Ricci Flow and the Sphere Theorem

Total Page:16

File Type:pdf, Size:1020Kb

Ricci Flow and the Sphere Theorem Ricci Flow and the Sphere Theorem 3IMON"RENDLE 'RADUATE3TUDIES IN-ATHEMATICS 6OLUME !MERICAN-ATHEMATICAL3OCIETY http://dx.doi.org/10.1090/gsm/111 Ricci Flow and the Sphere Theorem Simon Brendle Graduate Studies in Mathematics Volume 111 American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE David Cox (Chair) Steven G. Krantz Rafe Mazzeo Martin Scharlemann 2000 Mathematics Subject Classification. Primary 53C20, 53C21, 53C44. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-111 Library of Congress Cataloging-in-Publication Data Brendle, Simon, 1981– Ricci flow and the sphere theorem / Simon Brendle. p. cm. — (Graduate studies in mathematics ; v. 111) Includes bibliographical references and index. ISBN 978-0-8218-4938-5 (alk. paper) 1. Ricci flow. 2. Sphere. I. Title. QA377.3B74 2010 516.362—dc22 2009037261 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2010 by the author. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 151413121110 Contents Preface v Chapter 1. A survey of sphere theorems in geometry 1 §1.1. Riemannian geometry background 1 §1.2. The Topological Sphere Theorem 6 §1.3. The Diameter Sphere Theorem 7 §1.4. The Sphere Theorem of Micallef and Moore 9 §1.5. Exotic Spheres and the Differentiable Sphere Theorem 13 Chapter 2. Hamilton’s Ricci flow 15 §2.1. Definition and special solutions 15 §2.2. Short-time existence and uniqueness 17 §2.3. Evolution of the Riemann curvature tensor 21 §2.4. Evolution of the Ricci and scalar curvature 28 Chapter 3. Interior estimates 31 §3.1. Estimates for the derivatives of the curvature tensor 31 §3.2. Derivative estimates for tensors 33 §3.3. Curvature blow-up at finite-time singularities 36 Chapter 4. Ricci flow on S2 37 §4.1. Gradient Ricci solitons on S2 37 §4.2. Monotonicity of Hamilton’s entropy functional 39 §4.3. Convergence to a constant curvature metric 45 Chapter 5. Pointwise curvature estimates 49 §5.1. Introduction 49 iii iv Contents §5.2. The tangent and normal cone to a convex set 49 §5.3. Hamilton’s maximum principle for the Ricci flow 53 §5.4. Hamilton’s convergence criterion for the Ricci flow 58 Chapter 6. Curvature pinching in dimension 3 67 §6.1. Three-manifolds with positive Ricci curvature 67 §6.2. The curvature estimate of Hamilton and Ivey 70 Chapter 7. Preserved curvature conditions in higher dimensions 73 §7.1. Introduction 73 §7.2. Nonnegative isotropic curvature 74 §7.3. Proof of Proposition 7.4 77 §7.4. The cone C˜ 87 §7.5. The cone Cˆ 90 §7.6. An invariant set which lies between C˜ and Cˆ 93 §7.7. An overview of various curvature conditions 100 Chapter 8. Convergence results in higher dimensions 101 §8.1. An algebraic identity for curvature tensors 101 §8.2. Constructing a family of invariant cones 106 §8.3. Proof of the Differentiable Sphere Theorem 112 §8.4. An improved convergence theorem 117 Chapter 9. Rigidity results 121 §9.1. Introduction 121 §9.2. Berger’s classification of holonomy groups 121 §9.3. A version of the strict maximum principle 123 §9.4. Three-manifolds with nonnegative Ricci curvature 126 §9.5. Manifolds with nonnegative isotropic curvature 129 §9.6. K¨ahler-Einstein and quaternionic-K¨ahler manifolds 135 §9.7. A generalization of a theorem of Tachibana 146 §9.8. Classification results 149 Appendix A. Convergence of evolving metrics 155 Appendix B. Results from complex linear algebra 159 Problems 163 Bibliography 169 Index 175 Preface In this book, we study the evolution of Riemannian metrics under the Ricci flow. This evolution equation was introduced in a seminal paper by R. Hamilton [44], following earlier work of Eells and Sampson [33]onthe harmonic map heat flow. Using the Ricci flow, Hamilton proved that ev- ery compact three-manifold with positive Ricci curvature is diffeomorphic to a spherical space form. The Ricci flow has since been used to resolve longstanding open questions in Riemannian geometry and three-dimensional topology. In this text, we focus on the convergence theory for the Ricci flow in higher dimensions and its application to the Differentiable Sphere Theo- rem. The results we describe have all appeared in research articles. How- ever, we have made an effort to simplify various arguments and streamline the exposition. In Chapter 1, we give a survey of various sphere theorems in Riemannian geometry (see also [22]). We first describe the Topological Sphere Theorem of Berger and Klingenberg. We then discuss various generalizations of that theorem, such as the Diameter Sphere Theorem of Grove and Shiohama [42] and the Sphere Theorem of Micallef and Moore [60]. These results rely on the variational theory for geodesics and harmonic maps, respectively. We will discuss the main ideas involved in the proof; however, this material will not be used in later chapters. Finally, we state the Differentiable Sphere Theorem obtained by the author and R. Schoen [20]. In Chapter 2, we state the definition of the Ricci flow and describe the short-time existence and uniqueness theory. We then study how the Riemann curvature tensor changes when the metric evolves under the Ricci flow. This evolution equation will be the basis for all the aprioriestimates established in later chapters. v vi Preface In Chapter 3, we describe Shi’s estimates for the covariant derivatives of the curvature tensor. As an application, we show that the Ricci flow cannot develop a singularity in finite time unless the curvature is unbounded. Moreover, we establish interior estimates for solutions of linear parabolic equations. These estimates play an important role in Sections 4.3 and 5.4. In Chapter 4, we consider the Ricci flow on S2. In Section 4.1, we show that any gradient Ricci soliton on S2 has constant curvature. We then study solutions to the Ricci flow on S2 with positive scalar curvature. A theorem of Hamilton [46] asserts that such a solution converges to a constant curvature metric after rescaling. A key ingredient in the proof is the monotonicity of Hamilton’s entropy functional. This monotonicity formula will be discussed in Section 4.2. Alternative proofs of this theorem can be found in [4], [6], [48], or [82]. The arguments in [4] and [48] are based on a careful study of the isoperimetric profile, while the proofs in [6] and [82]employPDE techniques. In Chapter 5, we describe Hamilton’s maximum principle for the Ricci flow and discuss the notion of a pinching set. We then describe a general convergence criterion for the Ricci flow. This criterion was discovered by Hamilton [45] and plays an important role in the study of Ricci flow. In Chapter 6, we explain how Hamilton’s classification of three-manifolds with positive Ricci curvature follows from the general theory developed in Chapter 5. We then describe an important curvature estimate, due to Hamil- ton and Ivey. This inequality holds for any solution to the Ricci flow in dimension 3. In Chapter 7, we describe various curvature conditions which are pre- served by the Ricci flow. We first prove that nonnegative isotropic curvature is preserved by the Ricci flow in all dimensions. This curvature condition originated in Micallef and Moore’s work on the Morse index of harmonic two-spheres and plays a central role in this book. We then consider the condition that M ×R has nonnegative isotropic curvature. This condition is stronger than nonnegative isotropic curvature, and is also preserved by the Ricci flow. Continuing in this fashion, we consider the condition that M ×R2 has nonnegative isotropic curvature, and the condition that M × S2(1) has nonnegative isotropic curvature. (Here, S2(1) denotes a two-dimensional sphere of constant curvature 1.) We show that these conditions are pre- served by the Ricci flow as well. In Chapter 8, we present the proof of the Differentiable Sphere Theorem. More generally, we show that every compact Riemannian manifold M with the property that M × R has positive isotropic curvature is diffeomorphic to a spherical space form. This theorem is the main result of Chapter 8. It Preface vii can be viewed as a generalization of Hamilton’s work in dimension 3 and was originally proved in [17]. In Chapter 9, we prove various rigidity theorems. In particular, we clas- sify all compact Riemannian manifolds M with the property that M × R has nonnegative isotropic curvature. Moreover, we show that any Einstein manifold with nonnegative isotropic curvature is necessarily locally symmet- ric. This generalizes classical results due to Berger [10], [11] and Tachibana [84]. In order to handle the borderline case, we employ a variant of Bony’s strict maximum principle for degenerate elliptic equations. The material presented in Chapters 2–9 is largely, though not fully, self- contained. In Section 2.2, we employ the existence and uniqueness theory for parabolic systems.
Recommended publications
  • Marcel Berger Remembered
    Marcel Berger Remembered Claude LeBrun, Editor and Translator Gérard Besson EDITOR’S NOTE. Claude LeBrun has kindly assembled this memorial for Marcel Berger. This month also Marcel Berger,1 one of the world’s leading differential marks the conference “Riemannian Geometry Past, geometers and a corresponding member of the French Present and Future: An Homage to Marcel Berger” at Academy of Sciences for half a century, passed away on IHÉS. October 15, 2016, at the age of eighty-nine. Marcel Berger’s contributions to geometry were both broad and deep. The classification of Riemannian holo- nomy groups provided by his thesis has had a lasting impact on areas ranging from theoretical physics to alge- braic geometry. His 1960 proof that a complete oriented even-dimensional manifold with strictly quarter-pinched positive curvature must be a topological sphere is the Claude LeBrun is professor of mathematics at Stony Brook Univer- sity. His email address is [email protected]. Gérard Besson is CNRS Research Director at Institut Fourier, Uni- For permission to reprint this article, please contact: versité Grenoble, France. His email address is g.besson@ujf [email protected]. -grenoble.fr. DOI: http://dx.doi.org/10.1090/noti1605 1Pronounced bare-ZHAY. December 2017 Notices of the AMS 1285 research director by the CNRS. He served as president of the French Mathematical Society (SMF) during the period of 1979–80 and in this capacity helped oversee the foundation of the International Center for Mathematical Workshops (CIRM) in Luminy. In 1985 he then became director of the Institute for Higher Scientific Studies (IHÉS) in Bures-sur-Yvette, a position in which he served until 1993, when he was succeeded by his former student Jean-Pierre Bourguignon.
    [Show full text]
  • The Geometry of Asymptotically Hyperbolic Manifolds a Dissertation Submitted to the Department of Mathematics and the Committee
    THE GEOMETRY OF ASYMPTOTICALLY HYPERBOLIC MANIFOLDS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MATHEMATICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Otis Chodosh June 2015 © 2015 by Otis Avram Chodosh. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/mp634xn8004 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Simon Brendle, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Michael Eichmair, Co-Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Leon Simon I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Brian White Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost for Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format.
    [Show full text]
  • All That Math Portraits of Mathematicians As Young Researchers
    Downloaded from orbit.dtu.dk on: Oct 06, 2021 All that Math Portraits of mathematicians as young researchers Hansen, Vagn Lundsgaard Published in: EMS Newsletter Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hansen, V. L. (2012). All that Math: Portraits of mathematicians as young researchers. EMS Newsletter, (85), 61-62. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Editorial Obituary Feature Interview 6ecm Marco Brunella Alan Turing’s Centenary Endre Szemerédi p. 4 p. 29 p. 32 p. 39 September 2012 Issue 85 ISSN 1027-488X S E European M M Mathematical E S Society Applied Mathematics Journals from Cambridge journals.cambridge.org/pem journals.cambridge.org/ejm journals.cambridge.org/psp journals.cambridge.org/flm journals.cambridge.org/anz journals.cambridge.org/pes journals.cambridge.org/prm journals.cambridge.org/anu journals.cambridge.org/mtk Receive a free trial to the latest issue of each of our mathematics journals at journals.cambridge.org/maths Cambridge Press Applied Maths Advert_AW.indd 1 30/07/2012 12:11 Contents Editorial Team Editors-in-Chief Jorge Buescu (2009–2012) European (Book Reviews) Vicente Muñoz (2005–2012) Dep.
    [Show full text]
  • Hamilton's Ricci Flow
    The University of Melbourne, Department of Mathematics and Statistics Hamilton's Ricci Flow Nick Sheridan Supervisor: Associate Professor Craig Hodgson Second Reader: Professor Hyam Rubinstein Honours Thesis, November 2006. Abstract The aim of this project is to introduce the basics of Hamilton's Ricci Flow. The Ricci flow is a pde for evolving the metric tensor in a Riemannian manifold to make it \rounder", in the hope that one may draw topological conclusions from the existence of such \round" metrics. Indeed, the Ricci flow has recently been used to prove two very deep theorems in topology, namely the Geometrization and Poincar´eConjectures. We begin with a brief survey of the differential geometry that is needed in the Ricci flow, then proceed to introduce its basic properties and the basic techniques used to understand it, for example, proving existence and uniqueness and bounds on derivatives of curvature under the Ricci flow using the maximum principle. We use these results to prove the \original" Ricci flow theorem { the 1982 theorem of Richard Hamilton that closed 3-manifolds which admit metrics of strictly positive Ricci curvature are diffeomorphic to quotients of the round 3-sphere by finite groups of isometries acting freely. We conclude with a qualitative discussion of the ideas behind the proof of the Geometrization Conjecture using the Ricci flow. Most of the project is based on the book by Chow and Knopf [6], the notes by Peter Topping [28] (which have recently been made into a book, see [29]), the papers of Richard Hamilton (in particular [9]) and the lecture course on Geometric Evolution Equations presented by Ben Andrews at the 2006 ICE-EM Graduate School held at the University of Queensland.
    [Show full text]
  • EMS Newsletter September 2012 1 EMS Agenda EMS Executive Committee EMS Agenda
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Editorial Obituary Feature Interview 6ecm Marco Brunella Alan Turing’s Centenary Endre Szemerédi p. 4 p. 29 p. 32 p. 39 September 2012 Issue 85 ISSN 1027-488X S E European M M Mathematical E S Society Applied Mathematics Journals from Cambridge journals.cambridge.org/pem journals.cambridge.org/ejm journals.cambridge.org/psp journals.cambridge.org/flm journals.cambridge.org/anz journals.cambridge.org/pes journals.cambridge.org/prm journals.cambridge.org/anu journals.cambridge.org/mtk Receive a free trial to the latest issue of each of our mathematics journals at journals.cambridge.org/maths Cambridge Press Applied Maths Advert_AW.indd 1 30/07/2012 12:11 Contents Editorial Team Editors-in-Chief Jorge Buescu (2009–2012) European (Book Reviews) Vicente Muñoz (2005–2012) Dep. Matemática, Faculdade Facultad de Matematicas de Ciências, Edifício C6, Universidad Complutense Piso 2 Campo Grande Mathematical de Madrid 1749-006 Lisboa, Portugal e-mail: [email protected] Plaza de Ciencias 3, 28040 Madrid, Spain Eva-Maria Feichtner e-mail: [email protected] (2012–2015) Society Department of Mathematics Lucia Di Vizio (2012–2016) Université de Versailles- University of Bremen St Quentin 28359 Bremen, Germany e-mail: [email protected] Laboratoire de Mathématiques Newsletter No. 85, September 2012 45 avenue des États-Unis Eva Miranda (2010–2013) 78035 Versailles cedex, France Departament de Matemàtica e-mail: [email protected] Aplicada I EMS Agenda .......................................................................................................................................................... 2 EPSEB, Edifici P Editorial – S. Jackowski ........................................................................................................................... 3 Associate Editors Universitat Politècnica de Catalunya Opening Ceremony of the 6ECM – M.
    [Show full text]
  • Book Reviews
    BOOK REVIEWS BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 11, Number 1, July 1984 ©1984 American Mathematical Society 0273-0979/84 $1.00 + $.25 per page Riemannian geometry, by Wilhelm Klingenberg, de Gruyter Studies in Mathematics, Vol. 1, Walter de Gruyter & Co., Berlin, 1982, x + 396 pp., $49.00. ISBN 3-1100-8373-5 The basic concepts of Riemannian geometry have become useful in a surprising variety of mathematical subjects. The terminology of manifolds, bundles, Riemannian metrics, and connections has become a lingua franca over much of partial differential equations, mathematical physics, and algebraic geometry, among other fields. This increasingly widespread use of the terminology and methods of geometry has tended to obscure the fact that Riemannian geometry as such is a subject with a quite precisely focused program, namely, to determine how the topology of a manifold is influenced by the local properties of its metric structure. These local properties are usually formulated in terms of curvature; this formulation is justified by the theorem of E. Cartan that the curvature tensor and its covariant derivatives of all orders at a point determine the formal Taylor expansion of the metric at that point. The program of obtaining global topological information from local metric information actually applies only to complete Riemannian manifolds, i.e., those that are complete as metric spaces when the distance between points is defined to be the infimum of the Riemannian-metric arc length of curves joining the two points. This restriction to complete manifolds, long a standard one in the subject, has been given explicit justification by a result of M.
    [Show full text]
  • Mathematics People
    NEWS Mathematics People Tardos Named Goldfarb and Nocedal Kovalevsky Lecturer Awarded 2017 von Neumann Éva Tardos of Cornell University Theory Prize has been chosen as the 2018 AWM- SIAM Sonia Kovalevsky Lecturer by Donald Goldfarb of Columbia the Association for Women in Math- University and Jorge Nocedal of ematics (AWM) and the Society for Northwestern University have been Industrial and Applied Mathematics awarded the 2017 John von Neu- (SIAM). She was honored for her “dis- mann Theory Prize by the Institute tinguished scientific contributions for Operations Research and the to the efficient methods for com- Management Sciences (INFORMS). binatorial optimization problems According to the prize citation, “The Éva Tardos on graphs and networks, and her award recognizes the seminal con- work on issues at the interface of tributions that Donald Goldfarb computing and economics.” According to the prize cita- Jorge Nocedal and Jorge Nocedal have made to the tion, she is considered “one of the leaders in defining theory and applications of nonlinear the area of algorithmic game theory, in which algorithms optimization over the past several decades. These contri- are designed in the presence of self-interested agents butions cover a full range of topics, going from modeling, governed by incentives and economic constraints.” With to mathematical analysis, to breakthroughs in scientific Tim Roughgarden, she was awarded the 2012 Gödel Prize computing. Their work on the variable metric methods of the Association for Computing Machinery (ACM) for a paper “that shaped the field of algorithmic game theory.” (BFGS and L-BFGS, respectively) has been extremely in- She received her PhD in 1984 from Eötvös Loránd Univer- fluential.” sity.
    [Show full text]
  • Curvature Cones and the Ricci Flow
    Institut Fourier — Université de Grenoble I Actes du séminaire de Théorie spectrale et géométrie Thomas RICHARD Curvature cones and the Ricci flow. Volume 31 (2012-2014), p. 197-220. <http://tsg.cedram.org/item?id=TSG_2012-2014__31__197_0> © Institut Fourier, 2012-2014, tous droits réservés. L’accès aux articles du Séminaire de théorie spectrale et géométrie (http://tsg.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://tsg.cedram.org/legal/). cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Séminaire de théorie spectrale et géométrie Grenoble Volume 31 (2012-2014) 197-220 CURVATURE CONES AND THE RICCI FLOW. Thomas Richard Abstract. — This survey reviews some facts about nonnegativity conditions on the curvature tensor of a Riemannian manifold which are preserved by the action of the Ricci flow. The text focuses on two main points. First we describe the known examples of preserved curvature conditions and how they have been used to derive geometric results, in particular sphere theorems. We then describe some recent results which give restrictions on general preserved conditions. The paper ends with some open questions on these matters. The Ricci flow is the following evolution equation: ( ∂g = −2 Ric (0.1) ∂t g(t) g(t) = g0 where (g(t))t∈[0,T ) is a one-parameter family of smooth Riemannian metrics on a fixed manifold M, and g0 is a given smooth Riemannian metric on M. It was introduced by R. Hamilton in 1982 ([11]), where it was used to study the topology of compact 3-manifolds with positive Ricci curvature.
    [Show full text]
  • Examples of Riemannian Manifolds with Non-Negative Sectional Curvature
    EXAMPLES OF RIEMANNIAN MANIFOLDS WITH NON-NEGATIVE SECTIONAL CURVATURE WOLFGANG ZILLER Manifolds with non-negative sectional curvature have been of interest since the beginning of global Riemannian geometry, as illustrated by the theorems of Bonnet-Myers, Synge, and the sphere theorem. Some of the oldest conjectures in global Riemannian geometry, as for example the Hopf conjecture on S2 £ S2, also ¯t into this subject. For non-negatively curved manifolds, there are a number of obstruction theorems known, see Section 1 below and the survey by Burkhard Wilking in this volume. It is somewhat surprising that the only further obstructions to positive curvature are given by the classical Bonnet-Myers and Synge theorems on the fundamental group. Although there are many examples with non-negative curvature, they all come from two basic constructions, apart from taking products. One is taking an isometric quotient of a compact Lie group equipped with a biinvariant metric and another a gluing procedure due to Cheeger and recently signi¯cantly generalized by Grove-Ziller. The latter examples include a rich class of manifolds, and give rise to non-negative curvature on many exotic 7-spheres. On the other hand, known manifolds with positive sectional curvature are very rare, and are all given by quotients of compact Lie groups, and, apart from the classical rank one symmetric spaces, only exist in dimension below 25. Due to this lack of knowledge, it is therefore of importance to discuss and understand known examples and ¯nd new ones. In this survey we will concentrate on the description of known examples, although the last section also contains suggestions where to look for new ones.
    [Show full text]
  • Arxiv:1710.03952V3 [Math.MG] 11 Jul 2021 Example Lp-Unit Spheres)
    THE ISOPERIMETRIC INEQUALITY ON COMPACT RANK ONE SYMMETRIC SPACES AND BEYOND YASHAR MEMARIAN Abstract. Klartag's needle decomposition technique enables one to obtain strong isoperimetric inequalities on Riemannian manifolds other than the clas- sical known examples. As a result, in this paper, we obtain sharp isoperimetric inequalities for compact rank one symmetric spaces (CROSS). Namely, for the n real projective space RP , we demonstrate that the isoperimetric regions are k n given by either the geodesic balls or tubes around some RP ⊂ RP . For the n complex projective space CP , the isoperimetric regions are given by either k n the geodesic balls or tubes around some CP ⊂ CP . And for the quaternionic projective space, the isoperimetric regions are given by either the geodesic balls k n or tubes around some HP ⊂ HP . 1. Introduction Isoperimetric problems are some of the oldest problems in geometry. Given a space, one looks for domains of a given volume with the least boundary area. It is known that in model spaces (i.e. Euclidean spaces, spheres and hyperbolic spaces), for every given number v, the intrinsic balls with volume v have the least surface area among every domain with the same volume. When we leave the world of model spaces, or when we are dealing with geometric spaces with boundary, the solution to isoperimetric problems has provided real difficulties. Of course, when the number v is small enough, for spaces which locally look like Euclidean spaces (for instance manifolds), one expects that the solution of isoperimetric problems still would be the metric balls. However, for larger v and shapes with non-constant curvature or with non-smooth boundaries, the isoperimetric problem in general is very hard to solve.
    [Show full text]
  • DMS COV Report
    Report of the 2010 Committee of Visitors Division of Mathematical Sciences National Science Foundation 26-28 April 2010 Submitted on behalf of the Committee by C. David Levermore, Chair to H. Edward Seidel, Acting Assistant Director Mathematical and Physical Sciences 1. Charge, Organization, and Procedures 2. Major Findings, Recommendations, and Concerns 3. A More Detailed Look at Disciplinary Programs 4. Responses to Template Questions 5. Responses to Additional Questions Appendix A. Committee Membership Appendix B. Subcommittee Structure Appendix C. Conflict of Interest Report Appendix D. Meeting Agenda 1 1. Charge, Organization, and Procedures The 2010 Committee of Visitors (COV) for the Division of Mathematical Sciences (DMS) of the National Science Foundation (NSF) was charged by Edward Seidel, Acting Assistant Director for Mathematical and Physical Sciences (MPS), to address and report on: • the integrity and efficacy of processes used to solicit, review, recommend, and document proposal actions; • the quality and significance of the results of the Division's programmatic investments; • the relationship between award decisions, program goals, and Foundation-wide programs and strategic goals; • the Division's balance, priorities, and future directions; • the Division's response to the prior COV report of 2007; and • any other issues that the COV feels are relevant to the review. Following NSF guidelines, the COV consisted of a diverse group of members representing different work environments (research-intensive public and private universities, primarily undergraduate colleges and universities, private industry, other Federal government agencies or laboratories, and non-U.S. institutions), gender, ethnicity, and geographical location. A list of the COV members and their affiliations is given in Appendix A.
    [Show full text]
  • Comparison Theorems in Riemannian Geometry
    COMPARISON THEOREMS IN RIEMANNIAN GEOMETRY JEFF CHEEGER DAVID G. EBIN AMS CHELSEA PUBLISHING !MERICAN -ATHEMATICAL 3OCIETY s 0ROVIDENCE 2HODE )SLAND COMPARISON THEOREMS IN RIEMANNIAN GEOMETRY David G. Ebin and Jeff Cheeger G.EbinandJeff David Photo courtesy of Ann Billingsley COMPARISON THEOREMS IN RIEMANNIAN GEOMETRY JEFF CHEEGER DAVID G. EBIN AMS CHELSEA PUBLISHING American Mathematical Society • Providence, Rhode Island M THE ATI A CA M L ΤΡΗΤΟΣ ΜΗ N ΕΙΣΙΤΩ S A O C C I I R E E T ΑΓΕΩΜΕ Y M A F O 8 U 88 NDED 1 2000 Mathematics Subject Classification. Primary 53C20; Secondary 58E10. For additional information and updates on this book, visit www.ams.org/bookpages/chel-365 Library of Congress Cataloging-in-Publication Data Cheeger, Jeff. Comparison theorems in riemannian geometry / Jeff Cheeger, David G. Ebin. p. cm. — (AMS Chelsea Publishing) Originally published: Amsterdam : North-Holland Pub. Co. ; New York : American Elsevier Pub. Co., 1975, in series: North-Holland mathematical library ; v. 9. Includes bibliographical references and index. ISBN 978-0-8218-4417-5 (alk. paper) 1. Geometry, Riemannian. 2. Riemannian manifolds. I. Ebin, D. G. II. American Mathe- matical Society. III. Title. QA649 .C47 2008 516.373—dc22 2007052113 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society.
    [Show full text]