Cavity State Reservoir Engineering in Circuit Quantum Electrodynamics
Total Page:16
File Type:pdf, Size:1020Kb
Cavity State Reservoir Engineering in Circuit Quantum Electrodynamics A Dissertation Presented to the Faculty of the Graduate School of Yale University in Candidacy for the Degree of Doctor of Philosophy by Eric T. Holland Dissertation Director: Robert J. Schoelkopf August 2015 ©2015 – Eric T. Holland all rights reserved. Thesis advisor: Professor Robert J. Schoelkopf Eric T. Holland Cavity State Reservoir Engineering in Circuit Quantum Electrodynamics Abstract Engineered quantum systems are poised to revolutionize information science in the near future. A persistent challenge in applied quantum technology is creat- ing controllable, quantum interactions while preventing information loss to the environment, decoherence. In this thesis, we realize mesoscopic superconducting circuits whose macroscopic collective degrees of freedom, such as voltages and currents, behave quantum mechanically. We couple these mesoscopic devices to microwave cavities forming a cavity quantum electrodynamics (QED) architec- ture comprising entirely of circuit elements. This application of cavity QED is dubbed Circuit QED and is an interdisciplinary field seated at the intersection of electrical engineering, superconductivity, quantum optics, and quantum infor- mation science. Two popular methods for taming active quantum systems in the presence of decoherence are discrete feedback conditioned on an ancillary sys- tem or quantum reservoir engineering. Quantum reservoir engineering maintains a desired quantum state through a combination of drives and designed entropy evacuation. Circuit QED provides a favorable platform for investigating quan- tum reservoir engineering proposals. A major advancement of this thesis is the development of a quantum reservoir engineering protocol which maintains the quantum state of a microwave cavity in the presence of decoherence. This thesis synthesizes of strongly coupled, coherent devices whose solutions to its driven, dissipative Hamiltonian are predicted a priori. This work lays the foundation for future advancements in cavity centered quantum reservoir engineering pro- tocols that have potential to realize hardware efficient protocols to protect more elaborate quantum states. iii Contents List of Figures viii List of Tables x Publication List xi Acknowledgements xii 1 Introduction 1 1.1 Thesis Overview ............................ 5 2 Resonator Theory 7 2.1 LC Circuit ............................... 9 2.2 LCR Circuit .............................. 11 2.3 Quality factors ............................ 12 2.3.1 Quality Factor Parallel LCR Circuit . 13 2.4 Coupling to LC Oscillator ...................... 15 2.5 Participation Ratios ......................... 18 2.5.1 Lossy Capacitor ........................ 18 2.5.2 Partially Filled Lossy Capacitor-Parallel . 20 2.5.3 Partially Filled Lossy Capacitor-Series . 25 2.5.4 Lossy Inductor ........................ 27 2.5.5 Partially Filled Lossy Inductor-Series . 28 2.5.6 Partially Filled Lossy Inductor-Parallel . 30 2.6 Final Thoughts ............................ 33 3 Transmission Line Resonators 34 3.1 Historical Development ........................ 35 3.2 Characteristic Impedance ....................... 36 iv 3.3 Design Consideration ......................... 38 3.4 First Design .............................. 41 3.5 Participation Ratios ......................... 43 3.5.1 Surface Dielectric Loss .................... 44 3.5.2 Bulk Dielectric Loss ..................... 47 3.5.3 Inductive losses and Kinetic Inductance Ratio . 49 3.6 Evanescent Coupling ......................... 52 3.6.1 Asymmetry and Coupling Through TE01 Mode . 57 3.7 Quality Factor Measurements .................... 58 3.8 Kinetic Inductance Ratio Measurements . 61 3.9 Limitations .............................. 62 3.9.1 Coupling ............................ 64 3.9.2 Frequency Stability ...................... 64 3.9.3 Issue Resolution ........................ 65 3.10 Future Outlook ............................ 67 4 Circuit Quantum Electrodynamics 68 4.1 Cavity Quantum Electrodynamics . 71 4.2 Josephson Junction as a Circuit Element . 73 4.3 Circuit Quantization ......................... 76 4.3.1 LC Oscillator ......................... 76 4.3.2 Anharmonic Oscillator: The Transmon . 77 4.4 Transmon Coupled to Harmonic Oscillator . 79 4.4.1 Strong Dispersive Regime . 82 4.5 Black box quantization ........................ 84 5 Experimental Techniques 89 5.1 Fabrication .............................. 90 5.1.1 Substrates ........................... 90 5.1.2 Lithography .......................... 91 5.1.3 Deposition and Dicing .................... 94 5.2 Sample Holders ............................ 95 5.2.1 Striplines ........................... 95 5.2.2 Cavities ............................ 96 5.3 Experimental Setup .......................... 96 5.3.1 Dilution Refrigerator ..................... 96 5.3.2 Vericold Wiring and Filtering . 97 5.3.3 Cavity Filtering ........................ 97 v 5.3.4 Heterodyne Measurement Setup . 101 5.4 Cavity Measurement Techniques . 103 5.4.1 Transmission . 103 5.5 Qubit Measurement Techniques . 105 5.5.1 Dispersive Readout . 107 5.5.2 Jaynes-Cummings Readout . 108 6 Cavity State Reservoir Engineering 111 6.1 Introduction .............................. 111 6.1.1 Measurement with External Feedback . 112 6.1.2 Quantum Reservoir Engineering . 116 6.2 Fock State Stabilization Protocol . 118 6.2.1 Four State Model . 121 6.3 Linblad Master Equation and Simulation . 124 6.4 Photon Number Calibration via the AC stark effect . 125 6.5 Hamiltonian Parameters . 129 6.5.1 Anharmonicities . 131 6.5.2 Cavity-Cavity Cross-Kerr . 133 6.6 Photon Number Selective π Pulse Calibration . 135 6.6.1 π Pulse Selectivity . 137 6.7 Fock State Stabilization Protocol . 137 6.7.1 Comparison DDROP and FSSP . 140 6.7.2 Steady State Wigner Function for Stabilized N=1 Fock State142 6.7.3 Interpreting Results as a Spin System . 144 6.8 Future Improvements . 147 6.8.1 Final Comment . 151 7 Conclusion & Outlook 152 7.1 Conclusion ............................... 152 7.2 Future Experiments . 153 7.2.1 Extension to Fock State Stabilization . 153 7.2.2 N00N State Stabilization . 154 7.3 Future Outlook ............................ 156 Appendix A Recipes 158 A.1 Cavity Photolithography . 158 A.1.1 Resist ............................. 158 A.1.2 Development . 159 A.2 Cavity Etching ............................ 160 vi A.2.1 Tools Required . 160 A.2.2 Setting Up . 161 A.2.3 Acid change at two hour mark . 161 A.2.4 Finish ............................. 162 A.3 Dolan Bridge Josephson Junction Recipe . 163 A.3.1 Wafer Cleaning (15 minutes) . 163 A.3.2 Resist spinning (45 minutes) . 164 A.3.3 Anti-charging Layer (1 hour) . 164 A.3.4 Electron beam writing (2-4 hours depending area to be writ- ten) .............................. 165 A.3.5 Development (15 minutes) . 165 A.3.6 Deposition (4 hours) . 166 A.3.7 Liftoff (2+hours) . 166 A.3.8 Dicing (4 hours) . 167 A.3.9 After dicing (2 hours) . 167 Appendix B QuTiP Code 169 B.1 Fock State Stabilization . 169 B.1.1 Time Dependent Solver . 169 B.1.2 Steady State Solver . 173 Bibliography 189 vii List of Figures 2.1 LC Circuit Diagram ......................... 9 2.2 LCR Circuit Diagram ......................... 11 2.3 Coupling to LC Oscillator ...................... 15 2.4 Lossy Capacitor ............................ 18 2.5 Lossy Capacitor-Partially Filled Parallel . 21 2.6 Lossy Capacitor-Partially Filled Series . 24 2.7 Lossy Inductor ............................ 27 2.8 Lossy Inductor-Partially Filled Series . 29 2.9 Lossy Inductor-Partially Filled Parallel . 31 3.1 Microstrip Tri-Plate and Stripline . 37 3.2 Prototypical Stripline ......................... 38 3.3 Rectangular Waveguide Cavity .................... 40 3.4 Stripline First Design ......................... 42 3.5 Center Conductor Surface Participation Ratio . 48 3.6 Kinetic Inductance Calculation ................... 51 3.7 Evanescent Coupling to 3D Cavity and Stripline . 56 3.8 Total Quality Factor versus Temperature . 59 3.9 Measured Kinetic Inductance of Stripline Resonator and Holder . 62 3.10 Stripline Second Design ........................ 63 3.11 Coaxline ................................ 66 4.1 Jaynes-Cummings Model ....................... 70 4.2 CQED Realization .......................... 72 4.3 Josephson Junction Schematic and Circuit Equivalent . 73 4.4 Circuit Representation of Transmon . 78 4.5 Circuit Representation of Transmon Coupled to LC Oscillator . 81 4.6 Charge Based Superconducting Qubits . 83 4.7 Black Box Quantization HFSS Simulation . 86 viii 5.1 Double Angle Dolan Bridge Deposition . 93 5.2 Vericold Dilution Refrigerator Wiring . 98 5.3 Room Temperature Microwave Control and Data Acquisition . 102 5.4 Dispersive Readout . 106 5.5 Jaynes-Cummings Readout . 109 6.1 Conceptual schematic of reservoir engineering . 116 6.2 Fock state stabilization protocol . 120 6.3 Four state model . 123 6.4 AC Stark Photon Number Calibration . 126 6.5 AC Stark Amplitude . 129 6.6 AC Stark Calibration . 130 6.7 Storage Cavity Anharmonicity . 132 6.8 Single Photon Cross-Kerr . 133 6.9 Photon Number Poisson Distribution . 138 6.10 P(0) and P(1) ............................. 141 6.11 Steady State Wigner function . 145 6.12 Steady State Cavity Polarization . 148 6.13 Expected FSS ............................. 150 7.1 Historical Progress of Superconducting Circuits . 156 ix List of Tables 6.1 Fock State Stabilization Parameters . 135 6.2 Comparison FSSP and DDROP . 142 x Publication List This thesis is based on the following