Tracker Slowlyñvery Slowlyñbegan the 2.4 Mile Trip from Its Birthplace in Lab 3 to Tracker Its Destination at the Heart of the Dzero Detector
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Btev Experiment: Physics and Detector
The BTeV Experiment: Physics and Detector FPCP 2003 K. Honscheid Ohio State University FPCP 2003 K. Honscheid Ohio State B Physics Today CKM Picture okay Vud Vus Vub VCKM = Vcd Vcs Vcb Vtd Vts Vtb CP Violation observed sin(2b) = 0.734 +/- 0.054 >1011 b hadrons No conflict with SM (including Bs) FPCP 2003 K. Honscheid Ohio State B Physics at Hadron Colliders Tevatron LHC Energy 2 TeV 14 TeV b cross section ~100 mb ~500 mb c cross section ~1000 mb ~3500 mb b fraction 2x10-3 6x10-3 Inst. Luminosity 2x1032 >2x1032 Bunch spacing 132 ns (396 ns) 25 ns Int./crossing <2> (<6>) <1> Luminous region 30 cm 5.3 cm Large cross sections Triggering is an issue All b-hadrons produced (B, Bs, Bc, b-baryons) FPCP 2003 K. Honscheid Ohio State Detector Requirements •Trigger, trigger, trigger •Vertex, decay distance •Momentum •PID FPCP 2003 K. Honscheid 0 Ohio State •Neutrals (g, p ) From F. Teubert Forward vs. Central Geometry Multi-purpose experiments require large solid angle coverage. Central Geometry (CDF, D0, Atlas, CMS) 100mb Dedicated B experiments can take 230mb advantage of Forward geometry (BTeV, LHCb) bg b production angle FPCP 2003 K. Honscheid b production angle Ohio State The BTeV Detector Beam Line FPCP 2003 K. Honscheid Ohio State Pixel Vertex Detector Reasons for Pixel Detector: • Superior signal to noise • Excellent spatial resolution -- 5-10 microns depending on angle, etc • Very Low occupancy • Very fast • Radiation hard Special features: • It is used directly in the L1 trigger • Pulse height is measured on every channel with a 3 bit FADC • It is inside a dipole and gives a crude standalone momentum Doublet FPCP 2003 K. -
Darwin Smith, Virtual Center, Illinois
I have been involved with the QuarkNet Virtual Center for 8 or 9 years. In that time I have had students display Cosmic Ray research at the Illinois Junior Science and Humanities Symposium and science fairs, through the Masterclass work with data from the Large Hadron Collider, and participate in video conferences with students from Mexico, China, New Zealand, the Philippines, and Japan. A QuarkNet mentor did a video conference with Hispanic students at a school where I formerly worked. My involvement with QuarkNet has provided me with content knowledge I would otherwise not have had, and as a non-physics major I probably would have considered it out of my reach. Thanks to my involvement in QuarkNet I learned of the summer program for teachers at CERN. After participating in that two summers ago, I now have physics teacher friends in more than 30 other countries, and many of us maintain contact through our CERN HST2016 Facebook page. I have also taken six classes of physics students to the Fermilab Open House where they conducted hands-on activities for younger children, followed by tours of Fermilab and Argonne Lab the next day. I would probably not have been invited to be part of that had it not been for my QuarkNet involvement. But because I am a part of QuarkNet, my students are exposed to world-class research facilities as well as feeling they are a part of something far beyond their small town and small science classroom. The photo is from last year's Masterclass; I think the other students were in China and the Philippines, and a third location had temporarily lost the connection. -
Fruit Collider
Fruit Collider https://xkcd.com/1949 LHC and Beyond Standard Model Physics July 22, 2016 1 Fixion https://xkcd.com/1621/ LHC and Beyond Standard Model Physics July 22, 2016 2 QuarkNet Summer Session for Teachers: The Standard Model and Beyond Allie Reinsvold Hall https://quarknet.org/content/quarknet-summer- session-teachers-2020 Summer 2020 LHC and Beyond Standard Model Physics July 22, 2016 3 Course overview What are the fundamental building blocks that make up our universe? Mission: overview of the past, present, and future of particle physics 1. History of the Standard Model, Part 1: Ancient Greeks to Quantum Mechanics 2. History of the Standard Model, Part 2: Particle zoo and the Standard Model 3. Particle physics at the Large Hadron Collider (LHC) 4. Beyond the Standard Model at the LHC 5. Neutrino physics 6. Dark matter and cosmology Goal: Bring you to whatever your next level of understanding is and provide resources for when you teach. Not everyone is at the same level and that’s okay. LHC and Beyond Standard Model Physics July 22, 2016 4 Loose ends – questions • What does “color” tell us about a particle? • Color is a quantum number (like spin or electric charge) that tells us how particles interact via the strong force. Can be thought of as “color charge” • Gluons interact with particles that have color charge; photons interact with particles that have EM charge. What about W/Z bosons? • W/Z bosons mediate the weak interaction • Z boson is charged and can also interact electromagnetically • How likely is it that the SM will -
Quarknet: a Unique and Transformative Physics Education Program
education sciences Article QuarkNet: A Unique and Transformative Physics Education Program Marjorie Bardeen 1,*, Mitchell Wayne 2 and M. Jean Young 3 1 Fermi National Accelerator Laboratory, Batavia, IL 60510, USA 2 Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA; [email protected] 3 M. J. Young and Associates, Tucson, AZ 85704, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-630-840-2031 Received: 29 December 2017; Accepted: 15 January 2018; Published: 19 January 2018 Abstract: The QuarkNet Collaboration has forged nontraditional relationships among particle physicists, high school teachers, and their students. QuarkNet centers are located at 50+ universities and labs across the United States and Puerto Rico. We provide professional development for teachers and create opportunities for teachers and students to engage in particle physics data investigations and join research teams. Students develop scientific knowledge and habits of mind by working alongside scientists to make sense of the world using authentic experimental data. Our program is based on a classroom vision where teaching strategies emulate closely the way scientists build knowledge through scientific and engineering practices. Program outcomes show that student engagement in research and masterclasses does develop an understanding of the process of scientific discovery and science. Teachers provide classroom environments that model scientific discovery and science practices and take advantage of opportunities to expand their involvement in the profession of science teaching. We describe success factors that enhance local center programs, and discuss important benefits of the program that flow on to the university faculty. Keywords: professional development; physics; outcomes 1. -
Future Energy Sources
Future Energy Sources Course No: M03-047 Credit: 3 PDH Gilbert Gedeon, P.E. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 076 77 P: (877) 322-5800 [email protected] Four Years Later: An Interim Report on Facilities for the Future of Science: A Twenty-Year Outlook August 2007 www.science.doe.gov Facilities for the Future of Science: A Twenty-Year Outlook was published in November 2003. The original publication is available online, on the DOE Office of Science web site, under Scientific User Facilities at http://www.science.doe.gov/. Four Years Later: An Interim Report on Report 2007 Interim Facilities for the Future of Science: A Twenty-Year Outlook Contents Introduction 5 The Twenty-Year Facilities Outlook—A Prioritized List 6 Status of Facilities in 20-Year Outlook (as published in November 2003)7 Status of Facilities in 20-Year Outlook (by the end of FY 2007)8 Status of Facilities in 20-Year Outlook (by the end of FY 2008)9 Facility Summaries Near-Term Priorities 11 Priority: 1 ITER 11 Priority: 2 UltraScale Scientific Computing Capability 12 Priority: Tie for 3 Joint Dark Energy Mission (JDEM) 13 Linac Coherent Light Source (LCLS) 13 Genomics:GTL Bioenergy Research Centers 14 Rare Isotope Accelerator (RIA) or Rare Isotope Beam Facility (RIBF) 16 Priority: Tie for 7 The 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) Upgrade 17 Energy Sciences Network (ESnet) Upgrade 18 Outlook Twenty-Year A Facilities for the Future of Science: National Energy Research Scientific Computing Center -
International Masterclasses Hands on Particle Physics
INTERNATIONAL MASTERCLASSES HANDS ON PARTICLE PHYSICS Nantes Swedish Teachers CERN 2.11.2018 Despina Hatzifotiadou 1 A day of immersion in particle physics for 16-18 year old pupils Typical day of International Masterclasses Morning : introductory lectures on • Particle physics (elementary particles, forces, Standard Model and beyond) • Detectors – accelerators – experimental methods Visit of laboratory / experimental site / discussion with scientists and graduate students Lunch – usually offered by the Host Institute Afternoon : students analyse data from an LHC experiment and do a physics measurement They work in groups of 2 per computer; analysis is visual in most cases At the end of the day : Video Conference moderated by two physicists at CERN and connecting up to 5 institutes presentation / merging/ discussion of results, answering questions, quiz Swedish Teachers CERN 2.11.2018 Despina Hatzifotiadou 2 A bit of history and present status 1996: Started in UK 2005: Adopted by EPPOG (European Particle Physics Outreach Group) for all Europe Use data from LEP (the Large Electron Positron collider, CERN, 1989-2000) OPAL Identifying Particles DELPHI Hands on CERN Z0 decays / calculation of branching ratios 2006: U.S. joined program 2010: preparing to move to LHC-based Masterclasses 2011: Start using data from LHC ATLAS W+W- (MINERVA) structure of the proton ATLAS Z0 (HYPATIA) mass, width (+Z' from MC) CMS J/Ψ (in 2011) and W/Z (in 2012) ALICE Looking for strange particles (V0 decays) ALICE Nuclear modification factor LHCB Measurement of -
DH Mcclary and LE Hiller Forward Pixel Detector
QuarkNet Teachers Work on CMS Tracker D. H. McClary and L. E. Hiller University at Buffalo-The State University of New York at Buffalo Silicon Tracker Compact Muon Solenoid for the LHC CMS uses an all-silicon tracker. silicon pixel detectors are situated closest to the beam pipe, while silicon microstrip detectors are used in the outer layers. This versatile tracking system allows charged particle reconstruction with high efficiency and precision. In addition, the silicon pixel detectors bring the capability of identifying tracks from secondary vertices. Such vertices arise from decays of b quarks, and are very useful signatures over a broad spectrum of physics, including the Higgs boson and Supersymmetry searches. The choice of all silicon technology for the tracker should ensure functionality for a 10 year life span in the high radiation environment of LHC. Major LHC Experiments France Geneva Switzerland CMS is one of the two major detectors currently being installed along the LHC or Large Hadron Collider at CERN near Geneva, Switzerland (right). The Compact Muon Solenoid detector is a collaboration of more than 2000 scientists about 40 countries. CMS has three major components (above). The tracker, which is closest to the beam pipe, is used to reconstruct the momentum of the particles created in the 14 TeV proton-proton collisions. Next, the Calorimeters find the energy of the particles produced. The Tracker and Calorimeters are surrounded by a solenoid generating a 4 T magnetic field. Finally, the Muon System aids in identifying muons and measuring their momentum. Searches for the Higgs boson and Supersymmetry form a central part of the CMS physics program. -
Quarknet/Walta/CROP Cosmic Ray Detectors User's Manual
QuarkNet/Walta/CROP Cosmic Ray Detectors User’s Manual Jeff Rylander and Tom Jordan, Fermilab R. J. Wilkes, Hans-Gerd Berns and Richard Gran, U. Washington August 2004 Classroom Cosmic Ray Detector User’s Manual II Classroom Cosmic Ray Detector User’s Manual QuarkNet/Walta/CROP Cosmic Ray Detectors User’s Manual This manual provides information for setting up and using a cosmic ray detector with the QuarkNet Version 2 Data Acquisition (DAQ) board and ancillary hardware. It serves both beginning and advanced users. Much of the technical information was originally compiled in a user’s manual written by R. J. Wilkes. Hans Berns, Rik Gran, Sten Hansen, and Terry Kiper contributed some of the technical documentation with input from the practical experience of many beta testers.1 Although some of the components of your cosmic ray detector may have come from various sources, the heart of the detector is the QuarkNet DAQ board. The development of this board is a collaborative effort involving Fermilab, the University of Nebraska and the University of Washington. Appendix A has a description of the history of this project. Project Development Team Fermilab: Sten Hansen, Tom Jordan, Terry Kiper Univeristy of Nebraska: Dan Claes, Jared Kite, Victoria Mariupolskaya, Greg Snow University of Washington: Hans Berns, Toby Burnett, Paul Edmon, Rik Gran, Ben Laughlin, Jeremy Sandler, Graham Wheel, Jeffrey Wilkes 1 For more technical documentation on the DAQ board, see http://www.phys.washington.edu/~walta/qnet_daq/ i Classroom Cosmic Ray Detector User’s -
The Btev Experiment: Physics and Detector
The BTeV Experiment: Physics and Detector Klaus Honscheid Department of Physics The Ohio State University 174 W 18th Avenue Columbus, Ohio 43210, USA Exploring the large number of heavy quarks produced at Fermilab’s Tevatron collider, the BTeV experiment is designed to make precision measurements of Standard Model parameters and to perform an exhaustive search for physics beyond the Standard Model. In my presentation at FPCP 2003 I presented some highlights of the BTeV physics program and discussed a few of the many technological challenges the BTeV collaboration faces designing and building the detector 1 Introduction The BTeV collaboration is in the middle of an active research and development program which causes the interesting details of the experiment to change much faster than the time scales typical for the publication of conference proceedings. Acknowledging this fact my report will not provide a detailed discussion of the BTeV detector, the status of B physics in the Spring of 2003 or the BTeV physics program. Instead, I will give a brief description of the major components of the BTeV spectrometer and some of the physics studies but otherwise provide links to more up-to-date information on the World Wide Web. General information about BTeV is available on the collaboration’s web site which can be accessed using the URL http://www-btev.fnal.gov/. The transparencies of the presentation can be found on the conference web site (http://polywww.in2p3.fr/actualites/congres/fpcp2003/)orcanbe downloaded from the author’s web site at http://www-physics.mps.ohio-state.edu/~klaus/research/talks/fpcp_btev.pdf. -
The Quarknet CMS Masterclass: Bringing the LHC to Students
Available online at www.sciencedirect.com Nuclear and Particle Physics Proceedings 273–275 (2016) 1261–1264 www.elsevier.com/locate/nppp The QuarkNet CMS masterclass: bringing the LHC to students Kenneth Cecire, Thomas McCauley University of Notre Dame, Notre Dame, Indiana 46556, USA Abstract QuarkNet is an educational program which brings high school teachers and their students into the particle physics research community. The program supports research experiences and professional development workshops and pro- vides inquiry-oriented investigations, some using real experimental data. The CMS experiment at the LHC has released several thousand proton-proton collision events for use in education and outreach. QuarkNet, in collaboration with CMS, has developed a physics masterclass and e-Lab based on this data. A masterclass is a day-long educational workshop where high school students travel to nearby universities and research laboratories. There they learn from LHC physicists about the basics of particle physics and detectors. They then perform a simple measurement using LHC data, and share their results with other students around the world via videoconference. Since 2011 thousands of students from over 25 countries have participated in the CMS masterclass as organized by QuarkNet and the International Particle Physics Outreach Group (IPPOG). We describe here the masterclass exercise: the physics, the online event display and database preparation behind it, the measurement the students undertake, their results and experiences, and future plans for the exercise. Keywords: CMS, masterclass, QuarkNet, IPPOG, LHC, physics education 1. Introduction lider (LHC) at CERN, comprising nearly 3000 physi- cists and around 800 engineers from over 40 coun- QuarkNet [1] is an program that brings high-school tries. -
Looking for Leptons in All the Right Places
L ooking for Lept ons in All the Right P laces by Jennifer Lauren Lee Above: Tania Entwistle’s team of students from Ward Melville High School in New York. Front from left: Stephen Bohlman, Sammi Qin. Back from left: Ram Gupta, Lucas Janson, Ari Richman, Josh Steinberg. Right column: Students around the world participate in videoconferences, lectures, and analysis of particle physics data. Photos: Ken Cecire, Hampton University; Ivan Melo, Žilinská univerzita, Slovakia; and Christine Kourkoumelis, University of Athens, Greece In a typical high school physics textbook, says science- who had to split their event into two half-days, analyzing education specialist Beth Marchant, only the last chapter data one day and conferencing the next morning. is devoted to all the developments since 1900—the stuff Student Stephen Bohlman, from Ward Melville High that physicists are actually working on today. “For School in New York, heard about the EPPOG Masterclass teachers who go by the textbook,” says Marchant, “the program when another teacher—Tania Entwistle, an active class never gets there.” QuarkNet participant—came into his Advanced Placement Marchant is part of a multinational team, from programs (AP) Physics class and asked for volunteers. “It’s stuff that in Europe and the United States, collaborating to trans- interests me,” says Bohlman, 16. “I find it fascinating—all the form the way physics is taught. They offer kids the chance leptons, bosons, hadrons—oh my!” to close their textbooks and experience modern science In the weeks before their conference date, Entwistle’s first-hand. six students used the online preparation guide created A program organized and run by Michael Kobel of the by Kobel, with a downloadable CD-ROM (available in 16 Technical University in Dresden, Germany, gives 16- to languages), to learn how to identify particles based on 18-year-old students the chance to be “physicists for a day,” their “tracks”—the trails left in a particle detector following teaching them to identify subatomic particles from real matter-antimatter collisions. -
The CMS Masterclass and Particle Physics Outreach Kenneth Cecire1a, Marjorie Bardeen2, and Thomas Mccauley1
EPJ Web of Conferences 71, 00027 (2014) DOI: 10.1051/epjconf/20147100027 C Owned by the authors, published by EDP Sciences, 2014 The CMS Masterclass and Particle Physics Outreach Kenneth Cecire1a, Marjorie Bardeen2, and Thomas McCauley1 1Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, Indiana 46556 U.S.A 2Fermi National Accelerator Laboratory, Education Office, MS 226, P.O. Box 500, Batavia, Illinois 60510 U.S.A. Abstract. The CMS Masterclass enables high school students to analyse authentic CMS data. Students can draw conclusions on key ratios and particle masses by combining their analyses. In particular, they can use the ratio of W+ to W- candidates to probe the structure of the proton, they can find the mass of the Z boson, and they can identify additional particles including, tentatively, the Higgs boson. In the United States, masterclasses are part of QuarkNet, a long-term program that enables students and teachers to use cosmic ray and particle physics data for learning with an emphasis on data from CMS. 1 Introduction The CMS Masterclass [1] is one prominent example of the use of authentic particle physics data to bring compelling physics to high schools. CMS, the Compact Muon Solenoid [2], is one of two general-purpose experiments at the Large Hadron Collider (LHC) at CERN, Geneva, Switzerland. During International Masterclasses 2013 [3], 50 masterclass institutes in 17 countries offered the CMS Masterclass, roughly ¼ of the total in 2013. To examine the CMS Masterclass, then, is to get some sense of how students look at the data.