Stonefish Toxin Defines an Ancient Branch of the Perforin-Like Superfamily

Total Page:16

File Type:pdf, Size:1020Kb

Stonefish Toxin Defines an Ancient Branch of the Perforin-Like Superfamily Stonefish toxin defines an ancient branch of the perforin-like superfamily Andrew M. Ellisdona,b, Cyril F. Reboula,b, Santosh Panjikara,c, Kitmun Huynha, Christine A. Oelliga, Kelly L. Wintera,d, Michelle A. Dunstonea,b,e, Wayne C. Hodgsond, Jamie Seymourf, Peter K. Deardeng, Rodney K. Twetenh, James C. Whisstocka,b,1,2, and Sheena McGowane,1,2 aBiomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia; bAustralian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, 3800, Australia; cAustralian Synchrotron, Macromolecular Crystallography, Melbourne, VIC, 3168, Australia; dBiomedicine Discovery Institute and Department of Pharmacology, Monash University, Melbourne, VIC, 3800, Australia; eBiomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia; fCentre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia; gDepartment of Biochemistry and Genetics Otago, University of Otago, Dunedin, 9054 Aotearoa–New Zealand; and hDepartment of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 Edited by Brenda A. Schulman, St. Jude Children’s Research Hospital, Memphis, TN, and approved November 3, 2015 (received for review April 19, 2015) The lethal factor in stonefish venom is stonustoxin (SNTX), a parallel interface along their entire 115-Å length (2,908 Å2 heterodimeric cytolytic protein that induces cardiovascular collapse buried surface area) (Fig. 1 A–D and Fig. S1). Fold recognition in humans and native predators. Here, using X-ray crystallography, searches reveal that each SNTX protein comprises four do- we make the unexpected finding that SNTX is a pore-forming mains (Fig. 1 B and C) (10). Despite a lack of obvious sequence member of an ancient branch of the Membrane Attack Complex- similarity, the N-terminal domain (residues 1–265) (shown in Perforin/Cholesterol-Dependent Cytolysin (MACPF/CDC) superfamily. greeninFig.1B) is homologous to the Membrane Attack SNTX comprises two homologous subunits (α and β), each of which Complex-Perforin/Cholesterol-Dependent Cytolysin (MACPF/CDC) comprises an N-terminal pore-forming MACPF/CDC domain, a cen- pore-forming domain (Fig. S2). The N-terminal MACPF/CDC tral focal adhesion-targeting domain, a thioredoxin domain, and a domain leads into a focal adhesion-targeting (FAT) domain C-terminal tripartite motif family-like PRY SPla and the RYanodine (266–385) (shown in dark blue in Fig. 1B), with highest structural Receptor immune recognition domain. Crucially, the structure reveals similarity to the human focal adhesion kinase 1 FAT domain that the two MACPF domains are in complex with one another and (rmsd of 2.7 Å over 98 aligned residues) (11). FAT domains are arranged into a stable early prepore-like assembly. These data pro- found in a wide range of proteins and typically perform a scaf- vide long sought after near-atomic resolution insights into how folding role (for example, in the assembly of signaling com- MACPF/CDC proteins assemble into prepores on the surface of mem- in cis branes. Furthermore, our analyses reveal that SNTX-like MACPF/CDCs plexes) (12). In SNTX, the FAT domain makes numerous are distributed throughout eukaryotic life and play a broader, possi- contacts with the MACPF/CDC domain and the thioredoxin – B bly immune-related function outside venom. (THX) domain (386 517) (shown in gray in Fig. 1 and Fig. S2)aswellasextensivein trans interactions at the SNTX-α/β pore | stonefish | toxin | perforin | cytolysin interface (Fig. S1). The THX domain comprises a five-stranded β-sheet and Saccharomyces cerevisiae uman envenoming by the tropical stonefish (Synanceia shares greatest structural similarity with Hhorrida and related species) results in extreme pain, edema, mitochondrial THX3 (rmsd of 2.1 Å over 72 aligned residues) hypotension, respiratory distress, and on rare occasions, death (13). THX domains are typically involved in redox regulation; (1). The lethal factor in stonefish venom is an ∼150-kDa protein termed stonustoxin (SNTX), an unusual example of a vertebrate Significance cytolytic protein complex (2). SNTX is a soluble heterodimeric assembly of two closely related proteins termed SNTX-α and -β Here, we present the structure of the pore-forming toxin sto- that share sequence identity of ∼50% (3). With the exception nustoxin (SNTX), the lethal factor present in stonefish venom. of a C-terminal PRY SPla and the RYanodine Receptor Our work shows that SNTX comprises two homologous sub- (PRYSPRY) domain in each protein (4), SNTX shares no ob- units (α and β), each of which belongs to the perforin super- vious sequence similarity to any structurally or functionally family of pore-forming immune effectors. In SNTX, the α- and characterized molecule. SNTX induces species-specific hemo- β-Membrane Attack Complex-Perforin/Cholesterol-Dependent lytic activity (2) by an apparent pore-forming mechanism (5). It Cytolysin (MACPF/CDC) domains interact and form a prepore- induces platelet aggregation (6), and like the closely related like complex. These data provide, to our knowledge, the first Trachynilysin (from Synanceia trachynis), SNTX exhibits activity high-resolution insights into how MACPF/CDCs interact with suggesting that it may function as a neurotoxin (7, 8). one another during pore formation. Because eukaryote pore-forming toxins are relatively rare, we reasoned that SNTX might represent a new exemplar of a verte- Author contributions: J.C.W. and S.M. designed research; A.M.E., C.F.R., S.P., K.H., C.A.O., K.L.W., J.S., P.K.D., R.K.T., and S.M. performed research; K.L.W., W.C.H., J.S., and S.M. brate pore-forming protein. Previous studies had shown that it was contributed new reagents/analytic tools; A.M.E., C.F.R., M.A.D., P.K.D., R.K.T., J.C.W., possible to purify and crystallize SNTX (9); however, no structure and S.M. analyzed data; and A.M.E., J.C.W., and S.M. wrote the paper. has been reported to date. Accordingly, to address the structural The authors declare no conflict of interest. basis for SNTX activity, we determined its X-ray crystal structure. This article is a PNAS Direct Submission. Data deposition: Crystallography, atomic coordinates, and structure factors have been Results and Discussion deposited in the Protein Data Bank, www.pdb.org (PDB ID code 4WVM). SNTX Is a Heterodimer of Two Distinct Membrane Attack Complex- 1J.C.W. and S.M. contributed equally to this work. Perforin/Cholesterol-Dependent Cytolysin-Like Proteins. We purified 2To whom correspondence may be addressed. Email: [email protected] or SNTX from crude venom and determined its crystal structure [email protected]. to 3.1 Å using anomalous scattering methods (Tables S1 and This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. S2). SNTX-α and -β form an obligate dimer with an extensive 1073/pnas.1507622112/-/DCSupplemental. 15360–15365 | PNAS | December 15, 2015 | vol. 112 | no. 50 www.pnas.org/cgi/doi/10.1073/pnas.1507622112 Downloaded by guest on September 23, 2021 Fig. 1. The SNTX structure reveals an MACPF/CDC pore-forming heterodimer. (A) Crystal structure of the SNTX heterodimer with SNTX-α (gray) and SNTX-β (blue) shown in cartoon format. (B) The SNTX-domain layout in cartoon format and schematic representation. (C) Schematic representation of the SNTX domain layout. (D) The interaction interface between each SNTX subunit. The Cα-atoms of the interacting residues are colored as per the interaction type, with salt bridges in red, hydrogen bonds in blue, and buried hydrophobics (>20 Å2 buried surface area) in green. Interacting residues were calculated by PISA (57). (E) Transmission EM of SNTX pores that are indicated by arrows. (Scale bar: 50 nm.) however, the SNTX THX domain lacks the canonical catalytic Finally, the PRYSPRY domains (518–703) (shown in blue in residues (Fig. S2). We, therefore, suggest that, in SNTX, the Fig. 1B) of each subunit interact in the heterodimer and are THX domain may play a purely structural role. located distal to the MACPF/CDC domain. The PRYSPRY Fig. 2. SNTX-like proteins form an extensive and ancient third branch of the MACPF/CDC superfamily. (A) The tropical stonefish (S. horrida) highlighting 13 dorsal spines that deliver venom. (B) Close-up view of the venom glands located on either side of a dorsal spine. (C) Rooted Bayesian phylogram of SNTX-like protein sequences from animals and fungi. SNTX-like proteins are defined as proteins sharing significant sequence identity in the SNTX MACPF/CDC domain. Node labels indicate posterior probabilities. The α-andβ-subunit sequences are very similar, and the phylogeny indicates that different subunits have evolved multiple times, probably through gene duplication and perhaps, gene conversion. The SNTX-like proteins from venomous species of fish form a sister clade to those fromclosely related fish groups. Branch lengths in this region of the tree indicate that SNTX-like proteins used as venoms do not vary hugely from those in nonvenomous fish. As such, use of these proteins as toxins may have more to do with expression levels and location than significant evolutionary change. SNTX-like proteins are found in a variety of vertebrates, including the common ostrich, platypus, Tasmanian devil, and coelacanth. The presence of an SNTX-like protein in a member of the Porifera [Amphemidon (Demosponge)] implies that SNTX-like proteins predate the evolution of metazoa. The fact that similar SNTX MACPF/CDC domain BIOCHEMISTRY proteins are found in fungi implies that this molecule predates animals and was, therefore, present in the ancestors of fungi and animals. Ellisdon et al. PNAS | December 15, 2015 | vol. 112 | no. 50 | 15361 Downloaded by guest on September 23, 2021 domains share greatest structural similarity to the tripartite motif would position the SNTX MACPF/CDC domains appropriately family (TRIM) 21 PRYSPRY domain (rmsd of 1.55 Å over 155 for pore assembly.
Recommended publications
  • Role of Perforin-2 in Regulating Type I Interferon Signaling
    https://www.scientificarchives.com/journal/journal-of-cellular-immunology Journal of Cellular Immunology Review Article Role of Perforin-2 in Regulating Type I Interferon Signaling Gregory V Plano, Noula Shembade* Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center Miller School of Medicine, University of Miami, Miami, FL 33136, USA *Correspondence should be addressed to Noula Shembade; [email protected] Received date: November 21, 2020, Accepted date: February 02, 2021 Copyright: © 2021 Plano G, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Sepsis is a systemic inflammatory response caused by a harmful host immune reaction that is activated in response to microbial infections. Infection-induced type I interferons (IFNs) play critical roles during septic shock. Type I IFNs initiate their biological effects by binding to their transmembrane interferon receptors and initiating the phosphorylation and activation of tyrosine kinases TYK2 and JAK1, which promote phosphorylation and activation of STAT molecules. Type I IFN-induced activation of JAK/STAT pathways is a complex process and not well understood. Improper regulation of type I IFN responses can lead to the development of infectious and inflammation-related diseases, including septic shock, autoimmune diseases, and inflammatory syndromes. This review is mainly focused on the possible mechanistic roles of the transmembrane Perforin-2 molecule in the regulation of type I IFN- induced signaling. Keywords: JAK/STAT, Interferons, TYK2, STATs, Perforin-2, IFNAR1, IFNAR2 and Signaling Introduction and activator of transcription 2), respectively, under normal physiological conditions [4,5].
    [Show full text]
  • Ostreolysin A/Pleurotolysin B and Equinatoxins: Structure, Function and Pathophysiological Effects of These Pore-Forming Proteins
    Ostreolysin A/Pleurotolysin B and Equinatoxins: Structure, Function and Pathophysiological Effects of These Pore-Forming Proteins. Robert Frangež, Dušan Šuput, Jordi Molgó, Evelyne Benoit To cite this version: Robert Frangež, Dušan Šuput, Jordi Molgó, Evelyne Benoit. Ostreolysin A/Pleurotolysin B and Equinatoxins: Structure, Function and Pathophysiological Effects of These Pore-Forming Proteins.. Toxins, MDPI, 2017, 9 (4), 10.3390/toxins9040128. hal-01572247 HAL Id: hal-01572247 https://hal.archives-ouvertes.fr/hal-01572247 Submitted on 20 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. toxins Review Ostreolysin A/Pleurotolysin B and Equinatoxins: Structure, Function and Pathophysiological Effects of These Pore-Forming Proteins Robert Frangež 1, Dušan Šuput 2, Jordi Molgó 3 and Evelyne Benoit 3,* 1 Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana; 1115-Ljubljana, Slovenia; [email protected] 2 Laboratory for Cell Physiology and Toxinology, Institute of Pathophysiology, School of Medicine, University of Ljubljana, P.O. Box 11, 1105-Ljubljana, Slovenia; [email protected] 3 DRF/Institut de Sciences de la Vie Frédéric Joliot/SIMOPRO, CEA de Saclay, and Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, 91190 Gif-sur-Yvette, France; [email protected] * Correspondence: [email protected]; Tel.: +33-169-085-685 Academic Editor: Michel R.
    [Show full text]
  • Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins
    Review Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins Wei Yuen Yap 1 and Jung Shan Hwang 2,* 1 Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; [email protected] 2 Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia * Correspondence: [email protected]; Tel.: +603-7491-8622 (ext. 7414) Academic Editor: Jean-Marc Sabatier Received: 23 August 2018; Accepted: 28 September 2018; Published: 4 October 2018 Abstract: A group of stable, water-soluble and membrane-bound proteins constitute the pore forming toxins (PFTs) in cnidarians. They interact with membranes to physically alter the membrane structure and permeability, resulting in the formation of pores. These lesions on the plasma membrane causes an imbalance of cellular ionic gradients, resulting in swelling of the cell and eventually its rupture. Of all cnidarian PFTs, actinoporins are by far the best studied subgroup with established knowledge of their molecular structure and their mode of pore-forming action. However, the current view of necrotic action by actinoporins may not be the only mechanism that induces cell death since there is increasing evidence showing that pore-forming toxins can induce either necrosis or apoptosis in a cell-type, receptor and dose-dependent manner. In this review, we focus on the response of the cellular immune system to the cnidarian pore-forming toxins and the signaling pathways that might be involved in these cellular responses.
    [Show full text]
  • Measuring Kinetic Drivers of Pneumolysin Pore Structure
    Eur Biophys J (2016) 45:365–376 DOI 10.1007/s00249-015-1106-x ORIGINAL ARTICLE Measuring kinetic drivers of pneumolysin pore structure Robert J. C. Gilbert1 · Andreas F.-P. Sonnen2 Received: 7 October 2015 / Revised: 1 December 2015 / Accepted: 7 December 2015 / Published online: 23 February 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Most membrane attack complex-perforin/ Keywords Pore formation · Kinetics · MACPF/CDC · cholesterol-dependent cytolysin (MACPF/CDC) proteins Toroidal pore · Oligomerization · Membrane structure are thought to form pores in target membranes by assem- bling into pre-pore oligomers before undergoing a pre-pore to pore transition. Assembly during pore formation is into Introduction both full rings of subunits and incomplete rings (arcs). The balance between arcs and full rings is determined by The membrane attack complex-perforin/cholesterol- a mechanism dependent on protein concentration in which dependent cytolysin (MACPF/CDC) family is the largest- arc pores arise due to kinetic trapping of the pre-pore forms known group of pore-forming proteins (Anderluh and by the depletion of free protein subunits during oligomeri- Gilbert 2014; Gilbert et al. 2013). Members have been zation. Here we describe the use of a kinetic assay to study identified in every kind of cellular life form apart from the pore formation in red blood cells by the MACPF/CDC Archaebacteria, and within their producing organisms they pneumolysin from Streptococcus pneumoniae. We show enact a plethora of different biological functions (Ander- that cell lysis displays two kinds of dependence on pro- luh et al.
    [Show full text]
  • The Cholesterol-Dependent Cytolysins Family of Gram-Positive Bacterial Toxins
    Chapter 20 Submitted July 2009 The cholesterol-dependent cytolysins family of Gram-positive bacterial toxins Alejandro P. Heuck, Paul C. Moe, and Benjamin B. Johnson Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, U.S.A. [email protected] Abstract The cholesterol-dependent cytolysins (CDC) are a family of β-barrel pore- forming toxins secreted by Gram-positive bacteria. These toxins are produced as water- soluble monomeric proteins that after binding to the target cell oligomerize on the membrane surface forming a ring-like pre-pore complex, and finally insert a large β-barrel into the membrane (about 250 Å in diameter). Formation of such a large transmembrane structure requires multiple and coordinated conformational changes. The presence of cholesterol in the target membrane is absolutely required for pore-formation, and therefore it was long thought that cholesterol was the cellular receptor for these toxins. However, not all the CDC require cholesterol for binding. Intermedilysin, secreted by Streptoccocus intermedius only binds to membranes containing a protein receptor, but forms pores only if the membrane contains sufficient cholesterol. In contrast, perfringolysin O, secreted by Clostridium perfringens, only binds to membranes containing substantial amounts of cholesterol. The mechanisms by which cholesterol regulates the cytolytic activity of the CDC are not understood at the molecular level. The C-terminus of perfringolysin O is involved in cholesterol recognition, and changes in the conformation of the loops located at the distal tip of this domain affect the 1 toxin-membrane interactions. At the same time, the distribution of cholesterol in the membrane can modulate toxin binding.
    [Show full text]
  • A Review of the Complement Membrane Attack Complex
    Downloaded from http://rstb.royalsocietypublishing.org/ on July 18, 2017 The mystery behind membrane insertion: a review of the complement membrane rstb.royalsocietypublishing.org attack complex Charles Bayly-Jones1,2, Doryen Bubeck3 and Michelle A. Dunstone1,2 1Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, 2ARC Centre of Excellence Review in Advanced Molecular Imaging, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia Cite this article: Bayly-Jones C, Bubeck D, 3Department of Life Sciences, Imperial College London, South Kensington Campus, London SW2 7AZ, UK Dunstone MA. 2017 The mystery behind MAD, 0000-0002-6026-648X membrane insertion: a review of the complement membrane attack complex. Phil. The membrane attack complex (MAC) is an important innate immune effect- Trans. R. Soc. B 372: 20160221. or of the complement terminal pathway that forms cytotoxic pores on the http://dx.doi.org/10.1098/rstb.2016.0221 surface of microbes. Despite many years of research, MAC structure and mechanism of action have remained elusive, relying heavily on modelling and inference from biochemical experiments. Recent advances in structural Accepted: 8 November 2016 biology, specifically cryo-electron microscopy, have provided new insights into the molecular mechanism of MAC assembly. Its unique ‘split-washer’ One contribution of 17 to a discussion meeting shape, coupled with an irregular giant b-barrel architecture, enable an atyp- issue ‘Membrane pores: from structure and ical mechanism of hole punching and represent a novel system for which to assembly, to medicine and technology’. study pore formation. This review will introduce the complement terminal pathway that leads to formation of the MAC.
    [Show full text]
  • Human Complement Protein C8: the "Hole" Story
    Human Complement Protein C8: The "Hole" Story James M Sodetza Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC 29208 As the recipient of the 2011 SC Governor's Award for Excellence in Scientific Research, I've been asked to describe my research and some of the accomplishments of my laboratory while at the University of South Carolina. My research is focused on understanding the structure and function of the pore-forming proteins of the human"complement system", and in particular complement protein "C8". The complement system is a group of blood proteins that have a key role in immune defense. Much of what is known today about the structure and function of human C8 can be attributed to work performed over many years by my graduate students and postdoctoral fellows. Introduction - are all noncovalent. Individually, the five MAC components circulate in blood The human "complement system" is composed of as hydrophilic proteins, but when combined they form an approximately 35 different proteins, enzymes, receptors and amphiphilic complex capable of intercalating into cell regulatory molecules found primarily in blood. The system is membranes. The MAC does not degrade membrane lipid but referred to as complement because it "complements" or instead produces a disruptive rearrangement that causes enhances the ability of the immune system to defend against osmotic lysis of simple cells such as erythrocytes, initiates pathogens, e.g. bacteria, viruses, etc. The system is intracellular signaling events in nucleated cells, and disrupts "activated" either by the interaction of complement proteins the outer membrane of bacteria. Our own cells contain CD59, with antibody-antigen complexes (classical pathway) or by a membrane-anchored protein that protects us from interaction with the unusual carbohydrate found on the surface complement-mediated damage by preventing assembly of a of pathogenic (non-self) organisms (lectin and alternative functional MAC.
    [Show full text]
  • Structural Basis of the Pore-Forming Toxin/Membrane Interaction
    toxins Review Structural Basis of the Pore-Forming Toxin/Membrane Interaction Yajuan Li 1, Yuelong Li 2, Hylemariam Mihiretie Mengist 2, Cuixiao Shi 1, Caiying Zhang 2 , Bo Wang 1, Tingting Li 1, Ying Huang 1, Yuanhong Xu 1,* and Tengchuan Jin 2,* 1 Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; [email protected] (Y.L.); [email protected] (C.S.); [email protected] (B.W.); [email protected] (T.L.); [email protected] (Y.H.) 2 Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China; [email protected] (Y.L.); [email protected] (H.M.M.); [email protected] (C.Z.) * Correspondence: [email protected] (Y.X.); [email protected] (T.J.); Tel.: +86-13505694447 (Y.X.); +86-17605607323 (T.J.) Abstract: With the rapid growth of antibiotic-resistant bacteria, it is urgent to develop alternative therapeutic strategies. Pore-forming toxins (PFTs) belong to the largest family of virulence factors of many pathogenic bacteria and constitute the most characterized classes of pore-forming proteins (PFPs). Recent studies revealed the structural basis of several PFTs, both as soluble monomers, and transmembrane oligomers. Upon interacting with host cells, the soluble monomer of bacterial PFTs assembles into transmembrane oligomeric complexes that insert into membranes and affect target cell-membrane permeability, leading to diverse cellular responses and outcomes.
    [Show full text]
  • Suppl Figure 1
    Suppl Table 2. Gene Annotation (October 2011) for the selected genes used in the study. Locus Identifier Gene Model Description AT5G51780 basic helix-loop-helix (bHLH) DNA-binding superfamily protein; FUNCTIONS IN: DNA binding, sequence-specific DNA binding transcription factor activity; INVOLVED IN: regulation of transcription; LOCATED IN: nucleus; CONTAINS InterPro DOMAIN/s: Helix-loop-helix DNA-binding domain (InterPro:IPR001092), Helix-loop-helix DNA-binding (InterPro:IPR011598); BEST Arabidopsis thaliana protein match is: basic helix-loop-helix (bHLH) D AT3G53400 BEST Arabidopsis thaliana protein match is: conserved peptide upstream open reading frame 47 (TAIR:AT5G03190.1); Has 285 Blast hits to 285 proteins in 23 species: Archae - 0; Bacteria - 0; Metazoa - 1; Fungi - 0; Plants - 279; Viruses - 0; Other Eukaryotes - 5 (source: NCBI BLink). AT1G44760 Adenine nucleotide alpha hydrolases-like superfamily protein; FUNCTIONS IN: molecular_function unknown; INVOLVED IN: response to stress; EXPRESSED IN: 22 plant structures; EXPRESSED DURING: 13 growth stages; CONTAINS InterPro DOMAIN/s: UspA (InterPro:IPR006016), Rossmann-like alpha/beta/alpha sandwich fold (InterPro:IPR014729); BEST Arabidopsis thaliana protein match is: Adenine nucleotide alpha hydrolases-li AT4G19950 unknown protein; BEST Arabidopsis thaliana protein match is: unknown protein (TAIR:AT5G44860.1); Has 338 Blast hits to 330 proteins in 72 species: Archae - 2; Bacteria - 94; Metazoa - 7; Fungi - 0; Plants - 232; Viruses - 0; Other Eukaryotes - 3 (source: NCBI BLink). AT3G14280
    [Show full text]
  • Killing of Microbes and Cancer by the Immune System with Three Mammalian Pore-Forming Killer Proteins
    REVIEW published: 03 November 2016 doi: 10.3389/fimmu.2016.00464 Killing of Microbes and Cancer by the immune System with Three Mammalian Pore-Forming Killer Proteins Eckhard R. Podack† and George P. Munson* Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA Immunology is the science of biological warfare between the defenses of our immune systems and offensive pathogenic microbes and cancers. Over the course of his scien- tific career, Eckhard R. Podack made several seminal discoveries that elucidated key aspects of this warfare at a molecular level. When Eckhard joined the complement lab- oratory of Müller-Eberhard in 1974, he was fascinated by two questions: (1) what is the molecular mechanism by which complement kills invasive bacteria? and (2) which one of the complement components is the killer molecule? Eckhard’s quest to answer these questions would lead to the discovery C9 and later, two additional pore-forming killer Edited by: Bruno Laugel, molecules of the immune system. Here is a brief account of how he discovered poly-C9, Cardiff University, UK the pore-forming protein of complement in blood and interstitial fluids: Perforin-1, Reviewed by: expressed by natural killer cells and cytotoxic T lymphocytes; and Perforin-2 (MPEG1), Paula Kavathas, Yale School of Medicine, USA expressed by all cell types examined to date. All the three killing systems are crucial for Christoph Wülfing, our survival and health. University of Bristol, UK Keywords: complement, C9, Perforin-1, Perforin-2, MPEG1, cytotoxic T cells, natural killer cells, pore-forming *Correspondence: protein George P.
    [Show full text]
  • Cryoem Reveals How the Complement Membrane Attack Complex Ruptures
    bioRxiv preprint doi: https://doi.org/10.1101/392563; this version posted August 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers Anaïs Menny1, Marina Serna1,2#, Courtney M. Boyd1#, Scott Gardner1, Agnel Praveen Joseph3†, B. Paul Morgan4, Maya Topf3, Nicholas J. Brooks5, Doryen Bubeck1* 1 Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, United Kingdom. 2 Spanish National Cancer Research Centre, CNIO, Melchor Fernández Almagro, 3.28029 Madrid, Spain. 3 Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, United Kingdom 4 Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom 5 Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom. *Correspondence to: [email protected] # Equal contribution †A.P.J. current address: Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom bioRxiv preprint doi: https://doi.org/10.1101/392563; this version posted August 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract The membrane attack complex (MAC) is one of the immune system’s first responders.
    [Show full text]
  • Dissecting out the Molecular Mechanism of Insecticidal Activity of Ostreolysin A6/Pleurotolysin B Complexes on Western Corn Rootworm
    toxins Article Dissecting Out the Molecular Mechanism of Insecticidal Activity of Ostreolysin A6/Pleurotolysin B Complexes on Western Corn Rootworm Matej Milijaš Joti´c 1,†, Anastasija Panevska 1,†, Ioan Iacovache 2, Rok Kostanjšek 1 , Martina Mravinec 1, Matej Skoˇcaj 1, Benoît Zuber 2 , Ana Pavšiˇc 1, Jaka Razinger 3 , Špela Modic 3 , Francesco Trenti 4, Graziano Guella 4 and Kristina Sepˇci´c 1,* 1 Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; [email protected] (M.M.J.); [email protected] (A.P.); [email protected] (R.K.); [email protected] (M.M.); [email protected] (M.S.); [email protected] (A.P.) 2 Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; [email protected] (I.I.); [email protected] (B.Z.) 3 Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; [email protected] (J.R.); [email protected] (Š.M.) 4 Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, 38123 Trento, Italy; [email protected] (F.T.); [email protected] (G.G.) * Correspondence: [email protected]; Tel.: +386-1-320-3419 † These authors contributed equally to this study. Abstract: Ostreolysin A6 (OlyA6) is a protein produced by the oyster mushroom (Pleurotus ostreatus). It binds to membrane sphingomyelin/cholesterol domains, and together with its protein partner, pleu- Citation: Milijaš Joti´c,M.; Panevska, rotolysin B (PlyB), it forms 13-meric transmembrane pore complexes. Further, OlyA6 binds 1000 times A.; Iacovache, I.; Kostanjšek, R.; more strongly to the insect-specific membrane sphingolipid, ceramide phosphoethanolamine (CPE).
    [Show full text]