Current Events Bulletin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interactive Proof Systems and Alternating Time-Space Complexity
Theoretical Computer Science 113 (1993) 55-73 55 Elsevier Interactive proof systems and alternating time-space complexity Lance Fortnow” and Carsten Lund** Department of Computer Science, Unicersity of Chicago. 1100 E. 58th Street, Chicago, IL 40637, USA Abstract Fortnow, L. and C. Lund, Interactive proof systems and alternating time-space complexity, Theoretical Computer Science 113 (1993) 55-73. We show a rough equivalence between alternating time-space complexity and a public-coin interactive proof system with the verifier having a polynomial-related time-space complexity. Special cases include the following: . All of NC has interactive proofs, with a log-space polynomial-time public-coin verifier vastly improving the best previous lower bound of LOGCFL for this model (Fortnow and Sipser, 1988). All languages in P have interactive proofs with a polynomial-time public-coin verifier using o(log’ n) space. l All exponential-time languages have interactive proof systems with public-coin polynomial-space exponential-time verifiers. To achieve better bounds, we show how to reduce a k-tape alternating Turing machine to a l-tape alternating Turing machine with only a constant factor increase in time and space. 1. Introduction In 1981, Chandra et al. [4] introduced alternating Turing machines, an extension of nondeterministic computation where the Turing machine can make both existential and universal moves. In 1985, Goldwasser et al. [lo] and Babai [l] introduced interactive proof systems, an extension of nondeterministic computation consisting of two players, an infinitely powerful prover and a probabilistic polynomial-time verifier. The prover will try to convince the verifier of the validity of some statement. -
Parametric Modelling of Architectural Developables Roel Van De Straat Scientific Research Mentor: Dr
MSc thesis: Computation & Performance parametric modelling of architectural developables Roel van de Straat scientific research mentor: dr. ir. R.M.F. Stouffs design research mentor: ir. F. Heinzelmann third mentor: ir. J.L. Coenders Computation & Performance parametric modelling of architectural developables MSc thesis: Computation & Performance parametric modelling of architectural developables Roel van de Straat 1041266 Delft, April 2011 Delft University of Technology Faculty of Architecture Computation & Performance parametric modelling of architectural developables preface The idea of deriving analytical and structural information from geometrical complex design with relative simple design tools was one that was at the base of defining the research question during the early phases of the graduation period, starting in September of 2009. Ultimately, the research focussed an approach actually reversely to this initial idea by concentrating on using analytical and structural logic to inform the design process with the aid of digital design tools. Generally, defining architectural characteristics with an analytical approach is of increasing interest and importance with the emergence of more complex shapes in the building industry. This also means that embedding structural, manufacturing and construction aspects early on in the design process is of interest. This interest largely relates to notions of surface rationalisation and a design approach with which initial design sketches can be transferred to rationalised designs which focus on a strong integration with manufacturability and constructability. In order to exemplify this, the design of the Chesa Futura in Sankt Moritz, Switzerland by Foster and Partners is discussed. From the initial design sketch, there were many possible approaches for surfacing techniques defining the seemingly freeform design. -
Arxiv:1908.07480V3 [Math.AG]
TORSORS ON LOOP GROUPS AND THE HITCHIN FIBRATION ALEXIS BOUTHIER AND KĘSTUTIS ČESNAVIČIUS Abstract. In his proof of the fundamental lemma, Ngô established the product formula for the Hitchin fibration over the anisotropic locus. One expects this formula over the larger generically regular semisimple locus, and we confirm this by deducing the relevant vanishing statement for torsors over Rpptqq from a general formula for PicpRpptqqq. In the build up to the product formula, we present general algebraization, approximation, and invariance under Henselian pairs results for torsors, give short new proofs for the Elkik approximation theorem and the Chevalley isomorphism g G – t{W , and improve results on the geometry of the Chevalley morphism g Ñ g G. Résumé. Dans sa preuve du lemme fondamental, Ngô établit une formule du produit au-dessus du lieu anisotrope. On s’attend à ce qu’une telle formule s’étende au-dessus de l’ouvert génériquement régulier semisimple. Nous établissons une telle formule en la déduisant d’un résultat d’annulation de torseurs sous des groupes de lacets à partir d’une formule générale pour PicpRpptqqq. Dans le cours de la preuve, nous montrons des résultats généraux d’algébrisation, d’approximation et d’invariance hensélienne pour des torseurs ; nous donnons de nouvelles preuves plus concises du théorème d’algébrisation d’Elkik et de l’isomorphisme de Chevalley g G – t{W et améliorons les énoncés sur la géométrie du morphisme de Chevalley g Ñ g G. 1. Introduction ................................................... ...................... 2 Acknowledgements ................................... ................................ 4 2. Approximation and algebraization ................................................. 5 2.1. Invariance of torsors under Henselian pairs and algebraization ................... -
The Complexity Zoo
The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/. -
Delegating Computation: Interactive Proofs for Muggles∗
Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 108 (2017) Delegating Computation: Interactive Proofs for Muggles∗ Shafi Goldwasser Yael Tauman Kalai Guy N. Rothblum MIT and Weizmann Institute Microsoft Research Weizmann Institute [email protected] [email protected] [email protected] Abstract In this work we study interactive proofs for tractable languages. The (honest) prover should be efficient and run in polynomial time, or in other words a \muggle".1 The verifier should be super-efficient and run in nearly-linear time. These proof systems can be used for delegating computation: a server can run a computation for a client and interactively prove the correctness of the result. The client can verify the result's correctness in nearly-linear time (instead of running the entire computation itself). Previously, related questions were considered in the Holographic Proof setting by Babai, Fortnow, Levin and Szegedy, in the argument setting under computational assumptions by Kilian, and in the random oracle model by Micali. Our focus, however, is on the original inter- active proof model where no assumptions are made on the computational power or adaptiveness of dishonest provers. Our main technical theorem gives a public coin interactive proof for any language computable by a log-space uniform boolean circuit with depth d and input length n. The verifier runs in time n · poly(d; log(n)) and space O(log(n)), the communication complexity is poly(d; log(n)), and the prover runs in time poly(n). In particular, for languages computable by log-space uniform NC (circuits of polylog(n) depth), the prover is efficient, the verifier runs in time n · polylog(n) and space O(log(n)), and the communication complexity is polylog(n). -
Interactive Proofs
Interactive proofs April 12, 2014 [72] L´aszl´oBabai. Trading group theory for randomness. In Proc. 17th STOC, pages 421{429. ACM Press, 1985. doi:10.1145/22145.22192. [89] L´aszl´oBabai and Shlomo Moran. Arthur-Merlin games: A randomized proof system and a hierarchy of complexity classes. J. Comput. System Sci., 36(2):254{276, 1988. doi:10.1016/0022-0000(88)90028-1. [99] L´aszl´oBabai, Lance Fortnow, and Carsten Lund. Nondeterministic ex- ponential time has two-prover interactive protocols. In Proc. 31st FOCS, pages 16{25. IEEE Comp. Soc. Press, 1990. doi:10.1109/FSCS.1990.89520. See item 1991.108. [108] L´aszl´oBabai, Lance Fortnow, and Carsten Lund. Nondeterministic expo- nential time has two-prover interactive protocols. Comput. Complexity, 1 (1):3{40, 1991. doi:10.1007/BF01200056. Full version of 1990.99. [136] Sanjeev Arora, L´aszl´oBabai, Jacques Stern, and Z. (Elizabeth) Sweedyk. The hardness of approximate optima in lattices, codes, and systems of linear equations. In Proc. 34th FOCS, pages 724{733, Palo Alto CA, 1993. IEEE Comp. Soc. Press. doi:10.1109/SFCS.1993.366815. Conference version of item 1997:160. [160] Sanjeev Arora, L´aszl´oBabai, Jacques Stern, and Z. (Elizabeth) Sweedyk. The hardness of approximate optima in lattices, codes, and systems of linear equations. J. Comput. System Sci., 54(2):317{331, 1997. doi:10.1006/jcss.1997.1472. Full version of 1993.136. [111] L´aszl´oBabai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time simulations unless EXPTIME has publishable proofs. In Proc. -
Simple Doubly-Efficient Interactive Proof Systems for Locally
Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 18 (2017) Simple doubly-efficient interactive proof systems for locally-characterizable sets Oded Goldreich∗ Guy N. Rothblumy September 8, 2017 Abstract A proof system is called doubly-efficient if the prescribed prover strategy can be implemented in polynomial-time and the verifier’s strategy can be implemented in almost-linear-time. We present direct constructions of doubly-efficient interactive proof systems for problems in P that are believed to have relatively high complexity. Specifically, such constructions are presented for t-CLIQUE and t-SUM. In addition, we present a generic construction of such proof systems for a natural class that contains both problems and is in NC (and also in SC). The proof systems presented by us are significantly simpler than the proof systems presented by Goldwasser, Kalai and Rothblum (JACM, 2015), let alone those presented by Reingold, Roth- blum, and Rothblum (STOC, 2016), and can be implemented using a smaller number of rounds. Contents 1 Introduction 1 1.1 The current work . 1 1.2 Relation to prior work . 3 1.3 Organization and conventions . 4 2 Preliminaries: The sum-check protocol 5 3 The case of t-CLIQUE 5 4 The general result 7 4.1 A natural class: locally-characterizable sets . 7 4.2 Proof of Theorem 1 . 8 4.3 Generalization: round versus computation trade-off . 9 4.4 Extension to a wider class . 10 5 The case of t-SUM 13 References 15 Appendix: An MA proof system for locally-chracterizable sets 18 ∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel. -
Title CLAD HELICES and DEVELOPABLE SURFACES( Fulltext )
CLAD HELICES AND DEVELOPABLE SURFACES( Title fulltext ) Author(s) TAKAHASHI,Takeshi; TAKEUCHI,Nobuko Citation 東京学芸大学紀要. 自然科学系, 66: 1-9 Issue Date 2014-09-30 URL http://hdl.handle.net/2309/136938 Publisher 東京学芸大学学術情報委員会 Rights Bulletin of Tokyo Gakugei University, Division of Natural Sciences, 66: pp.1~ 9 ,2014 CLAD HELICES AND DEVELOPABLE SURFACES Takeshi TAKAHASHI* and Nobuko TAKEUCHI** Department of Mathematics (Received for Publication; May 23, 2014) TAKAHASHI, T and TAKEUCHI, N.: Clad Helices and Developable Surfaces. Bull. Tokyo Gakugei Univ. Div. Nat. Sci., 66: 1-9 (2014) ISSN 1880-4330 Abstract We define new special curves in Euclidean 3-space which are generalizations of the notion of helices. Then we find a geometric invariant of a space curve which is related to the singularities of the special developable surface of the original curve. Keywords: cylindrical helices, slant helices, clad helices, g-clad helices, developable surfaces, singularities Department of Mathematics, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei-shi, Tokyo 184-8501, Japan 1. Introduction In this paper we define the notion of clad helices and g-clad helices which are generalizations of the notion of helices. Then we can find them as geodesics on the tangent developable(cf., §3). In §2 we describe basic notions and properties of space curves. We review the classification of singularities of the Darboux developable of a space curve in §4. We introduce the notion of the principal normal Darboux developable of a space curve. Then we find a geometric invariant of a clad helix which is related to the singularities of the principal normal Darboux developable of the original curve. -
A Study of the NEXP Vs. P/Poly Problem and Its Variants by Barıs
A Study of the NEXP vs. P/poly Problem and Its Variants by Barı¸sAydınlıoglu˘ A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Sciences) at the UNIVERSITY OF WISCONSIN–MADISON 2017 Date of final oral examination: August 15, 2017 This dissertation is approved by the following members of the Final Oral Committee: Eric Bach, Professor, Computer Sciences Jin-Yi Cai, Professor, Computer Sciences Shuchi Chawla, Associate Professor, Computer Sciences Loris D’Antoni, Asssistant Professor, Computer Sciences Joseph S. Miller, Professor, Mathematics © Copyright by Barı¸sAydınlıoglu˘ 2017 All Rights Reserved i To Azadeh ii acknowledgments I am grateful to my advisor Eric Bach, for taking me on as his student, for being a constant source of inspiration and guidance, for his patience, time, and for our collaboration in [9]. I have a story to tell about that last one, the paper [9]. It was a late Monday night, 9:46 PM to be exact, when I e-mailed Eric this: Subject: question Eric, I am attaching two lemmas. They seem simple enough. Do they seem plausible to you? Do you see a proof/counterexample? Five minutes past midnight, Eric responded, Subject: one down, one to go. I think the first result is just linear algebra. and proceeded to give a proof from The Book. I was ecstatic, though only for fifteen minutes because then he sent a counterexample refuting the other lemma. But a third lemma, inspired by his counterexample, tied everything together. All within three hours. On a Monday midnight. I only wish that I had asked to work with him sooner. -
Exploring Locus Surfaces Involving Pseudo Antipodal Points
Proceedings of the 25th Asian Technology Conference in Mathematics Exploring Locus Surfaces Involving Pseudo Antipodal Points Wei-Chi YANG [email protected] Department of Mathematics and Statistics Radford University Radford, VA 24142 USA Abstract The discussions in this paper were inspired by a college entrance practice exam from China. It is extended to investigate the locus curve that involves a point on an ellipse and its pseudo antipodal point with respect to a xed point. With the help of technological tools, we explore 2D locus for some regular closed curves. Later, we investigate how a locus curve can be extended to the corresponding 3D locus surfaces on surfaces like ellipsoid, cardioidal surface and etc. Secondly, we use the de nition of a developable surface (including tangent developable surface) to construct the corresponding locus surface. It is well known that, in robotics, antipodal grasps can be achieved on curved objects. In addition, there are many applications already in engineering and architecture about the developable surfaces. We hope the discussions regarding the locus surfaces can inspire further interesting research in these areas. 1 Introduction Technological tools have in uenced our learning, teaching and research in mathematics in many di erent ways. In this paper, we start with a simple exam problem and with the help of tech- nological tools, we are able to turn the problem into several challenging problems in 2D and 3D. The visualization bene ted from exploration provides us crucial intuition of how we can analyze our solutions with a computer algebra system. Therefore, while implementing techno- logical tools to allow exploration in our curriculum is de nitely a must. -
Arxiv:1711.06456V4 [Math.AG] 1 Dec 2018
PURITY FOR THE BRAUER GROUP KĘSTUTIS ČESNAVIČIUS Abstract. A purity conjecture due to Grothendieck and Auslander–Goldman predicts that the Brauer group of a regular scheme does not change after removing a closed subscheme of codimension ě 2. The combination of several works of Gabber settles the conjecture except for some cases that concern p-torsion Brauer classes in mixed characteristic p0,pq. We establish the remaining cases by using the tilting equivalence for perfectoid rings. To reduce to perfectoids, we control the change of the Brauer group of the punctured spectrum of a local ring when passing to a finite flat cover. 1. The purity conjecture of Grothendieck and Auslander–Goldman .............. 1 Acknowledgements ................................... ................................ 3 2. Passage to a finite flat cover ................................................... .... 3 3. Passage to the completion ................................................... ....... 6 4. The p-primary Brauer group in the perfectoid case .............................. 7 5. Passage to perfect or perfectoid towers ........................................... 11 6. Global conclusions ................................................... ............... 13 Appendix A. Fields of dimension ď 1 ................................................ 15 References ................................................... ........................... 16 1. The purity conjecture of Grothendieck and Auslander–Goldman Grothendieck predicted in [Gro68b, §6] that the cohomological Brauer group of a regular scheme X is insensitive to removing a closed subscheme Z Ă X of codimension ě 2. This purity conjecture is known in many cases (as we discuss in detail below), for instance, for cohomology classes of order 2 invertible on X, and its codimension requirement is necessary: the Brauer group of AC does not agree with that of the complement of the coordinate axes (see [DF84, Rem. 3]). In this paper, we finish the remaining cases, that is, we complete the proof of the following theorem. -
Perfectoid Spaces
MATH 679: PERFECTOID SPACES BHARGAV BHATT∗ Course Description. Perfectoid spaces are a class of spaces in arithmetic geometry introduced in 2012 by Peter Scholze in his PhD thesis [Sch12]. Despite their youth, these spaces have had stunning applications to many different areas of mathematics, including number theory, algebraic geometry, representation theory, and commutative algebra. The key to this success is that perfectoid spaces provide a functorial procedure to translate certain algebro-geometric problems from characteristic 0 (or mixed characteristic) to characteristic p; the latter can often be more accessible thanks to the magic of Frobenius. A major portion of this class will be devoted to setting up the basic theory of perfectoid spaces. En route, we will encounter Huber's approach to nonarchimedean geometry via his language of adic spaces, Faltings' theory of `almost mathematics' conceived in his proof of Fontaine's conjectures in p-adic Hodge theory, and the basic algebraic geometry of perfect schemes in characteristic p. The highlight of this part of the course will be the `almost purity theorem', a cruder version of which forms the cornerstone of Faltings' aforementioned work. The rest of the course will focus on a single application of perfectoid spaces. There are several choices here: we could go either in the arithmetic direction (such as Scholze's work on the weight-monodromy conjecture or some recent progress in p-adic Hodge theory) or in a more algebraic direction (which is the lecturer's inclination). A final choice will be made during the semester depending on audience makeup and interest. Contents 1.