Quantifying the Impact of Hurricanes, Mid-Latitude Cyclones and Other

Total Page:16

File Type:pdf, Size:1020Kb

Quantifying the Impact of Hurricanes, Mid-Latitude Cyclones and Other Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2014 Quantifying the impact of hurricanes, mid-latitude cyclones and other weather and climate extreme events on the Mississippi-Alabama Barrier Islands using remotely sensed data Rebekah Danielle Jones Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Social and Behavioral Sciences Commons Recommended Citation Jones, Rebekah Danielle, "Quantifying the impact of hurricanes, mid-latitude cyclones and other weather and climate extreme events on the Mississippi-Alabama Barrier Islands using remotely sensed data" (2014). LSU Master's Theses. 3514. https://digitalcommons.lsu.edu/gradschool_theses/3514 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. QUANTIFYING THE IMPACT OF HURRICANES, MID-LATITUDE CYCLONES AND OTHER WEATHER AND CLIMATE EXTREME EVENTS ON THE MISSISSIPPI-ALABAMA BARRIER ISLANDS USING REMOTELY SENSED DATA A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Rebekah Jones BA, Syracuse University, 2012 May 2014 “This is the way the world ends, This is the way the world ends, This is the way the world ends, Not with a bang but a whimper.” - T.S. Eliot, “The Hollow Men” (1925) For Jackson. ii ACKNOWLEDGMENTS I have to first and foremost thank Robert Rohli, my advisor, for his continued support and discipline throughout my M.S. studies. Dr. Rohli gave me the focus and resources needed to bring this large undertaking to fruition. For sharing their wealth of knowledge with me, a special thanks to professors Patrick Hesp, Fahui Wang, Kristine DeLong, Edward Richards, Andrea Miller, Shelly Meng and Robert Mann. I would also like to thank Judith Sylvester and Lei Wang, my thesis committee members, for their encouragement and constructive criticism. I would like to thank my peers in the climate office for their thoughts and contributions in my studies. I would like to thank Jolene Williams and all of the Gulf Islands National Seashore staff for providing me with pertinent records and data for this project. I have to thank Drs. Kevin Robbins and Barry Keim for the opportunity to work with the Southern Climate Impacts Planning Program and for their training and expertise, which has made me a better communicator, researcher and employee. I am forever indebted to Dr. Lynne Carter, my boss and friend, who gave me purpose in being at LSU. I would like to thank my family and friends for their support as I continue my education. A special thanks to my partner in work and life Jacob Romer, who guided my through many of the statistical problems I encountered. Last but not least, thank you to my son, Jackson, for whom I do everything, for always encouraging me to do my work and be a better student, person, and mother. iii TABLE OF CONTENTS ACKNOWLEDGMENTS ............................................................................................................. iii LIST OF TABLES ......................................................................................................................... vi LIST OF FIGURES ...................................................................................................................... vii ABSTRACT .................................................................................................................................... x 1. INTRODUCTION ...................................................................................................................... 1 1.1 Barrier Islands ............................................................................................................... 1 1.2 Thesis Purpose .............................................................................................................. 5 1.3 Island Profiles ............................................................................................................... 7 1.4 Climatological Profile ................................................................................................... 8 2. LITERATURE REVIEW ......................................................................................................... 22 2.1 Catastrophism, Gradualism, and Neo-Catastrophism ................................................. 22 2.2 Geomorphological History ......................................................................................... 24 2.3 Oral and Modern History ............................................................................................ 27 2.4 Climate Change and Island Impacts ........................................................................... 33 3. METHODS ............................................................................................................................ 38 3.1 Image Selection ........................................................................................................... 39 3.2 Image Processing ........................................................................................................ 42 3.3 Data Collection ........................................................................................................... 43 3.4 Climatological Analysis .............................................................................................. 44 3.5 Statistical Analysis ...................................................................................................... 44 3.6 Interpreting the Results ............................................................................................... 46 4. RESULTS AND DISCUSSION BY ISLAND ...................................................................... 48 4.1 Overview ..................................................................................................................... 48 4.2 West Ship Island: Summary ....................................................................................... 55 4.2.a. West Ship Island: Period I ........................................................................... 58 4.2.b. West Ship Island: Period II ......................................................................... 59 4.2.c West Ship Island: Period III ......................................................................... 63 4.2.d West Ship Island: Period IV ........................................................................ 65 4.3 East Ship Island: Summary ......................................................................................... 68 4.3.a East Ship Island: Period I ............................................................................. 71 4.3.b. East Ship Island: Period II .......................................................................... 72 4.3.c. East Ship Island: Period III ......................................................................... 75 4.3.d. East Ship Island: Period IV ......................................................................... 79 4.4. Petit Bois Island: Summary ....................................................................................... 81 4.4.a. Petit Bois Island: Period I ........................................................................... 85 4.4.b. Petit Bois Island: Period II .......................................................................... 85 4.4.c. Petit Bois Island: Period III ......................................................................... 88 iv 4.4.d. Petit Bois Island: Period IV ........................................................................ 90 4.5 Sand Island .................................................................................................................. 91 5. RESULTS AND DISCUSSION BY EXTREME EVENT ................................................... 94 5.1 Subtropical Storm Alpha, Hurricane Agnes, and Hurricane Dawn (1972) ................ 96 5.2 Hurricane Elena (1985) ............................................................................................... 97 5.3 Hurricane Florence (1988) .......................................................................................... 98 5.4 Winter-Spring 1990 .................................................................................................... 99 5.5 Hurricane Andrew (1992) ........................................................................................... 99 5.6 Tropical Storm Josephine (1996) .............................................................................. 100 5.7 Winter Storms of 1997-1998 .................................................................................... 102 5.8 Hurricane Georges .................................................................................................... 103 5.9 Hurricane Isidore (2002) ........................................................................................... 105 5.10 Winter Storm of 2002-2003 .................................................................................... 106 5.11 Winter Storm of 2004-2005 .................................................................................... 108 5.12 Hurricane Katrina ..................................................................................................
Recommended publications
  • Bob Was a Shoo-Shoo
    NEW ORLEANS NOSTALGIA Remembering New Orleans History, Culture and Traditions By Ned Hémard Bob Was a Shoo-Shoo Every boy that grew up in New Orleans (at least in my age group) that managed to get himself into the least bit of mischief knows that the local expression for a firecracker that doesn’t go off is a “shoo-shoo”. It means a dud, something that may have started off hot, but ended in a fizzle. It just didn’t live up to its expectations. It could also be used to describe other things that didn’t deliver the desired wallop, such as an over-promoted “hot date” or even a tropical storm that (fortunately) wasn’t as damaging as its forecast. Back in 1968, I thought for a moment that I was that “dud” date, but was informed by the young lady I was escorting that she had called me something entirely different. “Chou chou” (pronounced exactly like shoo-shoo) was a reduplicative French term of endearment, meaning “my little cabbage”. Being a “petite” healthy leafy vegetable was somehow a lot better than being a non-performing firecracker. At least I wasn’t the only one. In 2009 the Daily Mail reported on a “hugely embarrassing video” in which Carla Bruni called Nicolas Sarkozy my ‘chou chou’ and “caused a sensation across France”. Bruni and Sarkozy: no “shoo-shoo” here The glamourous former model turned pop singer planted a passionate kiss on the French President and then whispered “‘Bon courage, chou chou’, which means ‘Be brave, my little darling’.” The paper explained, “A ‘chou’ is a cabbage in French, though when used twice in a row becomes a term of affection between young lovers meaning ‘little darling’.” I even noticed in the recent French movie “Populaire” that the male lead called his rapid-typing secretary and love interest “chou”, which somehow became “pumpkin” in the subtitles.
    [Show full text]
  • Intense Hurricane Activity Over the Past 1500 Years at South Andros
    RESEARCH ARTICLE Intense Hurricane Activity Over the Past 1500 Years 10.1029/2019PA003665 at South Andros Island, The Bahamas Key Points: E. J. Wallace1 , J. P. Donnelly2 , P. J. van Hengstum3,4, C. Wiman5, R. M. Sullivan4,2, • Sediment cores from blue holes on 4 2 6 7 Andros Island record intense T. S. Winkler , N. E. d'Entremont , M. Toomey , and N. Albury hurricane activity over the past 1 millennium and a half Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program in Oceanography, Woods • Multi‐decadal shifts in Intertropical Hole, Massachusetts, USA, 2Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Convergence Zone position and Hole, Massachusetts, USA, 3Department of Marine Sciences, Texas A&M University at Galveston, Galveston, Texas, USA, volcanic activity modulate the 4Department of Oceanography, Texas A&M University, College Station, Texas, USA, 5School of Earth and Sustainability, hurricane patterns observed on 6 Andros Northern Arizona University, Flagstaff, Arizona, USA, U.S. Geological Survey, Florence Bascom Geoscience Center, • Hurricane patterns on Andros Reston, Virginia, USA, 7National Museum of The Bahamas, Nassau, The Bahamas match patterns from the northeastern Gulf of Mexico but are anti‐phased with patterns from New Abstract Hurricanes cause substantial loss of life and resources in coastal areas. Unfortunately, England historical hurricane records are too short and incomplete to capture hurricane‐climate interactions on ‐ ‐ ‐ Supporting Information: multi decadal and longer timescales. Coarse grained, hurricane induced deposits preserved in blue holes • Supporting Information S1 in the Caribbean can provide records of past hurricane activity extending back thousands of years. Here we present a high resolution record of intense hurricane events over the past 1500 years from a blue hole on South Andros Island on the Great Bahama Bank.
    [Show full text]
  • Florida Commission on Hurricane Loss Projection Methodology
    Florida Commission on Hurricane Loss Projection Methodology Hurricane Ike Professional Team Report 22000088 SSttaannddaarrddss EQECAT, Inc. On-Site Review April 13 – 15, 2009 Additional Verification Review June 2, 2009 EQECAT Professional Team Report April 13-15, 2009 & June 2, 2009 On April 13-15, 2009 the Professional Team visited on-site at EQECAT, Inc. in Oakland, California. The following individuals participated in the review: EQECAT Shawna S. Ackerman, FCAS, MAAA, Principal and Consulting Actuary – Pinnacle Actuarial Resources, Inc. Branimir Betov, M.S., Senior Software Engineer Justin Brolley, Ph.D., Hazards Modeler and Research Scientist Apoorv Dabral, Ph.D., Project Engineer Aarti Dinesh, Product Manager Mahmoud M. Khater, Ph.D., P.E., Senior Vice President, Chief Science and Technology Officer Omar Khemici, Ph.D., P.E., Director (Structural Engineering) Bob Konz, Structural Wind Engineer (via phone) John Mangano, Vice President, Meteorologist David F. Smith, Senior Vice President, Technology Development and Consulting Jie Zhou, Ph.D., Research Scientist Professional Team Jenni Evans, Ph.D., Meteorologist Paul Fishwick, Ph.D., Computer Scientist Mark Johnson, Ph.D., Statistician, Team Leader Marty Simons, ACAS, Actuary Masoud Zadeh, Ph.D., P.E., Structural Engineer Donna Sirmons, Staff The review began with introductions and an overview of the audit process. EQECAT began with a discussion of the following model change: • Probabilistic hurricane database regenerated to be consistent with HURDAT as of June 1, 2008, and to additionally include the 2008 hurricane season. During the course of the audit, a further change was identified relative to a sampling method (see revised response to G-1.5). The Professional Team was unable to verify Standards A-6 (Logical Relationship to Risk) and A-10 (Output Ranges).
    [Show full text]
  • Hurricane and Tropical Storm
    State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development.
    [Show full text]
  • Effects of a Warm Oceanic Feature on Hurricane Opal
    1366 MONTHLY WEATHER REVIEW VOLUME 128 Effects of a Warm Oceanic Feature on Hurricane Opal LYNN K. SHAY Division of Meteorology and Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida GUSTAVO J. GONI Physical Oceanography Division, National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratories, Miami, Florida PETER G. BLACK Hurricane Research Division, National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratories, Miami, Florida (Manuscript received 24 September 1998, in ®nal form 21 February 1999) ABSTRACT On 4 October 1995, Hurricane Opal deepened from 965 to 916 hPa in the Gulf of Mexico over a 14-h period upon encountering a warm core ring (WCR) in the ocean shed by the Loop Current during an upper-level atmospheric trough interaction. Based on historical hydrographic measurements placed within the context of a two-layer model and surface height anomalies (SHA) from the radar altimeter on the TOPEX mission, upper- layer thickness ®elds indicated the presence of two warm core rings during September and October 1995. As Hurricane Opal passed directly over one of these WCRs, the 1-min surface winds increased from 35 to more than 60 m s21, and the radius of maximum wind decreased from 40 to 25 km. Pre-Opal SHAs in the WCR exceeded 30 cm where the estimated depth of the 208C isotherm was located between 175 and 200 m. Subsequent to Opal's passage, this depth decreased approximately 50 m, which suggests upwelling underneath the storm track due to Ekman divergence. The maximum heat loss of approximately 24 Kcal cm22 relative to depth of the 268C isotherm was a factor of 6 times the threshold value required to sustain a hurricane.
    [Show full text]
  • FMFRP 0-54 the Persian Gulf Region, a Climatological Study
    FMFRP 0-54 The Persian Gulf Region, AClimatological Study U.S. MtrineCorps PCN1LiIJ0005LFII 111) DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited DEPARTMENT OF THE NAVY Headquarters United States Marine Corps Washington, DC 20380—0001 19 October 1990 FOREWORD 1. PURPOSE Fleet Marine Force Reference Publication 0-54, The Persian Gulf Region. A Climatological Study, provides information on the climate in the Persian Gulf region. 2. SCOPE While some of the technical information in this manual is of use mainly to meteorologists, much of the information is invaluable to anyone who wishes to predict the consequences of changes in the season or weather on military operations. 3. BACKGROUND a. Desert operations have much in common with operations in the other parts of the world. The unique aspects of desert operations stem primarily from deserts' heat and lack of moisture. While these two factors have significant consequences, most of the doctrine, tactics, techniques, and procedures used in operations in other parts of the world apply to desert operations. The challenge of desert operations is to adapt to a new environment. b. FMFRP 0-54 was originally published by the USAF Environmental Technical Applications Center in 1988. In August 1990, the manual was published as Operational Handbook 0-54. 4. SUPERSESSION Operational Handbook 0-54 The Persian Gulf. A Climatological Study; however, the texts of FMFRP 0—54 and OH 0-54 are identical and OH 0-54 will continue to be used until the stock is exhausted. 5. RECOMMENDATIONS This manual will not be revised. However, comments on the manual are welcomed and will be used in revising other manuals on desert warfare.
    [Show full text]
  • BERNAL-THESIS-2020.Pdf (5.477Mb)
    BROWNWOOD: BAYTOWN’S MOST HISTORIC NEIGHBORHOOD by Laura Bernal A thesis submitted to the History Department, College of Liberal Arts and Social Sciences in partial fulfillment of the requirements for the degree of MASTER OF ARTS in History Chair of Committee: Dr. Monica Perales Committee Member: Dr. Mark Goldberg Committee Member: Dr. Kristin Wintersteen University of Houston May 2020 Copyright 2020, Laura Bernal “A land without ruins is a land without memories – a land without memories is a land without history.” -Father Abram Joseph Ryan, “A Land Without Ruins” iii ACKNOWLEDGMENTS First, and foremost, I want to thank God for guiding me on this journey. Thank you to my family for their unwavering support, especially to my parents and sisters. Thank you for listening to me every time I needed to work out an idea and for staying up late with me as I worked on this project. More importantly, thank you for accompanying me to the Baytown Nature Center hoping to find more house foundations. I am very grateful to the professors who helped me. Dr. Monica Perales, my advisor, thank you for your patience and your guidance as I worked on this project. Thank you to my defense committee, Dr. Kristin Wintersteen and Dr. Goldberg. Your advice helped make this my best work. Additionally, I would like to thank Dr. Debbie Harwell, who encouraged me to pursue this project, even when I doubted it its impact. Thank you to the friends and co-workers who listened to my opinions and encouraged me to not give up. Lastly, I would like to thank the people I interviewed.
    [Show full text]
  • (NHC) Latest Satellite Picture
    Current Watches and Warnings A Storm Surge Warning is in effect from the mouth of the Pearl River to the Alabama / Florida border A Tropical Storm Warning is in effect from the mouth of the Pearl River to the Alabama / Florida border Current Details from the National Hurricane Center (NHC) COORDINATES: 31.9° north, 90.7° west LOCATION: 40 miles (65 kilometers) southwest of Jackson, Mississippi MOVEMENT: north at 9 mph (15 kph) WINDS: 40 mph (65 kph) with gusts to 50 mph (80 kph) RADIUS OF TROPICAL STORM-FORCE WINDS: 195 miles (315 kilometers) MINIMUM CENTRAL PRESSURE: 996 millibars SAFFIR-SIMPSON SCALE RANKING: Tropical Storm LANDFALL LOCATION: near Fourchon, Louisiana (United States) LANDFALL INTENSITY: 150 mph (240 kph) – Category 4 LANDFALL TIMEFRAME: approximately 11:55 AM local time (16:55 UTC) August 29 Latest Satellite Picture Source: NOAA / NASA / Colorado State University (RAAMB) Discussion Tropical Storm Ida, located approximately 40 miles (65 kilometers) southwest of Jackson, Mississippi, is currently tracking north at 9 mph (15 kph). The center of Ida has moved farther inland over western Mississippi this morning and NWS Doppler radar velocities and surface observations indicate that the tropical cyclone's winds have continued to decrease. The strongest winds are in a band of convection well southeast of the center along the coasts of Mississippi and Alabama where recent surface reports indicate winds of nearly 40 mph (65 kph) are still occurring. Based on this data, the NHC has set an initial intensity at 40 mph (65 kph). As Ida's circulation moves farther inland, additional weakening will continue, and Ida is expected to become a tropical depression this afternoon.
    [Show full text]
  • DA-21-1107A1.Pdf
    Federal Communications Commission DA 21-1107 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Schools and Libraries Universal Support ) CC Docket No. 02-6 Mechanism ) ) Rural Health Care Universal Support Mechanism ) WC Docket No. 02-60 ) Lifeline and Link Up Reform and Modernization ) WC Docket No. 11-42 ) Connect America Fund ) WC Docket No. 10-90 ) Federal-State Joint Board on Universal Service ) High-Cost Universal Service Support ) WC Docket No. 05-337 ) Establishing Emergency Connectivity Fund to ) Close the Homework Gap ) WC Docket No. 21-93 ) Emergency Broadband Benefit Program ) WC Docket No. 20-445 ) ORDER Adopted: September 3, 2021 Released: September 3, 2021 By the Chief, Wireline Competition Bureau: I. INTRODUCTION 1. In this Order, we waive, on our own motion, certain E-Rate,1 Rural Health Care (RHC), Lifeline, High Cost, Emergency Connectivity Fund, and Emergency Broadband Benefit rules and deadlines to assist participants and providers located in the areas affected by Hurricane Ida, which struck the states of Louisiana and Mississippi last week.2 The resulting storm surge, wind damage, and flooding have destroyed and damaged homes, schools, libraries, and health care facilities and displaced residents. The hurricane has also caused significant power and communications network outages throughout the impacted areas.3 Because of these compelling and unique circumstances, we find good cause to waive certain rules and deadlines to assist program participants and providers in the affected areas.4 1 E-Rate is more formally known as the schools and libraries universal support mechanism. 2 See Emma Newburger, CNBC, Ida now a tropical storm as more than 1 million Louisiana utility customers are left without power (updated Aug.
    [Show full text]
  • Hurricane Damage Detection on Four Major Caribbean Islands T ⁎ Kirsten M
    Remote Sensing of Environment 229 (2019) 1–13 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Hurricane damage detection on four major Caribbean islands T ⁎ Kirsten M. de Beursa, , Noel S. McThompsona, Braden C. Owsleya, Geoffrey M. Henebryb,c a Department of Geography and Environmental Sustainability, University of Oklahoma, United States of America b Department of Geography, Environment, and Spatial Sciences, Michigan State University, United States of America c Center for Global Change and Earth Observations, Michigan State University, United States of America ARTICLE INFO ABSTRACT Keywords: Tropical cyclones are natural events that transform into natural disasters as they approach and reach land. In Hurricanes 2017 alone, tropical cyclones caused an estimated $215 billion in damage. While MODIS data are regularly used Droughts in the analysis of hurricanes and typhoons, damage studies typically focus on just a few events without providing MODIS a comprehensive overview and comparison across events. The MODIS record is now sufficiently long to enable Disturbance standardization in time, allowing us to extend previously developed disturbance methodology and to remove Tasseled Cap dependency on land cover datasets. We apply this new approach to detect the impact of both droughts and hurricanes on the four largest Caribbean islands since 2001. We find that the percentage of disturbed land on the four islands varies from approximately 0–50% between 2001 and 2017, with the highest percentages coinciding with major droughts in Cuba, and Hurricane Maria in Puerto Rico. We demonstrate that (1) Hurricane Maria resulted in significant disturbance across 50% of Puerto Rico (4549 km2), and (2) gradual recovery started about 2.5 months after the hurricane hit.
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • Downloaded 10/01/21 04:51 PM UTC JULY 2003 ANNUAL SUMMARY 1455
    1454 MONTHLY WEATHER REVIEW VOLUME 131 ANNUAL SUMMARY Atlantic Hurricane Season of 2001 JOHN L. BEVEN II, STACY R. STEWART,MILES B. LAWRENCE,LIXION A. AVILA,JAMES L. FRANKLIN, AND RICHARD J. PASCH NOAA/NWS/Tropical Prediction Center/National Hurricane Center, Miami, Florida (Manuscript received 19 July 2002, in ®nal form 9 December 2002) ABSTRACT Activity during the 2001 hurricane season was similar to that of the 2000 season. Fifteen tropical storms developed, with nine becoming hurricanes and four major hurricanes. Two tropical depressions failed to become tropical storms. Similarities to the 2000 season include overall activity much above climatological levels and most of the cyclones occurring over the open Atlantic north of 258N. The overall ``lateness'' of the season was notable, with 11 named storms, including all the hurricanes, forming after 1 September. There were no hurricane landfalls in the United States for the second year in a row. However, the season's tropical cyclones were responsible for 93 deaths, including 41 from Tropical Storm Allison in the United States, and 48 from Hurricanes Iris and Michelle in the Caribbean. 1. Overview of the 2001 season cycleÐsimultaneously exhibiting characteristics of both tropical and extratropical cyclones (Hebert 1973). The National Hurricane Center (NHC) tracked 15 No hurricanes struck the United States during 2001. tropical cyclones (TCs) that achieved tropical storm or The season thus joins the 2000, 1990, and 1951 seasons hurricane strength in the Atlantic basin during 2001 as years in which eight or more hurricanes occurred (Table 1). Nine of these became hurricanes and four without a U.S.
    [Show full text]