Cores of Vertex-Transitive Graphs

Total Page:16

File Type:pdf, Size:1020Kb

Cores of Vertex-Transitive Graphs Cores of Vertex-Transitive Graphs Ricky Rotheram Submitted in total fulfilment of the requirements of the degree of Master of Philosophy October 2013 Department of Mathematics and Statistics The University of Melbourne Parkville, VIC 3010, Australia Produced on archival quality paper Abstract The core of a graph Γ is the smallest graph Γ∗ for which there exist graph homomor- phisms Γ ! Γ∗ and Γ∗ ! Γ. Thus cores are fundamental to our understanding of general graph homomorphisms. It is known that for a vertex-transitive graph Γ, Γ∗ is vertex-transitive, and that jV (Γ∗)j divides jV (Γ)j. The purpose of this thesis is to determine the cores of various families of vertex-transitive and symmetric graphs. We focus primarily on finding the cores of imprimitive symmetric graphs of order pq, where p < q are primes. We choose to investigate these graphs because their cores must be symmetric graphs with jV (Γ∗)j = p or q. These graphs have been completely classified, and are split into three broad families, namely the circulants, the incidence graphs and the Maruˇsiˇc-Scapellato graphs. We use this classification to determine the cores of all imprimitive symmetric graphs of order pq, using differ- ent approaches for the circulants, the incidence graphs and the Maruˇsiˇc-Scapellato graphs. Circulant graphs are examples of Cayley graphs of abelian groups. Thus, we generalise the approach used to determine the cores of the symmetric circulants of order pq, and apply it to other Cayley graphs of abelian groups. Doing this, we show that if Γ is a Cayley graph of an abelian group, then Aut(Γ∗) contains a transitive subgroup generated by semiregular automorphisms, and either Γ∗ is an odd cycle or girth(Γ∗) ≤ 4. Consequently, we show that Γ∗ is not a cubic symmetric graph ∗ ∼ ∗ (unless Γ = K4) or 3-arc-transitive (unless Γ is an odd cycle). We also provide a partial confirmation of a conjecture by Samal, on the cores of Cayley graphs of elementary abelian groups. Declaration This is to certify that: (i) the thesis comprises only my original work towards the MPhil; (ii) due acknowledgement has been made in the text to all other material used; and (iii) the thesis is less than 50 000 words in length. Ricky Rotheram Acknowledgements My deepest and sincerest gratitude goes to my primary supervisor, Associate Pro- fessor Sanming Zhou, for his guidance and supervision throughout my work on this thesis. I am especially grateful to Sanming for introducing me to vertex-transitive and symmetric graphs, as well as graph homomorphisms and the cores of graphs. I also thank Sanming for being supportive during some difficult periods, both in my academic and personal lives. I also wish to thank my co-supervisor, Professor Gordon Royle, for being a courteous host during my visit to the University of Western Australia in Semester 2 of 2010. I am especially grateful to Gordon for suggesting that I look at primitive Cayley graphs of elementary abelian groups. This suggestion led directly to Section 7.2, and specifically to Theorem 7.2.7. I acknowledge the support of an Australian Postgraduate Award from the Uni- versity of Melbourne. Finally, I wish to thank my parents, who have provided me with constant en- couragement and support over the course of my education. Without their support, this thesis could not have been finished. List of Key Symbols Ω; Ξ; ∆ Sets ∆ ⊆ Ω ∆ is a subset of Ω ∆ × Ξ Cartesian product of ∆ and Ξ ∆l Cartesian product of l copies of ∆ G; H; K Groups H ≤ GH is a subgroup of G H E GH is a normal subgroup of G hSi Subgroup of G generated by subset S 1G Identity element of G K × H Direct product of H by K Kl Direct product of l copies of K K o H Semidirect product of K by H K wr ΞH Wreath product of K by H, with H acting on Ξ G(α) G-orbit containing α G((α; β)) G-orbital containing (α; β) Gα Stabiliser of α in G i ii G∆ Setwise stabiliser of ∆ in G x(∆) Image of ∆ under x 2 G Sym(Ω) Symmetric group of permutations of Ω Alt(n) Alternating group Zn Additive group of integers mod n ∗ Zn Multiplicative group of integers mod n ∗ H(p; r) Unique subgroup of Zp of order r l Zp Elementary abelian group GF (n) Finite field with n elements GF(n)∗ Multiplicative group of GF(n) M10; M11; M22; M23 Mathieu groups SL(n; q) Special linear group Sp(n; q) Symplectic group GL(n; q) General linear group AGL(n; q) Affine general linear group ΓL(n; q) Semilinear group ΓSp(n; q) Symplectic semilinear group PSL(n; q) Projective special linear group PSU(n; q) Projective special unitary group PSp(n; q) Projective symplectic group PΓSp(n; q) Projective symplectic semilinear group H(11) Unique 2-(11; 5; 2) design iii PG(d − 1; n)( d − 1)-dimensional projective space over GF (n) V (n; q) n-dimensional symplectic vector space over GF (q) Wn−1(q) Classical polar space with nondegenerate, alternating bilinear form on V (n; q) Γ; Ψ; Λ Graphs V (Γ) Vertex set of Γ E(Γ) Edge set of Γ A(Γ) Arc set of Γ NΓ(u) Neighbourhood of u in Γ Aut(Γ) Full automorphism group of Γ φ, Graph homomorphisms φ(Γ) Homomorphic image of Γ under φ φ−1(u) Fibre of φ P Partition of V (Γ) Γ=P Quotient graph of Γ with respect to P Ψ $ Λ Ψ and Λ are homomorphically equivalent φ jΛ Restriction of φ : V (Γ) ! V (Λ) to the subgraph Λ of Γ Γ∗ Core of Γ Kn Complete graph on n vertices Cn Cycle of length n Pn+1 Path of length n Γ Complement of Γ iv Kn Empty graph with n vertices s K(r; s) Kneser graph for integers r; s, with 1 ≤ r < 2 Ψ s Circular graph for integers r; s with 0 < r ≤ s r val(Γ) Valency of the regular graph Γ α(Γ) Independence number of Γ I(Γ) Set of all independent sets of Γ I(Γ; x) Set of all independent sets of Γ containing vertex x !(Γ) Clique number of Γ δ(Γ; t) Maximum number of vertices in an induced subgraph of Γ with no complete subgraph of order t dΓ(u; v) Distance between u and v in Γ diam(Γ) Diameter of Γ girth(Γ) Girth of Γ oddg(Γ) Odd-girth of Γ χ(Γ) Chromatic number of Γ χC (Γ) Circular chromatic number of Γ χf (Γ) Fractional chromatic number of Γ Γ2Ψ Cartesian product of Γ and Ψ Γ × Ψ Categorical product of Γ and Ψ Γ Ψ Strong product of Γ and Ψ Γ [Ψ] Lexicographic product of Γ and Ψ Ψ [Λ] − dΨ Deleted lexicographic product of Ψ and Λ v n 2i=1Γi Cartesian product of n graphs n ×i=1Γi Categorical product of n graphs n i=1Γi Strong product of n graphs Γn n-th power of Γ with respect to the categorical product Cay(G; S) Cayley graph of group G, S ⊂ G G(p; r) Symmetric circulant of order p (where p is prime), valency r G(2q; r) Bipartite, symmetric circulant G(pq; ; r; s; u) General symmetric circulant of order pq D t − (v; k; λ) design P Set of points of design D B Set of blocks of design D X(D) Incidence graph of design D X0(D) Complementary incidence graph of design D Γ(a; m; S; U) Maruˇsiˇc-Scapellato graph of order m(2a + 1) Σ System of imprimitivity of V (Γ), with Γ ∼= Γ(a; m; S; U), under SL(2; 2a) ≤ Aut(Γ) a Bx Block of Σ containing all vertices (x; r), with x 2 PG(1; 2 ) Fs Fermat number List of Tables 4.1 Symmetric Circulant Graphs of order pq, p < q, and their Cores . 43 4.2 Incidence and Maruˇsiˇc-Scapellato Graphs of order pq, p < q, and their Cores . 44 vi List of Figures 2.1 The categorical product C5 × K3..................... 15 2.2 The lexicographic product C5 [K3]. ................... 16 2.3 The deleted lexicographic product C5 [K3] − 3C5............ 18 4.1 The symmetric prime order circulant G(13; 4). 45 4.2 The symmetric circulant G(21; 3; 2; 6), with t = 3, a = 2 and c = 2. 48 4.3 The Maruˇsiˇc-Scapellato graph Γ(2; 3; ;; f0g). 52 vii Contents List of Key Symbols . .i List of Tables . vi List of Figures . vii 1 Introduction 1 1.1 Introduction . .1 1.2 Problems to be studied . .2 1.3 Main results and structure of the thesis . .3 2 Notation, definitions and preliminaries 6 2.1 Permutation groups, partitions, blocks and primitivity . .6 2.2 Graphs . 11 2.3 Graph homomorphisms . 19 2.3.1 General graph homomorphisms . 19 2.3.2 Retractions, cores and homomorphic equivalence . 21 2.3.3 Homomorphisms of vertex-transitive graphs . 23 2.3.4 Cores of graph products . 26 3 Literature review 28 3.1 Graph homomorphisms . 29 3.1.1 Existence and nonexistence of graph homomorphisms . 29 3.1.2 Circular colourings . 30 3.1.3 Fractional colourings . 32 3.1.4 Graph products . 34 3.2 Retracts and cores . 37 3.2.1 General retracts and cores . 37 viii ix 3.2.2 Retracts and cores of vertex-transitive graphs . 38 3.2.3 Retracts and cores of graph products . 39 4 Cores of imprimitive, symmetric pq graphs 41 4.1 Imprimitive symmetric graphs of order pq, and their cores .
Recommended publications
  • Connectivities and Diameters of Circulant Graphs
    CONNECTIVITIES AND DIAMETERS OF CIRCULANT GRAPHS Paul Theo Meijer B.Sc. (Honors), Simon Fraser University, 1987 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (MATHEMATICS) in the Department of Mathematics and Statistics @ Paul Theo Meijer 1991 SIMON FRASER UNIVERSITY December 1991 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. Approval Name: Paul Theo Meijer Degree: Master of Science (Mathematics) Title of Thesis: Connectivities and Diameters of Circulant Graphs Examining Committee: Chairman: Dr. Alistair Lachlan Dr. grian Alspach, Professor ' Senior Supervisor Dr. Luis Goddyn, Assistant Professor - ph Aters, Associate Professor . Dr. Tom Brown, Professor External Examiner Date Approved: December 4 P 1991 PART IAL COPYH IGIiT L ICLNSI: . , I hereby grant to Sirnori Fraser- llr~ivorsitytho righl to lend my thesis, project or extended essay (tho title of which is shown below) to users of the Simon Frasor University Libr~ry,and to make part ial or single copies only for such users or in response to a request from the library of any other university, or other educational insfitution, on 'its own behalf or for one of its users. I further agree that percnission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission. Title of Thesis/Project/Extended Essay (date) Abstract Let S = {al, az, .
    [Show full text]
  • TETRAVALENT SYMMETRIC GRAPHS of ORDER 9P
    J. Korean Math. Soc. 49 (2012), No. 6, pp. 1111–1121 http://dx.doi.org/10.4134/JKMS.2012.49.6.1111 TETRAVALENT SYMMETRIC GRAPHS OF ORDER 9p Song-Tao Guo and Yan-Quan Feng Abstract. A graph is symmetric if its automorphism group acts transi- tively on the set of arcs of the graph. In this paper, we classify tetravalent symmetric graphs of order 9p for each prime p. 1. Introduction Let G be a permutation group on a set Ω and α ∈ Ω. Denote by Gα the stabilizer of α in G, that is, the subgroup of G fixing the point α. We say that G is semiregular on Ω if Gα = 1 for every α ∈ Ω and regular if G is transitive and semiregular. Throughout this paper, we consider undirected finite connected graphs without loops or multiple edges. For a graph X we use V (X), E(X) and Aut(X) to denote its vertex set, edge set, and automorphism group, respectively. For u , v ∈ V (X), denote by {u , v} the edge incident to u and v in X. A graph X is said to be vertex-transitive if Aut(X) acts transitively on V (X). An s-arc in a graph is an ordered (s + 1)-tuple (v0, v1,...,vs−1, vs) of vertices of the graph X such that vi−1 is adjacent to vi for 1 ≤ i ≤ s, and vi−1 = vi+1 for 1 ≤ i ≤ s − 1. In particular, a 1-arc is called an arc for short and a 0-arc is a vertex.
    [Show full text]
  • THE CRITICAL GROUP of a LINE GRAPH: the BIPARTITE CASE Contents 1. Introduction 2 2. Preliminaries 2 2.1. the Graph Laplacian 2
    THE CRITICAL GROUP OF A LINE GRAPH: THE BIPARTITE CASE JOHN MACHACEK Abstract. The critical group K(G) of a graph G is a finite abelian group whose order is the number of spanning forests of the graph. Here we investigate the relationship between the critical group of a regular bipartite graph G and its line graph line G. The relationship between the two is known completely for regular nonbipartite graphs. We compute the critical group of a graph closely related to the complete bipartite graph and the critical group of its line graph. We also discuss general theory for the critical group of regular bipartite graphs. We close with various examples demonstrating what we have observed through experimentation. The problem of classifying the the relationship between K(G) and K(line G) for regular bipartite graphs remains open. Contents 1. Introduction 2 2. Preliminaries 2 2.1. The graph Laplacian 2 2.2. Theory of lattices 3 2.3. The line graph and edge subdivision graph 3 2.4. Circulant graphs 5 2.5. Smith normal form and matrices 6 3. Matrix reductions 6 4. Some specific regular bipartite graphs 9 4.1. The almost complete bipartite graph 9 4.2. Bipartite circulant graphs 11 5. A few general results 11 5.1. The quotient group 11 5.2. Perfect matchings 12 6. Looking forward 13 6.1. Odd primes 13 6.2. The prime 2 14 6.3. Example exact sequences 15 References 17 Date: December 14, 2011. A special thanks to Dr. Victor Reiner for his guidance and suggestions in completing this work.
    [Show full text]
  • Arxiv:1802.04921V2 [Math.CO]
    STABILITY OF CIRCULANT GRAPHS YAN-LI QIN, BINZHOU XIA, AND SANMING ZHOU Abstract. The canonical double cover D(Γ) of a graph Γ is the direct product of Γ and K2. If Aut(D(Γ)) = Aut(Γ) × Z2 then Γ is called stable; otherwise Γ is called unstable. An unstable graph is nontrivially unstable if it is connected, non-bipartite and distinct vertices have different neighborhoods. In this paper we prove that every circulant graph of odd prime order is stable and there is no arc- transitive nontrivially unstable circulant graph. The latter answers a question of Wilson in 2008. We also give infinitely many counterexamples to a conjecture of Maruˇsiˇc, Scapellato and Zagaglia Salvi in 1989 by constructing a family of stable circulant graphs with compatible adjacency matrices. Key words: circulant graph; stable graph; compatible adjacency matrix 1. Introduction We study the stability of circulant graphs. Among others we answer a question of Wilson [14] and give infinitely many counterexamples to a conjecture of Maruˇsiˇc, Scapellato and Zagaglia Salvi [9]. All graphs considered in the paper are finite, simple and undirected. As usual, for a graph Γ we use V (Γ), E(Γ) and Aut(Γ) to denote its vertex set, edge set and automorphism group, respectively. For an integer n > 1, we use nΓ to denote the graph consisting of n vertex-disjoint copies of Γ. The complete graph on n > 1 vertices is denoted by Kn, and the cycle of length n > 3 is denoted by Cn. In this paper, we assume that each symbol representing a group or a graph actually represents the isomorphism class of the same.
    [Show full text]
  • Integral Circulant Graphsଁ Wasin So
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 306 (2005) 153–158 www.elsevier.com/locate/disc Note Integral circulant graphsଁ Wasin So Department of Mathematics, San Jose State University, San Jose, CA 95192-0103, USA Received 10 September 2003; received in revised form 6 September 2005; accepted 17 November 2005 Available online 4 January 2006 Abstract − In this note we characterize integral graphs among circulant graphs. It is conjectured that there are exactly 2(n) 1 non-isomorphic integral circulant graphs on n vertices, where (n) is the number of divisors of n. © 2005 Elsevier B.V. All rights reserved. Keywords: Integral graph; Circulant graph; Graph spectrum 1. Graph spectra Let G be a simple graph which is a graph without loop, multi-edge, and orientation. Denote A(G) the adjacency matrix of G with respect to a given labeling of its vertices. Note that A(G) is a symmetric (0, 1)-matrix with zero diagonal entries. Adjacency matrices with respect to different labeling are permutationally similar. The spectrum of G, sp(G), is defined as the spectrum of A(G), which is the set of all eigenvalues of A(G) including multiplicity. Since the spectrum of a matrix is invariant under permutation similarity, sp(G) is independent of the labeling used in A(G). Because A(G) is a real symmetric matrix, sp(G) contains real eigenvalues only. Moreover, A(G) is an integral matrix and so its characteristic polynomial is monic and integral, hence its rational roots are integers.
    [Show full text]
  • On the Generalized Θ-Number and Related Problems for Highly Symmetric Graphs
    On the generalized #-number and related problems for highly symmetric graphs Lennart Sinjorgo ∗ Renata Sotirov y Abstract This paper is an in-depth analysis of the generalized #-number of a graph. The generalized #-number, #k(G), serves as a bound for both the k-multichromatic number of a graph and the maximum k-colorable subgraph problem. We present various properties of #k(G), such as that the series (#k(G))k is increasing and bounded above by the order of the graph G. We study #k(G) when G is the graph strong, disjunction and Cartesian product of two graphs. We provide closed form expressions for the generalized #-number on several classes of graphs including the Kneser graphs, cycle graphs, strongly regular graphs and orthogonality graphs. Our paper provides bounds on the product and sum of the k-multichromatic number of a graph and its complement graph, as well as lower bounds for the k-multichromatic number on several graph classes including the Hamming and Johnson graphs. Keywords k{multicoloring, k-colorable subgraph problem, generalized #-number, Johnson graphs, Hamming graphs, strongly regular graphs. AMS subject classifications. 90C22, 05C15, 90C35 1 Introduction The k{multicoloring of a graph is to assign k distinct colors to each vertex in the graph such that two adjacent vertices are assigned disjoint sets of colors. The k-multicoloring is also known as k-fold coloring, n-tuple coloring or simply multicoloring. We denote by χk(G) the minimum number of colors needed for a valid k{multicoloring of a graph G, and refer to it as the k-th chromatic number of G or the multichromatic number of G.
    [Show full text]
  • Trivalent Orbit Polynomial Graphs* Robert A. Beezer Department Of
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Trivalent Orbit Polynomial Graphs* Robert A. Beezer Department of Mathematics & Computer Science University of Puget Sound Tacoma, Washington 98416 Submittedby Richard A. Brualdi ABSTRACT We introduce orbit polynomial graphs, and discuss their connections with dis- tance-transitive, distance-regular, and distance polynomial graphs. After some general results, we classify all of the nonsymmetric trivalent orbit polynomial graphs. 1. INTRODUCTION Given a finite, undirected graph I with no loops or multiple edges, there are many connections between its automorphism group, adjacency algebra, eigenvalues, and distance structure. We will introduce the notion of an orbit polynomial graph, and discuss its relationship to distance-transitive, distance- regular, and distance polynomial graphs. Then we will find all of the nonsymmetric trivalent orbit polynomial graphs. For a graph I, the adjacency matrix A( I) = (a i j) is given by 1 if {vi,vj}EEI, aij = 0 otherwise. The adjacency algebra of I, st( I), is the algebra of all polynomials in A( I). The eigenvalues of I are the eigenvalues of A(I), and the number of distinct eigenvalues of I will be denoted here as e(I). Because A(T) is a real symmetric matrix, e(I) equals the dimension of Q(r). *This work was supportedin part by the Research Board of the University of Illinois at Urbana-Champaign. LINEAR ALGEBRA AND ITS APPLZCATZONS 73:133-146 (1986) 133 0 Elsevier Science Publishing Co., Inc., 1986 52 Vanderbilt Ave., New York, NY 10017 00243795/86/$3.50 134 ROBERT A.
    [Show full text]
  • An Introduction to Algebraic Graph Theory
    An Introduction to Algebraic Graph Theory Cesar O. Aguilar Department of Mathematics State University of New York at Geneseo Last Update: March 25, 2021 Contents 1 Graphs 1 1.1 What is a graph? ......................... 1 1.1.1 Exercises .......................... 3 1.2 The rudiments of graph theory .................. 4 1.2.1 Exercises .......................... 10 1.3 Permutations ........................... 13 1.3.1 Exercises .......................... 19 1.4 Graph isomorphisms ....................... 21 1.4.1 Exercises .......................... 30 1.5 Special graphs and graph operations .............. 32 1.5.1 Exercises .......................... 37 1.6 Trees ................................ 41 1.6.1 Exercises .......................... 45 2 The Adjacency Matrix 47 2.1 The Adjacency Matrix ...................... 48 2.1.1 Exercises .......................... 53 2.2 The coefficients and roots of a polynomial ........... 55 2.2.1 Exercises .......................... 62 2.3 The characteristic polynomial and spectrum of a graph .... 63 2.3.1 Exercises .......................... 70 2.4 Cospectral graphs ......................... 73 2.4.1 Exercises .......................... 84 3 2.5 Bipartite Graphs ......................... 84 3 Graph Colorings 89 3.1 The basics ............................. 89 3.2 Bounds on the chromatic number ................ 91 3.3 The Chromatic Polynomial .................... 98 3.3.1 Exercises ..........................108 4 Laplacian Matrices 111 4.1 The Laplacian and Signless Laplacian Matrices .........111 4.1.1
    [Show full text]
  • Ricci Curvature, Circulants, and a Matching Condition 1
    RICCI CURVATURE, CIRCULANTS, AND A MATCHING CONDITION JONATHAN D. H. SMITH Abstract. The Ricci curvature of graphs, as recently introduced by Lin, Lu, and Yau following a general concept due to Ollivier, provides a new and promising isomorphism invariant. This pa- per presents a simplified exposition of the concept, including the so-called logistic diagram as a computational or visualization aid. Two new infinite classes of graphs with positive Ricci curvature are identified. A local graph-theoretical condition, known as the matching condition, provides a general formula for Ricci curva- tures. The paper initiates a longer-term program of classifying the Ricci curvatures of circulant graphs. Aspects of this program may prove useful in tackling the problem of showing when twisted tori are not isomorphic to circulants. 1. Introduction Various analogues of Ricci curvature have been extended from the context of Riemannian manifolds in differential geometry to more gen- eral metric spaces [1, 11, 12], and in particular to connected locally finite graphs [2, 3, 5, 6, 8, 9]. In graph theory, the concept appears to be a significant isomorphism invariant (in addition to other uses such as those discussed in [8, x4]). A typical problem where it may be of interest concerns the class of valency 4 graphs known as (rectangular) twisted tori, which have gained attention through their applications to computer architecture [4]. The apparently difficult open problem is to prove that, with finitely many exceptions, these graphs are not circu- lant (since this would show that they provide a genuinely new range of architectures). Now it is known that the twisted tori are quotients of cartesian products of cycles.
    [Show full text]
  • On a Class of Finite Symmetric Graphs
    ARTICLE IN PRESS European Journal of Combinatorics ( ) – www.elsevier.com/locate/ejc On a class of finite symmetric graphs Sanming Zhou1 Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia Received 15 March 2006; accepted 2 April 2007 Dedicated to Professor Yixun Lin with best wishes on the occasion of his 70th birthday Abstract Let Γ be a G-symmetric graph, and let B be a nontrivial G-invariant partition of the vertex set of Γ . This paper aims to characterize (Γ , G) under the conditions that the quotient graph ΓB is (G, 2)-arc transitive and the induced subgraph between two adjacent blocks is 2 · K2 or K2,2. The results answer two questions about the relationship between Γ and ΓB for this class of graphs. c 2007 Elsevier Ltd. All rights reserved. 1. Introduction The purpose of this paper is to answer two questions [8] regarding 2-arc transitivity of quotient graphs for a class of finite symmetric graphs. Let Γ = (V (Γ ), E(Γ )) be a finite graph. For an integer s ≥ 1, an s-arc of Γ is an (s+1)-tuple (α0, α1, . , αs) of vertices of Γ such that αi , αi+1 are adjacent for i = 0,..., s − 1 and αi−1 6= αi+1 for i = 1,..., s −1. We will use Arcs(Γ ) to denote the set of s-arcs of Γ , and Arc(Γ ) in place of Arc1(Γ ). Γ is said to admit a group G as a group of automorphisms if G acts on V (Γ ) and preserves the adjacency of Γ , that is, for any α, β ∈ V (Γ ) and g ∈ G, α and β are adjacent in Γ if and only if αg and βg are adjacent in Γ .
    [Show full text]
  • Symmetric Graph Properties Have Independent Edges
    Symmetric Graph Properties Have Independent Edges Dimitris Achlioptasa,b,1,2, Paris Siminelakisc,1,3,∗ aDepartment of Computer Science University of California, Santa Cruz bDepartment of Informatics & Telecommunications, University of Athens cDepartment of Electrical Engineering, Stanford University Abstract In the study of random structures we often face a trade-off between realism and tractability, the latter typically enabled by independence assumptions. In this work we initiate an effort to bridge this gap by developing tools that allow us to work with independence without assuming it. Let Gn be the set of all graphs on n vertices and let S be an arbitrary subset of Gn, e.g., the set of all graphs with m edges. The study of random networks can be seen as the study of properties that are true for most elements of S, i.e., that are true with high probability for a uniformly random element of S. With this in mind, we pursue the following question: What are general sufficient conditions for the uniform measure on a set of graphs S ⊆ Gn to be well- approximable by a product measure on the set of all possible edges? Keywords: Random Graphs, Symmetric Graph Properties Concentration of Measure, Approximate Independence ∗Corresponding author Email addresses: [email protected] (Dimitris Achlioptas), [email protected] (Paris Siminelakis) 1Research supported by ERC Starting Grant StG-210743. 2Research supported by NSF Grant CCF-1514128, an Alfred P. Sloan Fellowship, the European Union (European Social Fund ESF) and Greek national funds through the Op- erational Program \Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARISTEIA II.
    [Show full text]
  • A Class of Vertex-Transitive Digraphs the Graphs We Consider
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF COMBINATORIAL THEORY (B), 14, 246-255 (1973) A Class of Vertex-Transitive Digraphs CHONG-YUN CHAO University of Pittsburgh, Pittsburgh, Pennsylvania 15213 AND JACQUELINEG. WELLS Pennsylvania State University, McKeesport, Pennsylvania 15132 Communicated by W. T. Tutte ReceivedJune 6, 1972 1. We determineall the symmetricdigraphs with a prime number,p, of vertices.We alsodetermine the structureof their groups.Our resultsare similar to the caseof undirectedgraphs. But someof the proofsare simpler. 2. The isomorphicclasses of the vertex-transitivedigraphs with p vertices are enumerated. 3. We statean algorithmfor obtainingthe group of any givenvertex-transi- tive digraphwith p vertices.The algorithmgives a partial answerfor the open problem2 on page301 in [7]. 1. INTRODUCTION The graphs we consider here are finite and simple digraphs (directed graphs) without loops. A digraph X is said to be vertex-transitive if its group of automorphisms, G(X), is transitive on its vertices V(X). X is said to be edge-transitive if G(X) is transitive on its edges E(X). X is said to be a symmetric graph if it is both vertex-transitive and edge-transitive. In [3], one of us classified all symmetric undirected graphs with a prime number, p, of vertices. Since undirected graphs may be considered as a special case of digraphs, here we generalize the results in [3] to digraphs, and present an algorithm for obtaining the group of automorphisms of a given vertex- transitive digraph with p vertices, i.e., in Section 2, we show that, besides non-complete and non-null digraphs with p vertices, there exists a sym- metric digraph withp vertices and degree m, 1 < m < p - 1, if and only if m divides p - 1.
    [Show full text]