Hexagonal and Pruned Torus Networks as Cayley Graphs Wenjun Xiao Behrooz Parhami Dept. of Computer Science Dept. of Electrical & Computer Engineering South China University of Technology, and University of California Dept. of Mathematics, Xiamen University Santa Barbara, CA 93106-9560, USA
[email protected] [email protected] Abstract Much work on interconnection networks can be Hexagonal mesh and torus, as well as honeycomb categorized as ad hoc design and evaluation. and certain other pruned torus networks, are known Typically, a new interconnection scheme is to belong to the class of Cayley graphs which are suggested and shown to be superior to some node-symmetric and possess other interesting previously studied network(s) with respect to one mathematical properties. In this paper, we use or more performance or complexity attributes. Cayley-graph formulations for the aforementioned Whereas Cayley (di)graphs have been used to networks, along with some of our previous results on explain and unify interconnection networks with subgraphs and coset graphs, to draw conclusions many ensuing benefits, much work remains to be relating to internode distance and network diameter. done. As suggested by Heydemann [4], general We also use our results to refine, clarify, and unify a theorems are lacking for Cayley digraphs and number of previously published properties for these more group theory has to be exploited to find networks and other networks derived from them. properties of Cayley digraphs. In this paper, we explore the relationships Keywords– Cayley digraph, Coset graph, Diameter, between Cayley (di)graphs and their subgraphs Distributed system, Hex mesh, Homomorphism, and coset graphs with respect to subgroups and Honeycomb mesh or torus, Internode distance.