Impact of ROHC on IP Encapsulation Efficiency in a DVB-S2 GSE-Only Transmission System

Total Page:16

File Type:pdf, Size:1020Kb

Impact of ROHC on IP Encapsulation Efficiency in a DVB-S2 GSE-Only Transmission System 2010 5th Advanced Satellite Multimedia Systems Conference and the 11th Signal Processing for Space Communications Workshop Impact of ROHC on IP encapsulation efficiency in a DVB-S2 GSE-only transmission system N.G. Ninan, N.L. Ewald and G. Fairhurst Electronics Research Group University of Aberdeen Aberdeen, UK Abstract— The 2nd generation of Digital Video Broadcasting for Return Channel for Satellite (RCS) [12] also benefit from this Satellite (DVB-S2) standards allows the direct transmission of IP GSE-only approach, as discussed in section V. content using the Generic Stream Encapsulation (GSE) protocol, replacing the existing Transport Stream (MPEG-2 TS). This The remainder of the paper is divided as follows: a description represents an evolution from the two current encapsulation of the current DVB-S2 encapsulation methods is given in methods: the native use of the Packetized Elementary Stream section II. GSE and ROHC are briefly reviewed together with, (PES) over TS for MPEG-2 encoded applications and, the use of an envisaged GSE-only framework and its potential benefits adaptation protocols such as the Multi-Protocol Encapsulation are discussed in section III. The impact of ROHC on IP (MPE) and the Unidirectional Lightweight Encapsulation (ULE) encapsulation efficiency for the proposed GSE-only over TS for IP-based MPEG-4 encoded content. This paper architecture is shown in section IV. Then, the use of ROHC on reviews this evolution and analyses the overhead improvement DVB signalling metadata, the inclusion of security and GSE resulting from this IP-only architecture. This evaluation suitability for interactive systems (DVB-S2/RCS) are discussed considers the impact of using RObust Header Compression in section V. Finally, section VI provides the conclusions and (ROHC) on the efficiency for DVB-S2 IP/GSE-only transmission. future work. Keywords: GSE, MPEG-2, MPEG-4, ROHC, DVB-S2 II. CURRENT ENCAPSULATION METHODS I. INTRODUCTION The two current A/V encapsulation methods defined for DVB for satellite systems are described in this section. The 1st generation of Digital Video Broadcasting for Satellite (DVB-S) standards [1] adapts variable sized Audio-Visual (A/V) payload units and encapsulated Protocol Data Units A. MPEG-2/PES/TS. (PDUs) to fixed-size 188 B packets. Currently, two Fig. 1 shows the native protocol stack for A/V encapsulation st encapsulation methods are used in DVB-S and DVB-S2 for the 1 generation of DVB for satellite applications (DVB- transmission systems: MPEG encoded A/V is usually sent in S) [1]. This encapsulation may also be used in DVB-S2 Packetized Elementary Streams (PES) over TS but may also be systems. The shadowed layer in Figure 1 represents the Link sent as IP datagrams using the Real Time Protocol, Layer (LL) transmission system. encapsulated with Multi-Protocol Encapsulation (MPE) [6] or Unidirectional Lightweight Encapsulation (ULE) [7] over TS. The paper considers MPEG-2 Main Profile video using the PES format and compares this with IP-based transmission using MPEG-4. The resulting overhead is a trade-off with the benefits of MPEG-4 [8] and IP transmission. Over 100 million DVB-S receivers have now been deployed worldwide nd The 2 generation of DVB for Satellite standards (DVB-S2) Figure 1. A/V MPEG-2 TS protocol stack. [2] defines a Generic Stream Encapsulation (GSE) protocol [3]&[4] in addition to the native TS [5]. GSE allows the direct The MPEG-2 A/V specifications [5] describe the mechanisms, encapsulation of different sizes of PDU, saving the overhead syntax and semantics to encode elementary streams. Each from the adaptation protocol when using IP. The paper reviews stream is encapsulated in variable-length (up to 64 KB) this TS to GSE envisaged encapsulation evolution, considering Packetized Elementary Stream (PES) data units with a 6 B also the enhancements in capacity provided by MPEG-4 header. The PES is fragmented to fit the 184 B TS packet combined with DVB-S2 technologies. payload. MPEG-2 has been adopted as an industry standard for It is desirable that any IP encapsulation method for DVB-S2 TV (including 16:9 and HDTV). Current, bit rates for MPEG-2 achieves similar or higher efficiency than that of the native TS. encoded HDTV services are between 13 and 19 Mbps [13]. Therefore, header compression methods such as Robust Header In DVB-S [1], the MPEG TS packets are grouped into 8 packet Compression (ROHC) [9]-[11] are considered in this context. frames (1503 B). Reed Solomon (RS) coding is added to each The main focus of this paper is a unidirectional broadcast TS packet to provide Forward Error Correction (FEC) using a scenario. Although, DVB-S2 interactive systems using the RS (204,188,8) code. For satellite, the resultant bit stream is This work is partially funded by the European Space Agency (ESA) contract 22471/09/NL/AD. 978-1-4244-6833-1/10/$26.00 ©2010 IEEE 484 then interleaved and convolutional coding applied at a rate of MPEG-4 A/V frames are encapsulated using the Real-time 1/2 to 7/8, depending on the intended application and available Transport Protocol (RTP) and User Datagram Protocol (UDP) bandwidth. The digital bit stream is then modulated using into IP packets, adding 12, 8 and 20 B (for IPv4) headers, QPSK modulation. DVB-S is widely deployed. respectively. DVB-S2 systems typically present a 20-35% capacity increase MPEG-4 encoded services over IP are adapted to the TS using over DVB-S due to the powerful FEC scheme based on the MPE [6] or ULE [7]. MPE builds upon the MPEG-2 Part 6 concatenation of Bose-Chaudhuri-Hocquengham (BCH) with standard and is a widely deployed for IP encapsulation over Low Density Parity Check (LDPC) inner coding and the four DVB. Its minimum header is 12 B (plus a CRC-32) while its modulation modes available, QPSK, 8PSK, 16 PSK and 32 maximum payload size is typically 4 KB (1 KB in some APSK [2]. Future systems can use this to support Adaptive systems). However, it does not support IPv6 or ROHC without Coding Modulation (ACM) allowing transmission parameters an additional 8 B LLC/SNAP header. to be changed on a frame-by-frame basis for point-to-point ULE [7] is an IETF protocol that adds a minimum 4 B base interactive applications. The different modulation and coding modes results in 21 frame payload sizes, Data Frame Lengths header (plus a CRC-32), allows transport of IPv6 packets (in addition to IPv4 packets) without additional overhead and (DFL), in the BBFrame. supports a maximum payload of 32 KB. ULE has 3 fields in its Then, the number of TS packets per BBFrame depends on the base header in contrast to 18 of MPE and defines extension selected coding and modulation modes. Native TS headers to carry additional information; these two features encapsulation adds the PES and TS headers and, in the case of assist in improving network/receiver-processing efficiency. DVB-S2, padding, if the DFL length is not a multiple of the 188 B. The encapsulation efficiency is impacted by the MPE/ULE packets are fragmented and placed in TS packets, for transmission over DVB-S/S2 systems. The encapsulation fragmentation of PES into TS packets. overhead is respectively at least 56 B and 48 B per IP packet The impact of DVB-S2 systems on HDTV transmission can be for MPE and ULE (without a destination receiver address) in illustrated by considering a 19 Mbps HDTV MPEG-2 encoded addition to the TS headers and padding (if necessary in the service and a typical 36 MHz satellite channel with respective DVB-S2 frame). This overhead needs to be mitigated so the bit rates of 44.4 and 58.8 kbps for DVB-S and DVB-S2 using advantages of MPEG-4 and DVB-S2 are not overweighing by QPSK 7/8 and 8PSK 2/3 [14]. Two HDTV channels can be poor efficiency. allocated per transponder in DVB-S systems while up to three of these services can be transmitted by a DVB-S2 system. Several research papers have been published on encapsulation efficiencies offered by MPE & ULE [19]. B. MPEG-4/RTP/UDP/IP/MPE(ULE)/TS In line with the previous HDTV example, if we consider a Fig. 2 shows the protocol stack defined for DVB-S2 using current bit rate of 13 Mbps for MPEG-4 encoded HDTV MPEG-4 video and IP transmission. IP-based transmission is services, three and four HDTV channels can be allocated per attractive to allow convergence with Internet and also to allow transponder for DVB-S and DVB-S2 systems, respectively. extending the reach of TV over home/commercial packet Thus, the higher efficiencies achieved by MPEG-4 and DVB- networks. It also accommodates multiplexing of other IP-based S2 can double the transmission capacity for TV services, services. compared to MPEG-2/DVB-S transmission. This significant improvement has been used to justify commercial deployment of the new system. III. A DVB-S2 IP/GSE-ONLY TRANSMISSION SYSTEM In this section, the envisaged GSE-only system is reviewed and, GSE and ROHC are briefly described. The envisaged DVB-S2 GSE-only system is shown in Fig. 3. DVB-S2 specification foresees the possibility of converged IP- based transmission that supports both broadcast applications and broadband access service by adopting a common IP-based infrastructure. The use of IP allows common use of IP delivery Figure 2. MPEG-4 A/V over MPEG-2 TS protocol stack. techniques at the receiver, presenting new opportunities for integrating broadcast content with standard IP applications.
Recommended publications
  • Towards an IP/GSE-Only Signalling Framework for DVB Transmission Systems
    Towards an IP/GSE-Only Signalling Framework for DVB Transmission Systems Nimbe L. Ewald and Gorry Fairhurst Electronics Research Group, Department of Engineering, University of Aberdeen, AB24 3UE, UK {n.l.ewald,g.fairhurst}@abdn.ac.uk Abstract. An Internet Protocol/Generic Stream Encapsulation (IP/GSE) signal- ling framework is proposed to replace the current MPEG-2 Transport Stream (TS) Table-based signalling system and to enable smoother convergence of Digital Video Broadcasting (DVB) transmission systems and IP networks. GSE suitability is explained and a review of IP-based signalling techniques is pre- sented in order to select the optimal candidate methods for this architecture. Keywords: GSE, DVB, IP signalling, MPEG-2 TS Tables. 1 Introduction IP-based signalling procedures for content metadata currently take place in DVB networks, e.g. acquisition of an Electronic Service Guide (ESG) in a DVB-H system. However, the signalling for network metadata is still being performed through MPEG-2 encoded Tables conveyed by the TS even though the second generation of DVB systems can also support the Generic Stream (GS). The GS is expected to be used for IP-based services, where IP packets can be en- capsulated using the Generic Stream Encapsulation (GSE) protocol [1]&[2] as an adaptation layer that provides efficient IP packet encapsulation and fragmentation. In current network signalling, two sets of MPEG-2 encoded Tables are necessary for DVB system signalling, the Program Specific Information (PSI) and the System Information (SI) defined by MPEG and DVB, respectively. Tables are segmented in Sections, directly encapsulated in TS packets and sent with high repetition rates (e.g.
    [Show full text]
  • Design Issues for the Generic Stream Encapsulation (GSE) of IP Datagrams Over DVB-S2
    This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 3143 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Archive Toulouse Archive Ouverte To cite this document: CANTILLO Juan, LACAN Jérôme, BURET Isabelle, ARNAL Fabrice. Design issues for the Generic Stream Encapsulation (GSE) of IP datagrams over DVB-S2. In: International Workshop on Satellite and Space Communications (IWSSC'07), 13-14 Sep 2007, Salzburg, Austria. IEEE, 2007, pp. 276-280. Any correspondence concerning this service should be sent to the repository administrator: [email protected] Design Issues for the Generic Stream Encapsulation (GSE) of IP Datagrams over DVB-S2 Juan Cantillo∗ Jer´ omeˆ Lacany Isabelle Buretz Fabrice Arnalz ∗TeSA/Thales´ Alenia Space, Univ. of Toulouse, France yENSICA/TeSA/LAAS,´ Univ. of Toulouse, 1, place E. Blouin, 31056 Toulouse Cedex, France zThales Alenia Space, 26, avenue J.F. Champollion, B.P. 1187, 31037 Toulouse Cedex 1 - France Email: [email protected], [email protected], fIsabelle.Buret, [email protected] Abstract—The DVB-S2 standard has brought an unprece- to fully exploit its enhanced capacity, reliability and flexibility. dented degree of novelty and flexibility in the way IP datagrams or other network level packets can be transmitted over DVB The purpose of this paper is to expose the rationale behind satellite links, with the introduction of an IP-friendly link layer -the continuous Generic Streams- and the adaptive combination the original design choices made for GSE under the lights of of advanced error coding, modulation and spectrum management DVB-S2’s new features, explaining GSE’s new approach for techniques.
    [Show full text]
  • Analysis and Implementation of Encapsulation Schemes for Baseband Frame of DVB-S2 Satellite Modulator
    International Journal of Computer Applications (0975 – 8887) Volume 120 – No.1, June 2015 Analysis and Implementation of Encapsulation Schemes for Baseband Frame of DVB-S2 Satellite Modulator Tejashri D. Ghadge Pinakin P. Thaker Jayshree M. Kundargi P.G. Student Sr. Scientist Associate Professor K.J. Somaiya College of SAC -ISRO K.J. Somaiya College of Engineering, Mumbai-400077 Ahmedabad, India-380015 Engineering, Mumbai-400077 ABSTRACT In this paper, the implementation of framing for DVB-S2 This paper presents the analysis and implementation of modulator is investigated. In Section 2, the encapsulation encapsulation schemes for baseband frame of DVB-S2 schemes viz. MPE, ULE and GSE that are used for the satellite modulator. As convergence is the main issue in framing are presented. Section 3 presents the comparisons of broadcast communications, encapsulation schemes enable the frame overhead and efficiency calculations. Section 4 is carriage of network layer packets over DVB networks in an devoted to the explanation of implementation methodology effective manner. In order to meet the requirements of and results. The final conclusions are drawn in section 5. different complex stages of the DVB-S2 baseband signal flow, the presented encapsulation schemes are efficient. 2. ENCAPSULATIONS OVER DVB-S2 Efficiency of encapsulation schemes under different criteria of 2.1 MPEG-2 Transmission Networks DVB-S2 baseband frame is calculated. The baseband frame is DVB broadcast networks are part of MPEG-2 transmission first simulated & implemented on Xilinx ISE software tool for networks. These networks utilize the MPEG-2 Transport hardware realization. The framing model is tested on Zynq Stream (TS) as a common mechanism for combining based Xilinx Field programmable Gate array (FPGA) elementary video, audio, and auxiliary data streams of Development Platform.
    [Show full text]
  • XLV Express 19 Inches Product Brochure
    VBox XLV-Express 19” a Cost-effective TV Gateway DTV Receiver DVS-S/S2/T/C (MPEG2&4) - IP over DVB Highlights Overview XLV_Express Up To 4 Tuners The XLV devices integrate Capabilities of reception DTV (MPEG 4 DVBS/S2 or 2DVBS/S2 & 2DVBT/C 2/4) & Data Casting (IP over DVB) and streaming over IP Up to 8 Channels Reception DTV (MPEG 2/4) and streaming over IP XLV Express X 2 Up to 8 Tuners The XLV combines reception of satellite DTV broadcasts and Up to 16 Channels streaming over IP. It is a perfect solution for streaming SD&HD/TV broadcasts over IP networks for a whole gamut of purposes, Support Up to 4 CAM including: Enterprise TV, Business TV, Digital signage, entertainment and Cost-effective DVB-S/T/C TV - Gateway e-learning, MPEG 2&4 over IP streaming Data Casting (IP over DVB) Capabilities Stream live channels over IP from 8 The XLV devices allow you to receive IP Data over DVB and transponders. transmit through your network IP as data packets, unrelated to the video and audio transmissions being received and transmitted Data casting (IP over DVB) simultaneously. This feature enhances the usefulness of the XLV-4 capabilities devices for inter- and intra-organizational network communications. Transport Stream Plug & Play Network Setup de-multiplexing, de-scrambling, and PID UPnP protocol makes easy to be connected in the IP environment filtering Standard: Transport Stream (TS) 16 programs in TS/UDP/IP MPEG 2&4 -over-IP streaming Announcement using SAP: automatic channel list no search needed Multicast and Unicast UDP streaming Web Interface An easy-to-use HTML interface makes the setup and management of UPnP ~ DNLA 1.5 Server the XLV device intuitive and straightforward.
    [Show full text]
  • Fusion of Digital Television, Broadband Internet and Mobile Communications
    Fusion of Digital Television, Broadband Internet and Mobile Communications Part I of II: Enabling Technologies F.L.C. Ong1, X. Liang1, P.M.L. Chan1, G. Koltsidas2, F.N. Pavlidou2, N. Celandroni3, E. Ferro3, A. Gotta3, H. Cruickshank4, S. Iyengar4, G. Fairhurst5, V. Mancuso6 1University of Bradford, UK 2Aristotle University of Thessaloniki, Greece 3 ISTI-CNR (National Research Council), Italy 4University of Surrey, UK 5University of Aberdeen, UK 6University of Rome “Tor Vergata”, Italy SUMMARY The introduction of digital video broadcasting (DVB) satellite systems has become an important tool for future mobile communication and is currently a focus in several research areas such as the integration of DVB satellite systems with different wireless technologies. This tutorial consists of two parts, Enabling Technologies and Future Service Scenarios, which aims to provide an introduction to the current state-of-the art of Digital Video Broadcasting standards over satellite and its fusion with mobile and Internet technologies. This paper, Enabling Technologies, focuses on providing an overview of the different technologies and issues that facilitates better understanding of the current and future operational scenarios, whereas the second paper, Future Service Scenarios will emphasise future research directions in this research area. In the first part, the paper will initially be focused on the introduction of different DVB satellite systems, i.e. DVB-via satellite (DVB-S), DVB return channel by satellite (DVB-RCS) and Second-generation DVB system for broadband satellite services (DVB-S.2). This is then followed by a description of the different internet protocol (IP) technologies used to support macro and micro- mobility and the migration strategies from IP version 4 (Ipv4) to IP version 6 (IPv6).
    [Show full text]
  • Perfonnance Evaluation of Unidirectional Lightweight Encapsulation Usin G Ns-2 and DVB-S Testbed
    Proceedings of the 2007 IEEE lnternational Conference on Telecommunications and Malaysia Intemational conference on communications, l4-17 May 2007, penang, Malaysia Perfonnance Evaluation of Unidirectional Lightweight Encapsulation usin g ns-2 and DVB-S TestBed Way-Chuang Angr, Chee-Hong Teh2, Tat-Chee Wan3, Rahmat Budiartoa Network Research Group School of Computer Science Universiti Sains Malaysia 11800, Minden, Penang. Malavsia {wcangr, chteh2, tcwan:, t at trrttn y g* g. cs.usm.my used to define the standard for high qualrty video and audio Absttact-Unidirectional Ughtweight Encapoulation (ULE) is a compression which is applicable to high quality real-time recently published standard to overcome the elliciency problems conferences. The MPEG-2 standard defines a method for of Multi-Protocol Encapsulation for satellite data transmission. multiplexing different elunentary stream t5pes to form a This paper presents a comparative study of Unidirectional Transport Steam (TS) used in bnoadcasting systerns. This paper Lightweight Encapsulation performance using ns-2 simulation [ll studied the performance and a DVB-S testbed. Performance metrics such link ufitizatisa, of IP traffic over DVB Transport packet loss and latency were taken. It was found that the results of Streams. MPEG-2 TS was desigrred for tanqporting MpEG-2 both approaches were comparable over unreliable media where errms usually occur. The TS is a stream that consists of consecutive and relatively short Index Termy-I)VB, IP over MpEG-2 TS, MpE. ULE fixed-length packets. The packet length for MPEG-2 TS is 188 bytes. Each TS packet structure starts with a4-bytefixed length I. INrRooucnoN TS header, followed by a 184-byte optional adaptation field and pgyload atellite communications play a vital role in providing as shown in Figgt?le6 communication links to geographically remote sites.
    [Show full text]
  • Secure IP Over Satellite DVB Using Chaotic Sequences Daniel Caragata, Safwan El Assad, Bassem Bakhache, Ion Tutanescu
    Engineering Letters, 18:2, EL_18_2_04 ______________________________________________________________________________________ Secure IP over Satellite DVB Using Chaotic Sequences Daniel Caragata, Safwan El Assad, Bassem Bakhache, Ion Tutanescu 1 platforms, isolated villages etc.), easy implementation in Abstract - Satellite connections are expected to play an disaster stricken zones (areas affected by earthquakes, fire, important role in providing Internet Protocol services as a war etc.) or an alternative to land infrastructures. These are complement of the next generation terrestrial network. DVB-S the reasons why the satellites have gained a very important (Digital Video Broadcasting – Satellite) is one of the most widely used standards to transmit video, audio and data over satellite. place in today’s communication systems and are supposed to This paper proposes a security system for IP over DVB-S that be a very important part of the next generation Internet satisfies all the security requirements while respecting the architecture. characteristics of satellite links, such as the importance of Nowadays the Internet is the most important communication efficient bandwidth utilization and high latency time. The usage network as it has become very widespread (more that 20% of of chaos is proposed both for the generation of new keys and for world population is using it [1]) and the services it may the data encryption. support are very diverse: news, shopping, bank accounts A theoretical analysis of the system and a simulation of FTP and HTTP traffic are presented and discussed to show the cost access, money transfer, video and audio conferencing etc. of the security enhancement and to provide the necessary tools DVB-S [14] is an open standard ratified by European for security parameters setup.
    [Show full text]
  • Finding the Key to High Efficiency Video Coding
    No. Issue 36 DVBSCENE December 2010 The Technology Update from DVB www.dvb.org Finding the Key to High Efficiency Video Coding Catherine Douillard looks at the Erik Stare reports on the launch DVB-T2’s popularity spreads to 04 Other Uses for DVB Standards advantages of rotated constellations of HD with DVB-T2 in Sweden Thailand 06 ASBU’s use of DVB-S2 07Transmitting IP Data & GSE 10DVB-CSA3 11Analysis 13DVB-C2 Plugfest 05 12 14 15Market Watch I AM MORE THAN A SET-TOP BOX I AM INNOVATION. BY ADB. Contact ADB: [email protected] ADB_DVBscene_A4_HYBRID_02_10.indd 1 17/2/10 11:17:04 Outstanding Achievement A Word From The DVB Project Office As I write these lines, I am more than a lot of market interest in DVB-C2, pleasantly surprised by the success of which strongly indicates that our latest DVB-T2. After the successful rollout cable standard will be as successful as its in the UK, Sweden has now officially elder siblings. The overwhelming market launched its own DVB-T2 HD services. acceptance of our second generation These will be soon followed by Finland. standards leads us to ask what will come Peter Siebert Outside of Europe, Sri Lanka will next? It seems as though there is always Executive Director leapfrog to DVB-T2 and other countries something coming up over the horizon like India and Kenya have released and requiring new specifications. What Efficiency Video Coding, or as it is known tenders for their T2 networks. could it be this time? In this issue of in its abbreviated form HEVC, will bring As Executive Director of the DVB DVB Scene you can read that a new video to DVB.
    [Show full text]
  • DTT and Wimax: Wireless Integrated Technologies for Digital Divide Issue Innovation in ICT
    DTT and WiMAX: Wireless Integrated Technologies for Digital Divide Issue Innovation in ICT DTT AND WIMAX: WIRELESS INTEGRATED TECHNOLOGIES FOR DIGITAL DIVIDE ISSUE Stefano Annese, Giovanni Ballocca, Andrea Ghittino, Daniele Peretto CSP Innovation in ICT – Turin Italy [email protected], [email protected], [email protected], [email protected] INTRODUCTION This paper briefly discusses the benefits provided by the convergence and integration of heteroge- neous technologies, such as WiMAX and digital television broadcasting. As described in more details in the following paragraphs, the technologies defined by the DVB consortium provide an effective means for addressing three different classes of services: • multimedia (audio/video) content distribution • application distribution • datacast (both to fixed and mobile user terminals). WiMAX technologies might easily provide means for wireless broadband return channel connec- tion. From a different point of view, the vertical integration of IP datacast techniques in DVB with the wireless networking technologies might foster the development of a new generation of services. DIGITAL TELEVISION OVERVIEW Digital Terrestrial Television is about to become the new frontier for entertainment and access to services for million of people. A revolution that is leading to the multiplication of the free-to-air TV offer with high audio-visual quality and interactive services. More in general, DTT is a technology that allows to use TV frequencies for the realization of new telematic networks typologies, broadcast oriented, with pervasive and broadband territorial cover- age. In fact DTT enables to regionalize the transmissions offering local structures, such as PAs (Public Administrations), the unique possibility to grant the access to their services through a prac- tical mean that is accessible to all.
    [Show full text]
  • DVB Issue 2 Final
    Edition No. 02 June 2002 DVB - SCENE Tune in to Digital Convergence Tune 02 The Standard for the Digital World This issue’s highlights > Report on the current status of DVB-RCS > DVB-S powering distance learning > Patent Pooling > MHP conformance testing > DVB-T in Tawain Push For > Product Bulletin Return TURBULENT TIMES FOR their arrangements, but there is no doubt that free-to-air will continue. At DIGITAL TELEVISION no time during the debate about why A word from the DVB Project Office business models are to be adopted, but ITV Digital or Quiero failed has the the failures in the UK and Spain will DVB-T technology underpinning the certainly provide food for further platforms been called into question. thought. One reassuring element is that On a lighter note, this issue of DVB receiver prices are now much lower Scene concentrates on three major than they were at the time of the UK areas. The first is recent developments launch, and thus in a better position to in the DVB’s powerful return channel compete with DVB-C boxes on cable satellite specification - known as and DVB-S boxes on satellite. satellite interactive terminals in some DVB remains a key facilitator for the quarters. Prof. Gunnar Stette, working for the European Space Agency, Peter MacAvock, Executive Director digital television industry. In the face of the collapse of ITV Digital and Quiero, explains recent developments in the Issue 2 of DVB Scene comes to you in DVB technology remains a shining area, and there are articles outlining the face of difficult times in the digital example of how a co-ordinated the impact that the specifications are television industry in Europe.
    [Show full text]
  • DVB-H: Time to Commercialize
    DVB-H: Time to commercialize Mobile Monday Hong Kong March 2006 Juha Lipiainen Nokia Multimedia Mobile Media will become the 6th Medium Mobile Media 2000’s Internet - 1990’s Recordings - 1930’s Television - 1920’s 6 Radio - 1880’s 5 Printing press - 1400’s 4 3 2 1 Mobile TV Use Paradigms Live MobileTV “same content for everyone at same time” •Example: Streaming live TV service over 3G network •Example: DVB-H/IPDC based broadcast mobile TV •Example: MBMS upgrade to 3G for wider audience •Example: IP TV over WLAN Content synchronization On-demand video “taking my content with me services for later use” “specific content for me at request” Examples: •Subscription/scheduled Examples: download based video services •A mobile soap opera episode over cellular network (for off-line streamed over 3G network use) •Download music video content •Video synchronization from PC over cellular network to mobile device Urban area, Optimal environment for Mobile Broadcasting Enablers for Mobile Broadcasting & Mobile TV Digitalization of TV Broadcasting, minimum 5 x spectrum efficiency Spectrum released for new services: Mobile TV and HDTV (Standardisation and regulation needed) + Clear market need for Mobile TV Services, content exists No success earlier with analogue portable & pocket TV: separate device, bad video quality, large antenna, no billing DVB-H mechanism, etc + Key portable technologies available (2004-…) with acceptable cost Efficient video & audio compression (H.264), integration of OFDM radio technology, low power digital signal processing,
    [Show full text]
  • Physical Layer Statistical Multiplexing for the Second Generation Digital Terrestrial TV Standard DVB-T2
    Physical Layer Statistical Multiplexing for the Second Generation Digital Terrestrial TV Standard DVB-T2 Author: Jordi Puig Bou Director 1: David Gómez Barquero Director 2: Irek Defee Director 3: Narcís Cardona Marcet Start Date: 1/09/2010 Workplace: Mobile Communications Group of iTEAM and Signal Processing Department of Tampere University of Technology (TUT), Finland 1 Physical Layer Statistical Multiplexing for the Second Generation Digital Terrestrial TV Standard DVB-T2 Objectives — This thesis aims to develop a physical layer statistical multiplexing algorithm for the second generation of terrestrial TV standard, DVB-T2. This new service allocation method should take advantage of the advanced physical layer concept present in this new standard where it is possible to configure different physical layer modulation, coding and time interleaving per service. With this new statistical concept of physical layer statistical multiplexing efficient bandwidth utilization and service buffering reduction are achieved. Methodology — The new physical layer statistical multiplexing algorithm is compared with the traditional statistical multiplexing methods and also with fixed multiplexing methods in order to study the potential gain in terms of bandwidth saving or service number transmission. The evaluation is done over a DVB-T2 simulation platform that performs all the transmission chain until the modulators, including since the video content generation until the service allocation. These simulations take place under typical DVB-T2 deployed scenarios to make more practical the results. Theoretical developments — A previous multiplexing techniques study has been performed before designing the physical layer statistical multiplexing algorithm. These techniques have been developed for the first generation of DVB standards and were designed to work with upper layer packets to perform the scheduling.
    [Show full text]