girth(Γ∗) ≤ 4.
    [Show full text]
  • Integral Free-Form Sudoku Graphs
    Integral Free-Form Sudoku graphs Omar Alomari 1 Basic Sciences German Jordanian University Amman, Jordan Mohammad Abudayah 2 Basic Sciences German Jordanian University Amman, Jordan Torsten Sander 3 Fakulta¨t fu¨r Informatik Ostfalia Hochschule fu¨r angewandte Wissenschaften Wolfenbu¨ttel, Germany Abstract A free-form Sudoku puzzle is a square arrangement of m × m cells such that the cells are partitioned into m subsets (called blocks) of equal cardinality. The goal of the puzzle is to place integers 1; : : : m in the cells such that the numbers in every row, column and block are distinct. Represent each cell by a vertex and add edges between two vertices exactly when the corresponding cells, according to the rules, must contain different numbers. This yields the associated free-form Sudoku graph. It was shown that all Sudoku graphs are integral graphs, in this paper we present many free-form Sudoku graphs that are still integral graphs. Keywords: Sudoku, spectrum, eigenvectors. 1 Preliminaries The r−regular slice n−sudoku puzzle is the free-form sudoku puzzle obtained from the n−sudoku puzzle by shifting the block cells in the (in + d)th row (d − 1)rn cells to the right, where 1 ≤ d ≤ n. In Figure 1 (B), the cells are partitioned into 9 blocks denoted by Bi . To study the eigenvalues of r−regular slice n−sudoku, let us start from the n2 ×n rectangular template slice where its cells partitioned into n2 blocks and for i = 0; 1; : : : ; n − 1, rows in + 1; in + 2;::: (i + 1)n contains only the n block numbers in + 1; in + 2;::: (i + 1)n, with the additional restriction that the block numbers used in different i−collection of rows are distinct, see fig1 (A).
    [Show full text]