The Mojave Extensional Belt, Southern California

Total Page:16

File Type:pdf, Size:1020Kb

The Mojave Extensional Belt, Southern California Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1992 Stratigraphic Architecture of an Extensional Orogen: The ojM ave Extensional Belt, Southern California. Christopher John Travis Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Travis, Christopher John, "Stratigraphic Architecture of an Extensional Orogen: The ojM ave Extensional Belt, Southern California." (1992). LSU Historical Dissertations and Theses. 5361. https://digitalcommons.lsu.edu/gradschool_disstheses/5361 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper aligmnent can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Order Number 9301109 Stratigraphie architecture of an extensional orogen; The Mojave Extensional Belt, southern California Travis, Christopher John, Ph.D. The Louisiana State University and Agricultural and Mechanical Col., 1992 Copyright ©1993 by Travis, Christopher John. All ri^ ts reserved. UMI 300 N. ZeebRd. Ann Arbor, MI 48106 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. S tratigraphic architecture o f a n E x t e n s io n a l O r o g e n : THE MOJAVE EXTENSIONAL BELT, SOUTHERN CALIFORNIA A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy m The Department of Geology and Geophysics by Christopher John Travis B.Sc., University of Wales, Swansea, 1982 M.S., University of South Carolina, 1984 May, 1992 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. After five and a half years in Baton Rouge and twelve months now in Houston, the task of calling to mind all those who have had an impact on my life, my thinking and this dissertation, is a monumental one. There are, however, several people who stand out in my mind as having provided incalculable guidance, support and friendship. First among these must be my wife, Denise, whose patience, restraint, and love are are without par. Similarly, my family have always supported and encouraged me in every endeavour, and without them I could never have got anywhere. Among the non­ relatives, first credit must go to Roy Dokka. He has been an excellent advisor: a strong motivator, a gentle critic, a keen guide and, above all, a most true friend. Tim Ross, in his role as room mate, office mate and field partner, has been a never-ending source of stimulation and support. I value his friendship tremendously Many friends and colleagues in Baton Rouge and, more recently, in Houston, have provided inspiration and support. I am particularly grateful to Greg Riley, Jeff Nunn, Kathy McManus, Darrell Henry, Steven Jones, Chad McCabe, David Wilensky, Tim Fleming, Ellen Prager, Riley Milner, Bob Remy, Gill Apps, Ivo Bergsohn, Cindy Yeilding, Chris Wager, Phil Behrman, Stephanie Moore, and Franklyn J. Peel. My heartfelt thanks go also to those who have helped me to get through the university System - Libby Holt, Sissie Gum, Lewis Nichols, Thea Burchiel, Karen, Nancy Drew, and Wanda White. I am most grateful to the LSU Department of Geology and Geophysics, Dr. Judith Schiebout of the LSU Museum of Geoscience, and BP Exploration Inc. for providing financial support for my studies at LSU. Field work was Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. supported by Chevron, USA and the National Science Foundation (grants EAR- 8407136, and EAR-8721022 to Dr. Roy K. Dokka). Finally, I would like to thank the Chair and the members of my committee, Drs. Roy Dokka, Dag Nummedal, Jeff Nunn, Darrell Henry, Arnold Bouma, and Philip Larimore for their guidance, their careful review, and their constructive criticism of this dissertation. Although not a committee member. Dr. M. O. Woodbume of U.C. Riverside had considerable influence on my work and his exhaustive reviews of Chapters 2 and 3 were invaluable. ui Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. T a b l e o f C o n t e n t s Acknowledgements ............................................................................................. ii Table of Contents ..................................................................................................... iv List of Figures .........................................................................................................ix List of Tables ................................................................................................... xiv Abstract.................................................................................................................... xv • Prologue 1 Introduction: Tectonics and sedimentation 4 Introduction ..................................................................................................4 Studies of the source area .................................................................. 5 Structural control on facies distribution ........................................................6 Timing of tectonism ......................................................................... 9 Paleogeography ................................................................................10 Tectonic history ................................................................................19 Quantitative Models .....................................................................................21 Geometric models............................................................................21 Dynamic models .............................................................................. 26 Creep processes ............................................................. 27 Overland/channel flow .........................................................29 Observational approach .......................................................29 Conclusions .................................................................................................30 IV Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Sedimentation in detachment-dominated extensional orogens: insights from the Mojave Extensional Belt, California 33 Introduction ................................................................................................... 33 Terminology ............................................................................................... 34 Geologic Background .................................................................................... 35 Stratigraphic architecture of the Mojave Extensional Belt .......................40 Breakaway basins .............................................................................40 Upper plate fault basins .....................................................................61 Transfer zone basins .........................................................................74 Breakoff basins .................................................................................83 Core complex basins .........................................................................84 Discussion .....................................................................................................94 Paleogeographic development of the Mojave Extensional Belt 94 Textural evolution of the basin fill ....................................................97
Recommended publications
  • Part 3: Normal Faults and Extensional Tectonics
    12.113 Structural Geology Part 3: Normal faults and extensional tectonics Fall 2005 Contents 1 Reading assignment 1 2 Growth strata 1 3 Models of extensional faults 2 3.1 Listric faults . 2 3.2 Planar, rotating fault arrays . 2 3.3 Stratigraphic signature of normal faults and extension . 2 3.4 Core complexes . 6 4 Slides 7 1 Reading assignment Read Chapter 5. 2 Growth strata Although not particular to normal faults, relative uplift and subsidence on either side of a surface breaking fault leads to predictable patterns of erosion and sedi­ mentation. Sediments will fill the available space created by slip on a fault. Not only do the characteristic patterns of stratal thickening or thinning tell you about the 1 Figure 1: Model for a simple, planar fault style of faulting, but by dating the sediments, you can tell the age of the fault (since sediments were deposited during faulting) as well as the slip rates on the fault. 3 Models of extensional faults The simplest model of a normal fault is a planar fault that does not change its dip with depth. Such a fault does not accommodate much extension. (Figure 1) 3.1 Listric faults A listric fault is a fault which shallows with depth. Compared to a simple planar model, such a fault accommodates a considerably greater amount of extension for the same amount of slip. Characteristics of listric faults are that, in order to maintain geometric compatibility, beds in the hanging wall have to rotate and dip towards the fault. Commonly, listric faults involve a number of en echelon faults that sole into a low­angle master detachment.
    [Show full text]
  • Kinematics of the Northern Walker Lane: an Incipient Transform Fault Along the Pacific–North American Plate Boundary
    Kinematics of the northern Walker Lane: An incipient transform fault along the Paci®c±North American plate boundary James E. Faulds Christopher D. Henry Nevada Bureau of Mines and Geology, MS 178, University of Nevada, Reno, Nevada 89557, USA Nicholas H. Hinz ABSTRACT GEOLOGIC SETTING In the western Great Basin of North America, a system of dextral faults accommodates As western North America has evolved 15%±25% of the Paci®c±North American plate motion. The northern Walker Lane in from a convergent to a transform margin in northwest Nevada and northeast California occupies the northern terminus of this system. the past 30 m.y., the northern Walker Lane has This young evolving part of the plate boundary offers insight into how strike-slip fault undergone widespread volcanism and tecto- systems develop and may re¯ect the birth of a transform fault. A belt of overlapping, left- nism. Tertiary volcanic strata include 31±23 stepping dextral faults dominates the northern Walker Lane. Offset segments of a W- Ma ash-¯ow tuffs associated with the south- trending Oligocene paleovalley suggest ;20±30 km of cumulative dextral slip beginning ward-migrating ``ignimbrite ¯are up,'' 22±5 ca. 9±3 Ma. The inferred long-term slip rate of ;2±10 mm/yr is compatible with global Ma calc-alkaline intermediate-composition positioning system observations of the current strain ®eld. We interpret the left-stepping rocks related to the ancestral Cascade arc, and faults as macroscopic Riedel shears developing above a nascent lithospheric-scale trans- 13 Ma to present bimodal rocks linked to Ba- form fault.
    [Show full text]
  • Polyphase Laramide Tectonism and Sedimentation in the San Juan Basin, New Mexico Steven M
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/54 Polyphase Laramide tectonism and sedimentation in the San Juan Basin, New Mexico Steven M. Cather, 2003, pp. 119-132 in: Geology of the Zuni Plateau, Lucas, Spencer G.; Semken, Steven C.; Berglof, William; Ulmer-Scholle, Dana; [eds.], New Mexico Geological Society 54th Annual Fall Field Conference Guidebook, 425 p. This is one of many related papers that were included in the 2003 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Late Mesozoic Compressional to Extensional Tectonics in The
    Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and its bearing on the evolution of the Yinshan-Yanshan orogenic belt: Part I: Structural analyses and geochronological constraints Wei Lin, Michel Faure, Yan Chen, Wenbin Ji, Fei Wang, Lin Wu, Nicolas Charles, Jun Wang, Qingchen Wang To cite this version: Wei Lin, Michel Faure, Yan Chen, Wenbin Ji, Fei Wang, et al.. Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and its bearing on the evolution of the Yinshan-Yanshan orogenic belt: Part I: Structural analyses and geochronological constraints. Gond- wana Research, Elsevier, 2013, 23 (1), pp.54-77. 10.1016/j.gr.2012.02.013. insu-00681290 HAL Id: insu-00681290 https://hal-insu.archives-ouvertes.fr/insu-00681290 Submitted on 21 Aug 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and its bearing on the evolution of the Yinshan–Yanshan orogenic belt: Part I: Structural analyses and geochronological constraints Wei Lina Michel Faureb Yan Chenb Wenbin Jia Fei Wanga Lin Wua Nicolas Charlesb Jun Wanga Qingchen Wanga a State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O.
    [Show full text]
  • An Overview of the Cultural Resources of the Western Mojave Desert
    BLM LIBRARY BURE/ IT 88014080 An Overview of the Cultural Resources of the Western Mojave Desert by E . G ary Stic kel and - L ois J . W einm an Ro berts with sections by Rainer Beig ei and Pare Hopa cultural resources publications anthropology— history Cover design represents a petroglyph element from Inscription Canyon, San Bernardino County, California. : AN OVERVIEW OF THE CULTURAL RESOURCES OF THE WESTERN TOJAVE DESERT by Gary Stickel and Lois J. Weinman- Roberts Environmental Research Archaeologists: A Scientific Consortium Los Angeles with sections by Rainer Berger and Pare Hopa BUREAU OF LAND MANAGEMENT LIBRARY Denver, Colorado 88014680 Prepared for the UNITED STATES DEPARTMENT OF INTERIOR BUREAU OF LAND MANAGEMENT California Desert Planning Program 3610 Central Avenue, Suite 402 Riverside, California 92506 Contract No. YA-512-CT8-106 ERIC W. RITTER GENERAL EDITOR Bureau of Land RIVERSIDE, CA Management Library 1980 Bldg. 50, Denver Federal Center Denver, CO 80225 *•' FOREWORD Culture resource overviews such as this bring together much of the available information on prehistoric and historic peoples and present- day Native American groups along with their associated environments. The purpose behind these studies is to provide background information for the management of and research into these prehistoric, historic, and contemporary resources. This overview is one of seven covering the southern California deserts undertaken as part of a comprehensive planning effort by the Bureau of Land Management for these deserts. Overviews aid in the day-to-day management of cultural resources and in the completion of environmental analyses and research projects. Its general value to the public in the fields of education and recreation-interpretation must also be stressed.
    [Show full text]
  • Proceedings Chapter Reference
    Proceedings Chapter Detailed Structural and Reservoir Rock Typing Characterisation of the Greater Geneva Basin, Switzerland, for Geothermal Resource Assessment CLERC, Nicolas, et al. Abstract A large, multistage program (GEothermie 2020) for developing the deep geothermal energy resources of the trans-border (Swiss- French) Greater Geneva Basin has been initiated in 2013 by the State of Geneva (Switzerland). In this framework, two PhD research projects have been initiated to study the subsurface geology of the region focus on both geothermal and hydrothermal energy prospection. The first project aims at characterizing facies distribution, petrophysical and thermal properties of the sedimentary sequence ranging from Permo-Carboniferous to Lower Cretaceous units. The second project investigates the basin structural evolution, fault-related fractures and their geometrical characteristics and properties. This information is being integrated in 3D geological models at both regional and local scale, derived from 2D seismic lines and well data. Detailed rock typing description from petrophysical measurements and laboratory analysis of core and outcrop samples (facies and micro-facies description; geochemical, petrophysical and thermal properties) are being carried out in order to assess the lateral variations of [...] Reference CLERC, Nicolas, et al. Detailed Structural and Reservoir Rock Typing Characterisation of the Greater Geneva Basin, Switzerland, for Geothermal Resource Assessment. In: Proceedings World Geothermal Congres. 2015. Available
    [Show full text]
  • Desert Renewable Energy Conservation Plan Proposed Land
    DRECP Proposed LUPA and Final EIS CHAPTER III.8. CULTURAL RESOURCES III.8 CULTURAL RESOURCES This chapter presents the Affected Environment for the Land Use Plan Amendment (LUPA) Decision Area and the Desert Renewable Energy Conservation Plan (DRECP) area for cultural resources. These areas overlap, and in the following programmatic discussion are referred to broadly as the “California Desert Region.” More than 32,000 cultural resources are known in the DRECP area in every existing environmental context ⎼ from mountain crests to dry lake beds ⎼ and include both surface and subsurface deposits. Cultural resources are categorized as buildings, sites, structures, objects, and districts (including cultural landscapes and Traditional Cultural Properties) under the federal National Environmental Policy Act (NEPA) and the National Historic Preservation Act (NHPA). Historic properties are cultural resources included in, or eligible for inclusion in, the National Register of Historic Places (NRHP), maintained by the Secretary of the Interior (36 Code of Federal Regulations [CFR] 60.4). See Section III.8.1.1 for more information on federal regulations and historic properties. This chapter discusses three types of cultural resources classified by their origins: prehistoric, ethnographic, and historic. Prehistoric cultural resources are associated with the human occupation of California prior to prolonged European contact. These resources may include sites and deposits, structures, artifacts, rock art, trails, and other traces of Native American human behavior. In California, the prehistoric period began over 12,000 years ago and extended through the eighteenth century until 1769, when the first Europeans settled in California. Ethnographic resources represent the heritage of a particular ethnic or cultural group, such as Native Americans or African, European, Latino, or Asian immigrants.
    [Show full text]
  • 4.5 Cultural Resources
    4.5 – Cultural Resources 4.5 Cultural Resources This section identifies cultural and paleontological resources along the IC Project Alignment, identifies applicable significance thresholds, assesses the IC Project’s impacts to these resources and their significance, and recommends measures to avoid or substantially reduce any effects found to be potentially significant. Cultural resources are defined as any object or specific location of past human activity, occupation, or use that is identifiable through historical documentation, inventory, or oral evidence. Cultural resources can be separated into three categories: archaeological, building/structural, and traditional resources. Archaeological resources include prehistoric and historic remains of human activity. Prehistoric resources can be composed of lithic scatters, ceramic scatters, quarries, habitation sites, temporary camps/rock rings, ceremonial sites, and trails. Historic-era resources are typically those that are 50 years or older. Historic archaeological resources can consist of structural remains (e.g., concrete foundations), historic objects (e.g., bottles and cans), features (e.g., refuse deposits or scatters), and sites (e.g., resources that contain one or more of the aforementioned categories). Built environment resources range from historic buildings to canals, historic roads and trails, bridges, ditches, cemeteries, and electrical infrastructure, such as transmission lines, substations, and generating facilities. A traditional cultural resource is a resource associated with the cultural practices, traditions, beliefs, lifeways, arts, crafts, or social institutions of a living community. They are rooted in a traditional community’s history and are important in maintaining the continuing cultural identity of the community. See Section 4.18, Tribal Cultural Resources, for a discussion on cultural resources of potential importance to California Native American tribes.
    [Show full text]
  • Extensional Tectonics in Convergent Margin Basins: an Example from the Salar De Atacama, Chilean Andes
    Extensional tectonics in convergent margin basins: An example from the Salar de Atacama, Chilean Andes S. FLINT Department of Earth Sciences, University of Liverpool, P.O. Box 147, Liverpool L69 3BX, United Kingdom P TURNER 1 " r_T T _ „ > School of Earth Sciences, University of Birmingham, P.O. Bcoc 363, Birmingham B15 2TT, United Kingdom b. J. JUJLLifc/Y J A. J. HARTLEY Department of Geology & Petroleum Geology, University of Aberdeen, Aberdeen AB9 2UE, United Kingdom ABSTRACT enance area for a 2-km-thick Oligocene conti- The modern Salar de Atacama basin nental basin-fill component (Paciencia Group). (Figs. 1 and 2) is situated in the Pre-Andean The Salar de Atacama basin of northern The Oligocene basin was an extensional to trans- Depression, bounded to the east by the Mio- Chile preserves stratigraphic evidence for the tensional basin. cene-Holocene Andean volcanic arc (High evolution of the Andean cycle. It has evolved The Miocene-Holocene Salar basin is a con- Andes) and to the west by thrusted Paleozo- from a non-arc-related rift, through back-arc tinental fore-arc basin. This latest segment of ic-Mesozoic sedimentary strata and Late Cre- and inter-are stages, to a Neogene fore-arc ba- the basin fill comprises pyroclastic and conti- taceous igneous intrusions of the Cordillera sin. Accumulation of the sedimentary succes- nental sedimentary rocks thrust over Quater- de Domeyko. The modern basin is —100 km sion was mainly due to extensional faulting. nary gravels in many places. The Cordillera de long (north-south) and 40 km wide; most of Important but short-duration contractional ep- la Sal is an intrabasinal uplift, initiated as a the surface is occupied by a saline playa com- isodes do link to known first-order plate-mar- thin-skinned contractional feature.
    [Show full text]
  • Extensional Tectonics in the North Atlantic Caledonides: a Regional View
    Extensional tectonics in the North Atlantic Caledonides: a regional view HAAKON FOSSEN Department of Earth Science, University of Bergen, Allegaten 41, 5007 Bergen, Norway (e-mail: [email protected]) Abstract: Extensional structures characterize significant parts of the North Atlantic Caledonides. Silurian extensional deformation took place, particularly in the heated crust in the southern Greenland Caledonides, but the majority of the mapped extensional structures are Devonian (403–380 Ma). They formed by reactivation of low-angle Caledonian thrusts and by the formation of hinterland-dipping shear zones, of which the largest system is located in SW Norway and related to exhumation of the subducted margin of Baltica. The Devonian extension was concentrated to the central and southern part of the Caledonides, with maximum extension occurring in the area between the Western Gneiss Region of SW Norway and the Fjord Region of East Greenland. Kin- ematic data indicate that the main tectonic transport direction was toward the hinterland, and this pattern suggests that the main Devonian extension/transtension in the southern part of the North Atlantic region was postcontractional while strike-slip motions and possibly transpression occurred farther north. Late Devonian to enigmatic Early Carboniferous ages from UHP metamorphic assemblages in NE Greenland suggest that intracontinental subduction was going on in NE Greenland at a time when extensional deformation governed the rest of the orogenic belt. The Caledonian orogen as exposed in Norway, Coney 1980; Wernicke 1981), which demonstrated Greenland and the northern British Isles (Fig. 1) that low-angle faults and mylonite zones should have traditionally been investigated with an eye not be regarded as thrusts without critical evalu- for contractional structures.
    [Show full text]
  • U.S. Army Corps of Engineers Sacramento District 1325 J Street Sacramento, California Contract DACA05-97-D-0013, Task 0001
    CALIFORNIA HISTORIC MILITARY BUILDINGS AND STRUCTURES INVENTORY VOLUME I: INVENTORIES OF HISTORIC BUILDINGS AND STRUCTURES ON CALIFORNIA MILITARY INSTALLATIONS Prepared for: U.S. Army Corps of Engineers Sacramento District 1325 J Street Sacramento, California Contract DACA05-97-D-0013, Task 0001 Prepared by: FOSTER WHEELER ENVIRONMENTAL CORPORATION Sacramento, California 95834 and JRP JRP HISTORICAL CONSULTING SERVICES Davis, California 95616 March2000 Calirornia llisloric Miliiary Buildings and Structures Inventory, \'olume I CONTENTS Page CONTENTS ..................................................................................................................................... i FIGURES ........................................................................................................................................ ii TABLES ......................................................................................................................................... iii LIST OF ACRONYMS .................................................................................................................. iv ACKNOWLEDGEMENTS ......................................................................................................... viii SERIES INTRODUCTION ............................................................................................................ ix 1.0 INTRODUCTION ................................................................................................................. 1-1 I. I Purpose and Goals ......................................................................................................
    [Show full text]
  • Environmental Assessment Air Force Small Launch
    Environmental Impact Analysis Process ENVIRONMENTAL ASSESSMENT AIR FORCE SMALL LAUNCH VEHICLE VANDENBERG AIR FORCE BASE, EDWARDS AIR FORCE BASE, AND SAN NICOLAS ISLAND, CA DEPARTMENT MAY OF 1991 THE AIR FORCE DEPARTMENT OF THE AIR FORCE ENVIRONMENTAL ASSESSMENT for the AIR FORCE SMALL LAUNCH VEHICLE PROGRAM VANDENBERG AIR FORCE BASE EDWARDS AIR FORCE BASE, AND SAN NICOLAS ISLAND, CALIFORNIA Prepared for HEADQUARTERS SPACE SYSTEMS DIVISION/ DEV LOS ANGELES AFB, CALIFORNIA and AIR FORCE OCCUPATIONAL AND ENVIRONMENTAL HEALTH LABORATORY/EQE BROOKS AFB, TEXAS Contract No. F33615-89-D-4003 Order No. 003 May 1991 Prepared by ENGINEERING-SCIENCE DESIGN n RESEARCH n PLANNING 199 S. LOS ROBLES AVE. P.O.BOX 7056 PASADENA, CALIFORNIA 91109 Printed on Recycled Paper PS244 SUMMARY This Environmental Assessment (EA) has been prepared as part of the United States Air Force (USAF) Environmental Impact Analysis Process (EIAP) for evaluation of proposed major projects, in compliance with the National Environmental Policy Act (NEPA) and the regulations of the President’s Council on Environmental Quality (CEQ). The EA presents an environmental impact analysis of the proposed action and its alternatives. Section 1 of this EA contains the proposed action, its purpose and need, and alternatives. Section 2 is a description of the natural and man-made environment which may potentially be affected by the proposed action. Section 3 is an analysis of the potential environmental impacts which may result from implementation of the proposed action. Section 4 presents mitigation measures to prevent or minimize potentially significant impacts. Section 5 is a regulatory review of the proposed action, including identification of environmental permits and approvals which may be required.
    [Show full text]