Perfectoid Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Perfectoid Spaces MATH 679: PERFECTOID SPACES BHARGAV BHATT∗ Course Description. Perfectoid spaces are a class of spaces in arithmetic geometry introduced in 2012 by Peter Scholze in his PhD thesis [Sch12]. Despite their youth, these spaces have had stunning applications to many different areas of mathematics, including number theory, algebraic geometry, representation theory, and commutative algebra. The key to this success is that perfectoid spaces provide a functorial procedure to translate certain algebro-geometric problems from characteristic 0 (or mixed characteristic) to characteristic p; the latter can often be more accessible thanks to the magic of Frobenius. A major portion of this class will be devoted to setting up the basic theory of perfectoid spaces. En route, we will encounter Huber's approach to nonarchimedean geometry via his language of adic spaces, Faltings' theory of `almost mathematics' conceived in his proof of Fontaine's conjectures in p-adic Hodge theory, and the basic algebraic geometry of perfect schemes in characteristic p. The highlight of this part of the course will be the `almost purity theorem', a cruder version of which forms the cornerstone of Faltings' aforementioned work. The rest of the course will focus on a single application of perfectoid spaces. There are several choices here: we could go either in the arithmetic direction (such as Scholze's work on the weight-monodromy conjecture or some recent progress in p-adic Hodge theory) or in a more algebraic direction (which is the lecturer's inclination). A final choice will be made during the semester depending on audience makeup and interest. Contents 1. January 4th........................................................................................ 3 1.1. Overview...................................................................................... 3 1.2. Perfectoid fields................................................................................ 3 1.3. Perfectoid spaces............................................................................... 5 2. January 9th........................................................................................ 6 2.1. Overview (continued).......................................................................... 6 2.2. Conventions................................................................................... 7 2.3. Perfections and tilting......................................................................... 8 3. January 11th...................................................................................... 9 3.1. Perfectoid fields................................................................................ 9 4. January 18th...................................................................................... 11 4.1. Perfectoid fields (continued).................................................................... 11 5. January 23rd...................................................................................... 14 5.1. Almost mathematics........................................................................... 14 6. January 25th...................................................................................... 18 6.1. Almost mathematics (continued)............................................................... 18 6.2. Almost ´etaleextensions........................................................................ 20 7. January 30th...................................................................................... 20 7.1. Almost ´etaleextensions (continued)............................................................ 20 7.2. Construction (finite ´etalealgebras and idempotents)............................................ 21 7.3. Almost purity in characteristic p ............................................................... 22 ∗Notes were taken by Matt Stevenson, who is responsible for any and all errors. Many thanks to Takumi Murayama and Emanuel Reinecke for sending corrections. Please email [email protected] with any corrections. Compiled on April 27, 2017. 1 2 BHARGAV BHATT 8. February 1st....................................................................................... 23 8.1. Almost purity in characteristic p (continued)................................................... 23 8.2. Non-Archimedean Banach algebras (algebraically).............................................. 26 9. February 6th....................................................................................... 27 9.1. Non-Archimedean Banach algebras (continued)................................................. 27 9.2. Perfectoid algebras............................................................................. 29 10. February 8th...................................................................................... 29 10.1. Perfectoid algebras (continued)............................................................... 30 11. February 13th.................................................................................... 32 11.1. Cotangent complexes......................................................................... 33 12. February 15th.................................................................................... 36 12.1. Cotangent complexes (continued)............................................................. 36 12.2. Tilting by Fontaine's functors................................................................. 38 13. February 20th.................................................................................... 39 13.1. Almost purity................................................................................. 40 13.2. Adic spaces................................................................................... 41 14. February 22nd.................................................................................... 42 14.1. Basic properties of Tate rings................................................................. 42 14.2. Affinoid (pre-)adic spaces..................................................................... 43 15. March 6th........................................................................................ 45 15.1. Affinoid adic spaces (continued)............................................................... 46 15.2. Microbial valuation rings...................................................................... 47 16. March 8th........................................................................................ 49 16.1. Properties of affinoid adic spaces.............................................................. 49 16.2. Global structure of affinoid adic spaces........................................................ 51 17. March 20th....................................................................................... 52 17.1. Global structure of affinoid adic spaces (continued)............................................ 53 17.2. The structure presheaf........................................................................ 54 18. March 22nd....................................................................................... 55 18.1. The structure presheaf (continued)............................................................ 55 18.2. Background on henselian pairs................................................................ 57 19. March 27th....................................................................................... 58 19.1. Adic spaces................................................................................... 60 19.2. Analytic aspects of perfectoid spaces.......................................................... 61 20. March 29th....................................................................................... 62 20.1. Affinoid perfectoid spaces..................................................................... 63 21. April 3rd......................................................................................... 66 21.1. Affinoid perfectoid spaces (continued)......................................................... 66 22. April 5th......................................................................................... 69 22.1. Affinoid perfectoid spaces (continued)......................................................... 69 23. April 10th........................................................................................ 71 23.1. Tate acyclicity................................................................................ 71 24. April 12th........................................................................................ 74 24.1. Tate acyclicity (continued).................................................................... 74 24.2. \Noetherian approximation" for perfectoid algebras........................................... 76 25. April 17th........................................................................................ 77 25.1. Tate acyclicity (continued).................................................................... 77 25.2. Perfectoid spaces............................................................................. 78 MATH 679: PERFECTOID SPACES 3 25.3. The ´etaletopology............................................................................ 80 26. April 19th........................................................................................ 81 26.1. The ´etaletopology (continued)................................................................ 81 26.2. Proof of the Almost Purity Theorem.......................................................... 83 27. April 25th∗ ......................................................................................
Recommended publications
  • Arxiv:1908.07480V3 [Math.AG]
    TORSORS ON LOOP GROUPS AND THE HITCHIN FIBRATION ALEXIS BOUTHIER AND KĘSTUTIS ČESNAVIČIUS Abstract. In his proof of the fundamental lemma, Ngô established the product formula for the Hitchin fibration over the anisotropic locus. One expects this formula over the larger generically regular semisimple locus, and we confirm this by deducing the relevant vanishing statement for torsors over Rpptqq from a general formula for PicpRpptqqq. In the build up to the product formula, we present general algebraization, approximation, and invariance under Henselian pairs results for torsors, give short new proofs for the Elkik approximation theorem and the Chevalley isomorphism g G – t{W , and improve results on the geometry of the Chevalley morphism g Ñ g G. Résumé. Dans sa preuve du lemme fondamental, Ngô établit une formule du produit au-dessus du lieu anisotrope. On s’attend à ce qu’une telle formule s’étende au-dessus de l’ouvert génériquement régulier semisimple. Nous établissons une telle formule en la déduisant d’un résultat d’annulation de torseurs sous des groupes de lacets à partir d’une formule générale pour PicpRpptqqq. Dans le cours de la preuve, nous montrons des résultats généraux d’algébrisation, d’approximation et d’invariance hensélienne pour des torseurs ; nous donnons de nouvelles preuves plus concises du théorème d’algébrisation d’Elkik et de l’isomorphisme de Chevalley g G – t{W et améliorons les énoncés sur la géométrie du morphisme de Chevalley g Ñ g G. 1. Introduction ................................................... ...................... 2 Acknowledgements ................................... ................................ 4 2. Approximation and algebraization ................................................. 5 2.1. Invariance of torsors under Henselian pairs and algebraization ...................
    [Show full text]
  • Arxiv:1711.06456V4 [Math.AG] 1 Dec 2018
    PURITY FOR THE BRAUER GROUP KĘSTUTIS ČESNAVIČIUS Abstract. A purity conjecture due to Grothendieck and Auslander–Goldman predicts that the Brauer group of a regular scheme does not change after removing a closed subscheme of codimension ě 2. The combination of several works of Gabber settles the conjecture except for some cases that concern p-torsion Brauer classes in mixed characteristic p0,pq. We establish the remaining cases by using the tilting equivalence for perfectoid rings. To reduce to perfectoids, we control the change of the Brauer group of the punctured spectrum of a local ring when passing to a finite flat cover. 1. The purity conjecture of Grothendieck and Auslander–Goldman .............. 1 Acknowledgements ................................... ................................ 3 2. Passage to a finite flat cover ................................................... .... 3 3. Passage to the completion ................................................... ....... 6 4. The p-primary Brauer group in the perfectoid case .............................. 7 5. Passage to perfect or perfectoid towers ........................................... 11 6. Global conclusions ................................................... ............... 13 Appendix A. Fields of dimension ď 1 ................................................ 15 References ................................................... ........................... 16 1. The purity conjecture of Grothendieck and Auslander–Goldman Grothendieck predicted in [Gro68b, §6] that the cohomological Brauer group of a regular scheme X is insensitive to removing a closed subscheme Z Ă X of codimension ě 2. This purity conjecture is known in many cases (as we discuss in detail below), for instance, for cohomology classes of order 2 invertible on X, and its codimension requirement is necessary: the Brauer group of AC does not agree with that of the complement of the coordinate axes (see [DF84, Rem. 3]). In this paper, we finish the remaining cases, that is, we complete the proof of the following theorem.
    [Show full text]
  • Spaces in Algebraic Geometry
    K(π,1) Spaces in Algebraic Geometry By Piotr Achinger A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Arthur E. Ogus, Chair Professor Martin C. Olsson Professor Yasunori Nomura Spring 2015 K(π,1) Spaces in Algebraic Geometry Copyright 2015 by Piotr Achinger Abstract K(π,1) Spaces in Algebraic Geometry by Piotr Achinger Doctor of Philosophy in Mathematics University of California, Berkeley Professor Arthur E. Ogus, Chair The theme of this dissertation is the study of fundamental groups and classifying spaces in the context of the étale topology of schemes. The main result is the existence of K(π,1) neighborhoods in the case of semistable (or more generally log smooth) reduction, generalizing a result of Gerd Faltings. As an application to p-adic Hodge theory, we use the existence of these neighborhoods to compare the cohomology of the geometric generic fiber of a semistable scheme over a discrete valuation ring with the cohomology of the associated Faltings topos. The other results include comparison theorems for the cohomology and homotopy types of several types of Milnor fibers. We also prove an `-adic version of a formula of Ogus, describing the monodromy action on the complex of nearby cycles of a log smooth family in terms of the log structure. 1 “Proof is hard to come by.” –Proposition Joe i Contents 1 Introduction1 1.1 A non-technical outline...................................2 1.1.1 The classical theory over the complex numbers..............3 1.1.2 The algebraic theory...............................7 1.1.3 Semistable degenerations............................
    [Show full text]
  • K(Π,1) Spaces in Algebraic Geometry
    K(π,1) Spaces in Algebraic Geometry By Piotr Achinger A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Arthur Ogus, Chair Professor Martin Olsson Professor Yasunori Nomura Spring 2015 K(π,1) Spaces in Algebraic Geometry Copyright 2015 by Piotr Achinger Abstract K(π,1) Spaces in Algebraic Geometry by Piotr Achinger Doctor of Philosophy in Mathematics University of California, Berkeley Professor Arthur Ogus, Chair The theme of this dissertation is the study of fundamental groups and classifying spaces in the context of the étale topology of schemes. The main result is the existence of K(π,1) neighborhoods in the case of semistable (or more generally log smooth) reduction, generalizing a result of Gerd Faltings. As an application to p-adic Hodge theory, we use the existence of these neighborhoods to compare the cohomology of the geometric generic fiber of a semistable scheme over a discrete valuation ring with the cohomology of the associated Faltings topos. The other results include comparison theorems for the cohomology and homotopy types of several types of Milnor fibers. We also prove an `-adic version of a formula of Ogus, describing the monodromy action on the complex of nearby cycles of a log smooth family in terms of the log structure. 1 i “Proof is hard to come by.” –Proposition Joe ii Contents 1 Introduction1 1.1 A non-technical outline.................................2 1.1.1 The classical theory over the complex numbers............3 1.1.2 The algebraic theory.............................7 1.1.3 Semistable degenerations..........................
    [Show full text]
  • Current Events Bulletin
    AMERICAN MATHEMATICAL SOCIETY 2019 CURRENT CURRENT EVENTS BULLETIN EVENTS BULLETIN Friday, January 18, 2019, 1:00 PM to 4:45 PM Committee Room 307, Baltimore Convention Center Joint Mathematics Meeting, Baltimore, MD Matt Baker, Georgia Tech Hélène Barcelo, Mathematical Sciences Research Institute Bhargav Bhatt Sandra Cerrai, University of Maryland 1:00 PM | Henry Cohn, Microsoft Research University of Michigan David Eisenbud, Mathematical Sciences Research Institute, Committee Chair Perfectoid Geometry and its Applications Susan Friedlander, University of Southern California Hear about a great new tool for number theory that allows you to treat a prime number like a variable. Joshua Grochow, University of Colorado, Boulder Gregory F. Lawler, University of Chicago Ryan O'Donnell, Carnegie Mellon University Lillian Pierce, Duke University Alice Silverberg, University of California, Irvine Thomas Vidick 2:00 PM | Michael Singer, North Carolina State University California Institute of Technology |0> Kannan Soundararajan, Stanford University Gigliola Staffilani, Massachusetts Institute of Technology Verifying Quantum Computations at Scale: Vanessa Goncalves, AMS Administrative Support a Cryptographic Leash on Quantum Devices Quantum computers would be amazing–but could you trust one? Stephanie van Willigenburg 3:00 PM | University of British Columbia The Shuffle Conjecture Dyck paths, symmetric functions–what's it all about? Robert Lazarsfeld 4:00 PM | Stony Brook University Tangent Developable Surfaces and the Equations Defining Algebraic Curves Some lovely old geometry and an algebraic idea inspired by topology have simplified the proof of a central conjecture about generic Riemann surfaces. The back cover graphic is reprinted courtesy of Andrei Okounkov. Cover graphic associated with Bhargav Bhatt’s talk courtesy of the AMS.
    [Show full text]
  • Arxiv:1912.10932V2 [Math.AG] 4 Jun 2021 E Od N Phrases
    PURITY FOR FLAT COHOMOLOGY KĘSTUTIS ČESNAVIČIUS AND PETER SCHOLZE Abstract. We establish the flat cohomology version of the Gabber–Thomason purity for étale cohomology: for a complete intersection Noetherian local ring pR, mq and a commutative, finite, i flat R-group G, the flat cohomology HmpR, Gq vanishes for i ă dimpRq. For small i, this settles conjectures of Gabber that extend the Grothendieck–Lefschetz theorem and give purity for the Brauer group for schemes with complete intersection singularities. For the proof, we reduce to a flat purity statement for perfectoid rings, establish p-complete arc descent for flat cohomology of perfectoids, and then relate to coherent cohomology of Ainf via prismatic Dieudonné theory. We also present an algebraic version of tilting for étale cohomology, use it reprove the Gabber–Thomason purity, and exhibit general properties of fppf cohomology of (animated) rings with finite, locally free group scheme coefficients, such as excision, agreement with fpqc cohomology, and continuity. 1. Absolute cohomological purity for flat cohomology .............................. 2 2. The geometry of integral perfectoid rings ........................................ 8 2.1. Structural properties of perfectoid rings . ................................ 8 2.2. Tilting étale cohomology algebraically . ................................ 15 2.3. The ind-syntomic generalization of André’s lemma . ........................... 19 3. The prime to the characteristic aspects of the main result ..................... 25 3.1. The absolute cohomological purity of Gabber–Thomason ......................... 25 3.2. The étale depth is at least the virtual dimension . ............................ 28 3.3. Zariski–Nagata purity for rings of virtual dimension ě 3 .......................... 29 4. Inputs from crystalline and prismatic Dieudonné theory ........................ 30 4.1. Finite, locally free group schemes of p-power order over perfect rings .
    [Show full text]
  • Purity for the Brauer Group
    PURITY FOR THE BRAUER GROUP KĘSTUTIS ČESNAVIČIUS Abstract. A purity conjecture due to Grothendieck and Auslander–Goldman predicts that the Brauer group of a regular scheme does not change after removing a closed subscheme of codimension ¥ 2. The combination of several works of Gabber settles the conjecture except for some cases that concern p-torsion Brauer classes in mixed characteristic p0; pq. We establish the remaining cases by using the tilting equivalence for perfectoid rings. To reduce to perfectoids, we control the change of the Brauer group of the punctured spectrum of a local ring when passing to a finite flat cover. 1. The purity conjecture of Grothendieck and Auslander–Goldman ..............1 Acknowledgements . .3 2. Passage to a finite flat cover .......................................................3 3. Passage to the completion ..........................................................6 4. The p-primary Brauer group in the perfectoid case ..............................7 5. Passage to perfect or perfectoid towers ........................................... 11 6. Global conclusions .................................................................. 13 Appendix A. Fields of dimension ¤ 1 ................................................ 15 References .............................................................................. 16 1. The purity conjecture of Grothendieck and Auslander–Goldman Grothendieck predicted in [Gro68b, §6] that the cohomological Brauer group of a regular scheme X is insensitive to removing a closed subscheme Z Ă X of codimension ¥ 2. This purity conjecture is known in many cases (as we discuss in detail below), for instance, for cohomology classes of order invertible on X, and its codimension requirement is necessary: the Brauer group of 2 does not AC agree with that of the complement of the coordinate axes (see [DF84, Rem. 3]). In this paper, we finish the remaining cases, that is, we complete the proof of the following theorem.
    [Show full text]