DVB Issue 2 Final

Total Page:16

File Type:pdf, Size:1020Kb

DVB Issue 2 Final Edition No. 02 June 2002 DVB - SCENE Tune in to Digital Convergence Tune 02 The Standard for the Digital World This issue’s highlights > Report on the current status of DVB-RCS > DVB-S powering distance learning > Patent Pooling > MHP conformance testing > DVB-T in Tawain Push For > Product Bulletin Return TURBULENT TIMES FOR their arrangements, but there is no doubt that free-to-air will continue. At DIGITAL TELEVISION no time during the debate about why A word from the DVB Project Office business models are to be adopted, but ITV Digital or Quiero failed has the the failures in the UK and Spain will DVB-T technology underpinning the certainly provide food for further platforms been called into question. thought. One reassuring element is that On a lighter note, this issue of DVB receiver prices are now much lower Scene concentrates on three major than they were at the time of the UK areas. The first is recent developments launch, and thus in a better position to in the DVB’s powerful return channel compete with DVB-C boxes on cable satellite specification - known as and DVB-S boxes on satellite. satellite interactive terminals in some DVB remains a key facilitator for the quarters. Prof. Gunnar Stette, working for the European Space Agency, Peter MacAvock, Executive Director digital television industry. In the face of the collapse of ITV Digital and Quiero, explains recent developments in the Issue 2 of DVB Scene comes to you in DVB technology remains a shining area, and there are articles outlining the face of difficult times in the digital example of how a co-ordinated the impact that the specifications are television industry in Europe. This is approach to digital TV delivery can likely to have on the industry. MHP particularly so with the demise of the reap benefits. ITV Digital’s major remains a hot topic: Rainer Schäfer digital terrestrial pay-TV operators - ITV competitors are NTL on cable (using (IRT) outlines the MHP Test Suite Digital in the UK and Quiero TV in DVB-C) and BSkyB on satellite (using development process, while Jud Cary Spain. Failures of this magnitude will DVB-S). The content providers are able (CableLabs) guides us through the have a serious impact on the industry - to furnish content either for the DTT thorny field of intellectual property perhaps causing some change in platform, cable or satellite platforms, rights. direction on the part of regulators, but and other elements of the industry We hope you like this edition of DVB DVB-SCENE : 02 digital terrestrial TV (DTT) will carry on benefit from the cross-platform Scene. Our aim is to provide the - it has to. interoperability. As the free-to-air industry with up-to-date news on DVB A recent study by the European services in the UK shared common issues. Should you have comments or Broadcasting Union indicates that elements with the Pay-TV operator, e.g. suggestions for improving the content almost all European countries will have SI generation (Service Information), of DVB Scene, please don’t hesitate to DTT by 2005. It is unclear which there will need to be some revisions to contact us. Gunnar Stette GUNNAR STETTE CHAIRMAN DVB-RCS REPORTS ON THE CURRENT STATUS OF THE STANDARD DVB-RCS, interactive digital Internet access to their citizens towards The first version of the RCS system broadcasting with return channel via effective broadband and higher was based on the use of transparent satellite, can be seen as the long bandwidth networks. satellite transponders, of the “bent distance version of the very successful DVB-RCS is based on the very pipe” type, for the return direction. With WLAN (Wireless Local Area Network) successful digital TV broadcasting the general expansion of broadband systems of different types which are system via satellite, DVB-S. Digital systems, also systems using satellite, expanding rapidly, and where the broadcasting systems with return new satellite terminals are being provision of Internet services is the channels via different transmission developed. It is in everybody’s interest main driving force. media have been standardised within to harmonise the terminals and to The RCS systems provide broadband the DVB ETSI framework, and RCS, obtain any synergy that can be access independently of the local the last member of that family, can be achieved between different systems. infrastructure and are therefore implemented by an incremental The synergetic effects of this can result available universally, something that is investment to the existing systems. in a wider market with lower terminal recognised by governments and the costs. A new version of the standard has EU. National governments are keenly been produced on by the ad-hoc group Without going into details it can be aware of the need to provide universal and approved by the DVB Technical mentioned that additional elements broadband access, and are constantly Module. There are two significant have been incorporated into the first seeking ways to remove the digital changes in this new version of the version of the signalling system of divide. Many governments have targets standard whilst ensuring full backwards RCS. One is to define a destination in place for the provision of universal compatibility. forward link in a regenerative system C. Elia - ESA, M. Gouta - ESA, V. Foix - CNES, E. Weller - Eutelsat, J. R. Lopez - Hispasat, M. Battihka - Intelsat, J. Krause - SES-Astra, B. R. Anderson - Telenor, D. Mignolo - Alenia Spazio, Ch. Rigal - ASPI, S. Defever - Astrium DVB-RCS TERMINALS FOR REGENERATIVE SATELLITE MULTIMEDIA SYSTEMS DVB Return Channel via Satellite bands, multi-spot coverage areas and (DVB-RCS) forms the specification for high-speed digital signal processing on the provision of the interaction channel board the satellite. for GEO satellite interactive networks Following the emergence in Europe of with fixed return channel satellite a number of proprietary Regenerative terminals (RCST). The standard, Satellite Multimedia Systems (Skyplex, developed under the auspices of the Domino II, Web/West, Euroskyway) in DVB Forum, was created through the 1999 ESA took the lead to study cooperation of satellite operators and possible ways to facilitate convergence satellite equipment manufactures, of different systems towards a common including system providers, hub standard by harmonising the manufacturers and terminal Regenerative Satellite Access manufacturers. Companies from Terminals (RSATs). Europe, North America and the Middle AHG-RSAT reviewed a number of On ESA’s initiative, and with the East have been involved in this activity. reference models, service cooperation of the main interested DVB-RCS may well become a global requirements and system architectures parties, the Ad-Hoc Group (AHG- satellite standard that allows equipment for RSMS, typically featuring not only RSAT) was created with the aim of DVB-SCENE : 03 manufacturers to focus on the same on-board signal regeneration, but also developing recommendations that technical solution, thus providing a packet or circuit switching between could form the basis for standards for healthy and open competitive beams. satellite terminals to be designed to environment, providing enormous Star and mesh network topologies were operate within a variety of Regenerative benefits to industry and users alike. considered. The connectivity topologies Satellite Multimedia Systems (RSMS). span from point-to-point or multipoint- In recent years, the multimedia The basis of the technical work was the to-multipoint (physical or link or network revolution has created a huge demand DVB-RCS ETSI Standard. for high-speed connections to the layer) scenarios to point-to-multipoint Members of the AHG-RSAT group network. Satellite systems have been (including broadcasting) and multipoint- include ESA, a number of satellite designed to respond to such demand. to-point. operators (EUTELSAT, Hispasat, In particular, Regenerative Satellite The main result is the full convergence Intelsat, SES-Astra, Telenor), certain Systems will constitute the next among a number of initially different satellite system designers (Alcatel generation of telecommunication systems on the use of one and the Space Industries, Alenia Spazio, satellites. They will provide very high same ‘harmonised’ terminal. Astrium) and the French space agency speed Internet connections to Furthermore, the terminal CNES. European Commission and corporate and consumer users characteristics are based on the ETSI were invited as observers. equipped with small (60-80cm existing DVB-RCS. This means that the Membership of the group was on a diameter) antenna terminals. This is economies of scale are even greater. voluntary basis. achieved by employing high-frequency and another is to include an element to A detailed description of the new the market. identify the capability of a terminal to elements will be provided in the revised The lower limit for the symbol rate, support dynamic connectivity. Guideline Document, and the technical mentioned in the informative Annex of work is expected to be finalised at an The modifications to the standard the first version of EN 301 790, was RCS meeting in mid 2002. address the use of RCSTs for return 128k symbols per second. When channels in the DVB system with One modification of the standard is that transmit power is related to the symbol regenerative satellites, but at the same it is symbol rate independent. That rate, a rate reduction could lead to time incorporate some “hooks” that means that the system designers may lower transmit power and consequently would allow development of terminals specify, and the equipment to lower power amplifier cost. This is for operation in meshed networks. The manufacturer must declare, the range noteworthy since cost of the power incorporation of these hooks at this of symbol rates over which the amplifier in the outdoor unit of the stage does not create any backwards terminals are capable of operating. The terminal is significant.
Recommended publications
  • Towards an IP/GSE-Only Signalling Framework for DVB Transmission Systems
    Towards an IP/GSE-Only Signalling Framework for DVB Transmission Systems Nimbe L. Ewald and Gorry Fairhurst Electronics Research Group, Department of Engineering, University of Aberdeen, AB24 3UE, UK {n.l.ewald,g.fairhurst}@abdn.ac.uk Abstract. An Internet Protocol/Generic Stream Encapsulation (IP/GSE) signal- ling framework is proposed to replace the current MPEG-2 Transport Stream (TS) Table-based signalling system and to enable smoother convergence of Digital Video Broadcasting (DVB) transmission systems and IP networks. GSE suitability is explained and a review of IP-based signalling techniques is pre- sented in order to select the optimal candidate methods for this architecture. Keywords: GSE, DVB, IP signalling, MPEG-2 TS Tables. 1 Introduction IP-based signalling procedures for content metadata currently take place in DVB networks, e.g. acquisition of an Electronic Service Guide (ESG) in a DVB-H system. However, the signalling for network metadata is still being performed through MPEG-2 encoded Tables conveyed by the TS even though the second generation of DVB systems can also support the Generic Stream (GS). The GS is expected to be used for IP-based services, where IP packets can be en- capsulated using the Generic Stream Encapsulation (GSE) protocol [1]&[2] as an adaptation layer that provides efficient IP packet encapsulation and fragmentation. In current network signalling, two sets of MPEG-2 encoded Tables are necessary for DVB system signalling, the Program Specific Information (PSI) and the System Information (SI) defined by MPEG and DVB, respectively. Tables are segmented in Sections, directly encapsulated in TS packets and sent with high repetition rates (e.g.
    [Show full text]
  • Design Issues for the Generic Stream Encapsulation (GSE) of IP Datagrams Over DVB-S2
    This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 3143 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Archive Toulouse Archive Ouverte To cite this document: CANTILLO Juan, LACAN Jérôme, BURET Isabelle, ARNAL Fabrice. Design issues for the Generic Stream Encapsulation (GSE) of IP datagrams over DVB-S2. In: International Workshop on Satellite and Space Communications (IWSSC'07), 13-14 Sep 2007, Salzburg, Austria. IEEE, 2007, pp. 276-280. Any correspondence concerning this service should be sent to the repository administrator: [email protected] Design Issues for the Generic Stream Encapsulation (GSE) of IP Datagrams over DVB-S2 Juan Cantillo∗ Jer´ omeˆ Lacany Isabelle Buretz Fabrice Arnalz ∗TeSA/Thales´ Alenia Space, Univ. of Toulouse, France yENSICA/TeSA/LAAS,´ Univ. of Toulouse, 1, place E. Blouin, 31056 Toulouse Cedex, France zThales Alenia Space, 26, avenue J.F. Champollion, B.P. 1187, 31037 Toulouse Cedex 1 - France Email: [email protected], [email protected], fIsabelle.Buret, [email protected] Abstract—The DVB-S2 standard has brought an unprece- to fully exploit its enhanced capacity, reliability and flexibility. dented degree of novelty and flexibility in the way IP datagrams or other network level packets can be transmitted over DVB The purpose of this paper is to expose the rationale behind satellite links, with the introduction of an IP-friendly link layer -the continuous Generic Streams- and the adaptive combination the original design choices made for GSE under the lights of of advanced error coding, modulation and spectrum management DVB-S2’s new features, explaining GSE’s new approach for techniques.
    [Show full text]
  • Analysis and Implementation of Encapsulation Schemes for Baseband Frame of DVB-S2 Satellite Modulator
    International Journal of Computer Applications (0975 – 8887) Volume 120 – No.1, June 2015 Analysis and Implementation of Encapsulation Schemes for Baseband Frame of DVB-S2 Satellite Modulator Tejashri D. Ghadge Pinakin P. Thaker Jayshree M. Kundargi P.G. Student Sr. Scientist Associate Professor K.J. Somaiya College of SAC -ISRO K.J. Somaiya College of Engineering, Mumbai-400077 Ahmedabad, India-380015 Engineering, Mumbai-400077 ABSTRACT In this paper, the implementation of framing for DVB-S2 This paper presents the analysis and implementation of modulator is investigated. In Section 2, the encapsulation encapsulation schemes for baseband frame of DVB-S2 schemes viz. MPE, ULE and GSE that are used for the satellite modulator. As convergence is the main issue in framing are presented. Section 3 presents the comparisons of broadcast communications, encapsulation schemes enable the frame overhead and efficiency calculations. Section 4 is carriage of network layer packets over DVB networks in an devoted to the explanation of implementation methodology effective manner. In order to meet the requirements of and results. The final conclusions are drawn in section 5. different complex stages of the DVB-S2 baseband signal flow, the presented encapsulation schemes are efficient. 2. ENCAPSULATIONS OVER DVB-S2 Efficiency of encapsulation schemes under different criteria of 2.1 MPEG-2 Transmission Networks DVB-S2 baseband frame is calculated. The baseband frame is DVB broadcast networks are part of MPEG-2 transmission first simulated & implemented on Xilinx ISE software tool for networks. These networks utilize the MPEG-2 Transport hardware realization. The framing model is tested on Zynq Stream (TS) as a common mechanism for combining based Xilinx Field programmable Gate array (FPGA) elementary video, audio, and auxiliary data streams of Development Platform.
    [Show full text]
  • XLV Express 19 Inches Product Brochure
    VBox XLV-Express 19” a Cost-effective TV Gateway DTV Receiver DVS-S/S2/T/C (MPEG2&4) - IP over DVB Highlights Overview XLV_Express Up To 4 Tuners The XLV devices integrate Capabilities of reception DTV (MPEG 4 DVBS/S2 or 2DVBS/S2 & 2DVBT/C 2/4) & Data Casting (IP over DVB) and streaming over IP Up to 8 Channels Reception DTV (MPEG 2/4) and streaming over IP XLV Express X 2 Up to 8 Tuners The XLV combines reception of satellite DTV broadcasts and Up to 16 Channels streaming over IP. It is a perfect solution for streaming SD&HD/TV broadcasts over IP networks for a whole gamut of purposes, Support Up to 4 CAM including: Enterprise TV, Business TV, Digital signage, entertainment and Cost-effective DVB-S/T/C TV - Gateway e-learning, MPEG 2&4 over IP streaming Data Casting (IP over DVB) Capabilities Stream live channels over IP from 8 The XLV devices allow you to receive IP Data over DVB and transponders. transmit through your network IP as data packets, unrelated to the video and audio transmissions being received and transmitted Data casting (IP over DVB) simultaneously. This feature enhances the usefulness of the XLV-4 capabilities devices for inter- and intra-organizational network communications. Transport Stream Plug & Play Network Setup de-multiplexing, de-scrambling, and PID UPnP protocol makes easy to be connected in the IP environment filtering Standard: Transport Stream (TS) 16 programs in TS/UDP/IP MPEG 2&4 -over-IP streaming Announcement using SAP: automatic channel list no search needed Multicast and Unicast UDP streaming Web Interface An easy-to-use HTML interface makes the setup and management of UPnP ~ DNLA 1.5 Server the XLV device intuitive and straightforward.
    [Show full text]
  • Fusion of Digital Television, Broadband Internet and Mobile Communications
    Fusion of Digital Television, Broadband Internet and Mobile Communications Part I of II: Enabling Technologies F.L.C. Ong1, X. Liang1, P.M.L. Chan1, G. Koltsidas2, F.N. Pavlidou2, N. Celandroni3, E. Ferro3, A. Gotta3, H. Cruickshank4, S. Iyengar4, G. Fairhurst5, V. Mancuso6 1University of Bradford, UK 2Aristotle University of Thessaloniki, Greece 3 ISTI-CNR (National Research Council), Italy 4University of Surrey, UK 5University of Aberdeen, UK 6University of Rome “Tor Vergata”, Italy SUMMARY The introduction of digital video broadcasting (DVB) satellite systems has become an important tool for future mobile communication and is currently a focus in several research areas such as the integration of DVB satellite systems with different wireless technologies. This tutorial consists of two parts, Enabling Technologies and Future Service Scenarios, which aims to provide an introduction to the current state-of-the art of Digital Video Broadcasting standards over satellite and its fusion with mobile and Internet technologies. This paper, Enabling Technologies, focuses on providing an overview of the different technologies and issues that facilitates better understanding of the current and future operational scenarios, whereas the second paper, Future Service Scenarios will emphasise future research directions in this research area. In the first part, the paper will initially be focused on the introduction of different DVB satellite systems, i.e. DVB-via satellite (DVB-S), DVB return channel by satellite (DVB-RCS) and Second-generation DVB system for broadband satellite services (DVB-S.2). This is then followed by a description of the different internet protocol (IP) technologies used to support macro and micro- mobility and the migration strategies from IP version 4 (Ipv4) to IP version 6 (IPv6).
    [Show full text]
  • Perfonnance Evaluation of Unidirectional Lightweight Encapsulation Usin G Ns-2 and DVB-S Testbed
    Proceedings of the 2007 IEEE lnternational Conference on Telecommunications and Malaysia Intemational conference on communications, l4-17 May 2007, penang, Malaysia Perfonnance Evaluation of Unidirectional Lightweight Encapsulation usin g ns-2 and DVB-S TestBed Way-Chuang Angr, Chee-Hong Teh2, Tat-Chee Wan3, Rahmat Budiartoa Network Research Group School of Computer Science Universiti Sains Malaysia 11800, Minden, Penang. Malavsia {wcangr, chteh2, tcwan:, t at trrttn y g* g. cs.usm.my used to define the standard for high qualrty video and audio Absttact-Unidirectional Ughtweight Encapoulation (ULE) is a compression which is applicable to high quality real-time recently published standard to overcome the elliciency problems conferences. The MPEG-2 standard defines a method for of Multi-Protocol Encapsulation for satellite data transmission. multiplexing different elunentary stream t5pes to form a This paper presents a comparative study of Unidirectional Transport Steam (TS) used in bnoadcasting systerns. This paper Lightweight Encapsulation performance using ns-2 simulation [ll studied the performance and a DVB-S testbed. Performance metrics such link ufitizatisa, of IP traffic over DVB Transport packet loss and latency were taken. It was found that the results of Streams. MPEG-2 TS was desigrred for tanqporting MpEG-2 both approaches were comparable over unreliable media where errms usually occur. The TS is a stream that consists of consecutive and relatively short Index Termy-I)VB, IP over MpEG-2 TS, MpE. ULE fixed-length packets. The packet length for MPEG-2 TS is 188 bytes. Each TS packet structure starts with a4-bytefixed length I. INrRooucnoN TS header, followed by a 184-byte optional adaptation field and pgyload atellite communications play a vital role in providing as shown in Figgt?le6 communication links to geographically remote sites.
    [Show full text]
  • Secure IP Over Satellite DVB Using Chaotic Sequences Daniel Caragata, Safwan El Assad, Bassem Bakhache, Ion Tutanescu
    Engineering Letters, 18:2, EL_18_2_04 ______________________________________________________________________________________ Secure IP over Satellite DVB Using Chaotic Sequences Daniel Caragata, Safwan El Assad, Bassem Bakhache, Ion Tutanescu 1 platforms, isolated villages etc.), easy implementation in Abstract - Satellite connections are expected to play an disaster stricken zones (areas affected by earthquakes, fire, important role in providing Internet Protocol services as a war etc.) or an alternative to land infrastructures. These are complement of the next generation terrestrial network. DVB-S the reasons why the satellites have gained a very important (Digital Video Broadcasting – Satellite) is one of the most widely used standards to transmit video, audio and data over satellite. place in today’s communication systems and are supposed to This paper proposes a security system for IP over DVB-S that be a very important part of the next generation Internet satisfies all the security requirements while respecting the architecture. characteristics of satellite links, such as the importance of Nowadays the Internet is the most important communication efficient bandwidth utilization and high latency time. The usage network as it has become very widespread (more that 20% of of chaos is proposed both for the generation of new keys and for world population is using it [1]) and the services it may the data encryption. support are very diverse: news, shopping, bank accounts A theoretical analysis of the system and a simulation of FTP and HTTP traffic are presented and discussed to show the cost access, money transfer, video and audio conferencing etc. of the security enhancement and to provide the necessary tools DVB-S [14] is an open standard ratified by European for security parameters setup.
    [Show full text]
  • Impact of ROHC on IP Encapsulation Efficiency in a DVB-S2 GSE-Only Transmission System
    2010 5th Advanced Satellite Multimedia Systems Conference and the 11th Signal Processing for Space Communications Workshop Impact of ROHC on IP encapsulation efficiency in a DVB-S2 GSE-only transmission system N.G. Ninan, N.L. Ewald and G. Fairhurst Electronics Research Group University of Aberdeen Aberdeen, UK Abstract— The 2nd generation of Digital Video Broadcasting for Return Channel for Satellite (RCS) [12] also benefit from this Satellite (DVB-S2) standards allows the direct transmission of IP GSE-only approach, as discussed in section V. content using the Generic Stream Encapsulation (GSE) protocol, replacing the existing Transport Stream (MPEG-2 TS). This The remainder of the paper is divided as follows: a description represents an evolution from the two current encapsulation of the current DVB-S2 encapsulation methods is given in methods: the native use of the Packetized Elementary Stream section II. GSE and ROHC are briefly reviewed together with, (PES) over TS for MPEG-2 encoded applications and, the use of an envisaged GSE-only framework and its potential benefits adaptation protocols such as the Multi-Protocol Encapsulation are discussed in section III. The impact of ROHC on IP (MPE) and the Unidirectional Lightweight Encapsulation (ULE) encapsulation efficiency for the proposed GSE-only over TS for IP-based MPEG-4 encoded content. This paper architecture is shown in section IV. Then, the use of ROHC on reviews this evolution and analyses the overhead improvement DVB signalling metadata, the inclusion of security and GSE resulting from this IP-only architecture. This evaluation suitability for interactive systems (DVB-S2/RCS) are discussed considers the impact of using RObust Header Compression in section V.
    [Show full text]
  • Finding the Key to High Efficiency Video Coding
    No. Issue 36 DVBSCENE December 2010 The Technology Update from DVB www.dvb.org Finding the Key to High Efficiency Video Coding Catherine Douillard looks at the Erik Stare reports on the launch DVB-T2’s popularity spreads to 04 Other Uses for DVB Standards advantages of rotated constellations of HD with DVB-T2 in Sweden Thailand 06 ASBU’s use of DVB-S2 07Transmitting IP Data & GSE 10DVB-CSA3 11Analysis 13DVB-C2 Plugfest 05 12 14 15Market Watch I AM MORE THAN A SET-TOP BOX I AM INNOVATION. BY ADB. Contact ADB: [email protected] ADB_DVBscene_A4_HYBRID_02_10.indd 1 17/2/10 11:17:04 Outstanding Achievement A Word From The DVB Project Office As I write these lines, I am more than a lot of market interest in DVB-C2, pleasantly surprised by the success of which strongly indicates that our latest DVB-T2. After the successful rollout cable standard will be as successful as its in the UK, Sweden has now officially elder siblings. The overwhelming market launched its own DVB-T2 HD services. acceptance of our second generation These will be soon followed by Finland. standards leads us to ask what will come Peter Siebert Outside of Europe, Sri Lanka will next? It seems as though there is always Executive Director leapfrog to DVB-T2 and other countries something coming up over the horizon like India and Kenya have released and requiring new specifications. What Efficiency Video Coding, or as it is known tenders for their T2 networks. could it be this time? In this issue of in its abbreviated form HEVC, will bring As Executive Director of the DVB DVB Scene you can read that a new video to DVB.
    [Show full text]
  • DTT and Wimax: Wireless Integrated Technologies for Digital Divide Issue Innovation in ICT
    DTT and WiMAX: Wireless Integrated Technologies for Digital Divide Issue Innovation in ICT DTT AND WIMAX: WIRELESS INTEGRATED TECHNOLOGIES FOR DIGITAL DIVIDE ISSUE Stefano Annese, Giovanni Ballocca, Andrea Ghittino, Daniele Peretto CSP Innovation in ICT – Turin Italy [email protected], [email protected], [email protected], [email protected] INTRODUCTION This paper briefly discusses the benefits provided by the convergence and integration of heteroge- neous technologies, such as WiMAX and digital television broadcasting. As described in more details in the following paragraphs, the technologies defined by the DVB consortium provide an effective means for addressing three different classes of services: • multimedia (audio/video) content distribution • application distribution • datacast (both to fixed and mobile user terminals). WiMAX technologies might easily provide means for wireless broadband return channel connec- tion. From a different point of view, the vertical integration of IP datacast techniques in DVB with the wireless networking technologies might foster the development of a new generation of services. DIGITAL TELEVISION OVERVIEW Digital Terrestrial Television is about to become the new frontier for entertainment and access to services for million of people. A revolution that is leading to the multiplication of the free-to-air TV offer with high audio-visual quality and interactive services. More in general, DTT is a technology that allows to use TV frequencies for the realization of new telematic networks typologies, broadcast oriented, with pervasive and broadband territorial cover- age. In fact DTT enables to regionalize the transmissions offering local structures, such as PAs (Public Administrations), the unique possibility to grant the access to their services through a prac- tical mean that is accessible to all.
    [Show full text]
  • DVB-H: Time to Commercialize
    DVB-H: Time to commercialize Mobile Monday Hong Kong March 2006 Juha Lipiainen Nokia Multimedia Mobile Media will become the 6th Medium Mobile Media 2000’s Internet - 1990’s Recordings - 1930’s Television - 1920’s 6 Radio - 1880’s 5 Printing press - 1400’s 4 3 2 1 Mobile TV Use Paradigms Live MobileTV “same content for everyone at same time” •Example: Streaming live TV service over 3G network •Example: DVB-H/IPDC based broadcast mobile TV •Example: MBMS upgrade to 3G for wider audience •Example: IP TV over WLAN Content synchronization On-demand video “taking my content with me services for later use” “specific content for me at request” Examples: •Subscription/scheduled Examples: download based video services •A mobile soap opera episode over cellular network (for off-line streamed over 3G network use) •Download music video content •Video synchronization from PC over cellular network to mobile device Urban area, Optimal environment for Mobile Broadcasting Enablers for Mobile Broadcasting & Mobile TV Digitalization of TV Broadcasting, minimum 5 x spectrum efficiency Spectrum released for new services: Mobile TV and HDTV (Standardisation and regulation needed) + Clear market need for Mobile TV Services, content exists No success earlier with analogue portable & pocket TV: separate device, bad video quality, large antenna, no billing DVB-H mechanism, etc + Key portable technologies available (2004-…) with acceptable cost Efficient video & audio compression (H.264), integration of OFDM radio technology, low power digital signal processing,
    [Show full text]
  • Physical Layer Statistical Multiplexing for the Second Generation Digital Terrestrial TV Standard DVB-T2
    Physical Layer Statistical Multiplexing for the Second Generation Digital Terrestrial TV Standard DVB-T2 Author: Jordi Puig Bou Director 1: David Gómez Barquero Director 2: Irek Defee Director 3: Narcís Cardona Marcet Start Date: 1/09/2010 Workplace: Mobile Communications Group of iTEAM and Signal Processing Department of Tampere University of Technology (TUT), Finland 1 Physical Layer Statistical Multiplexing for the Second Generation Digital Terrestrial TV Standard DVB-T2 Objectives — This thesis aims to develop a physical layer statistical multiplexing algorithm for the second generation of terrestrial TV standard, DVB-T2. This new service allocation method should take advantage of the advanced physical layer concept present in this new standard where it is possible to configure different physical layer modulation, coding and time interleaving per service. With this new statistical concept of physical layer statistical multiplexing efficient bandwidth utilization and service buffering reduction are achieved. Methodology — The new physical layer statistical multiplexing algorithm is compared with the traditional statistical multiplexing methods and also with fixed multiplexing methods in order to study the potential gain in terms of bandwidth saving or service number transmission. The evaluation is done over a DVB-T2 simulation platform that performs all the transmission chain until the modulators, including since the video content generation until the service allocation. These simulations take place under typical DVB-T2 deployed scenarios to make more practical the results. Theoretical developments — A previous multiplexing techniques study has been performed before designing the physical layer statistical multiplexing algorithm. These techniques have been developed for the first generation of DVB standards and were designed to work with upper layer packets to perform the scheduling.
    [Show full text]