Few‐Unit‐Cell MFI Zeolite Synthesized Using a Simple Di

Total Page:16

File Type:pdf, Size:1020Kb

Few‐Unit‐Cell MFI Zeolite Synthesized Using a Simple Di Angewandte Research Articles Chemie How to cite: Zeolites Very Important Paper International Edition: doi.org/10.1002/anie.202104574 German Edition: doi.org/10.1002/ange.202104574 Few-Unit-Cell MFI Zeolite Synthesized using a Simple Di-quaternary Ammonium Structure-Directing Agent Peng Lu, Supriya Ghosh, Matheus Dorneles de Mello, Huda Sharbini Kamaluddin, Xinyu Li, Gaurav Kumar, Xuekui Duan, Milinda Abeykoon, J. Anibal Boscoboinik, Liang Qi, Heng Dai, Tianyi Luo, Shaeel Al-Thabaiti, Katabathini Narasimharao, Zaheer Khan, Jeffrey D. Rimer, Alexis T. Bell, Paul Dauenhauer, K. Andre Mkhoyan, and Michael Tsapatsis* Abstract: Synthesis of a pentasil-type zeolite with ultra-small adsorption performance compared to conventional zeo- few-unit-cell crystalline domains, which we call FDP (few-unit- lites.[5–10] In this context, the quest for synthetic methods to cell crystalline domain pentasil), is reported. FDP is made minimize the size of crystalline zeolitic domains while using bis-1,5(tributyl ammonium) pentamethylene cations as accomplishing their arrangement to form hierarchical porous structure directing agent (SDA). This di-quaternary ammoni- materials and thin film membranes persists.[11] Of particular um SDA combines butyl ammonium, in place of the one importance is the synthesis of MFI with crystalline domains commonly used for MFI synthesis, propyl ammonium, and on the order of one to few unit cells (ca. 10 nm or less) due to a five-carbon nitrogen-connecting chain, in place of the six- anticipated uses in catalysis, adsorption and membranes.[5,12] carbon connecting chain SDAs that are known to fit well within Moreover, since MFI in its all-silica (zeosil) form has been the MFI pores. X-ray diffraction analysis and electron studied extensively as a prototype for templated crystal microscopy imaging of FDP indicate ca. 10 nm crystalline growth,[13–15] the synthesis of MFI crystals as close as possible domains organized in hierarchical micro-/meso-porous aggre- to their nucleation stage is of fundamental significance. Ryoo gates exhibiting mesoscopic order with an aggregate particle and co-workers, soon after their discovery of gemini-type size up to ca. 5 mm. Al and Sn can be incorporated into the oligo-quaternary ammonium surfactants as organic structure- FDP zeolite framework to produce active and selective directing agents (SDAs) leading to multilamellar 2-dimen- methanol-to-hydrocarbon and glucose isomerization catalysts, sional MFI,[3] they reported the synthesis of mesoporous respectively. materials with walls composed of few-unit-cell domains with the zeolite beta (BEA) and MFI-like framework topolo- Introduction gies.[16,17] We have shown that simpler short chain mono- and di-quaternary SDAs (i.e., without the dual porogenic ability Zeolites composed of one- to few-unit-cell domains,[1–4] of tri- to penta-quaternary ammonium gemini-surfactant exhibit distinct, and for some uses superior, catalytic and SDAs with C18 alkyl chains) are also capable of directing [*] Dr. P. Lu, Dr. T. Luo, Prof. M. Tsapatsis Dr. J. A. Boscoboinik Department of Chemical and Biomolecular Engineering & Department of Materials Science and Chemical Engineering, State Institute for NanoBioTechnology, Johns Hopkins University University of New York at Stony Brook 3400 N. Charles Street, Baltimore, MD 21218 (USA) 100 Nicolls Rd, Stony Brook, NY 11794 (USA) E-mail: [email protected] Dr. L. Qi, Prof. A. T. Bell S. Ghosh, X. Li, G. Kumar, X. Duan, Prof. P. Dauenhauer, Chemical Sciences Division, Lawrence Berkeley National Laboratory Prof. K. A. Mkhoyan Berkeley, CA 94720 (USA) Department of Chemical Engineering and Materials Science and University of Minnesota Department of Chemical and Biomolecular Engineering 421 Washington Avenue SE, Minneapolis, MN 55455 (USA) University of California, Berkeley, CA 94720 (USA) Dr. M. Dorneles de Mello, Dr. J. A. Boscoboinik H. Dai, Prof. J. D. Rimer Catalysis Center for Energy Innovation, University of Delaware Department of Chemical and Biomolecular Engineering Newark, DE 19716 (USA) University of Houston, Houston, TX 77204 (USA) and Prof. M. Tsapatsis Center for Functional Nanomaterials Applied Physics Laboratory, Johns Hopkins University Brookhaven National Laboratory, Upton, NY 11973 (USA) 11100 Johns Hopkins Road, Laurel, MD 20723 (USA) Dr. H. S. Kamaluddin, Prof. S. Al-Thabaiti, Prof. K. Narasimharao, Supporting information and the ORCID identification number(s) for Prof. Z. Khan the author(s) of this article can be found under: Department of Chemistry, Faculty of Science https://doi.org/10.1002/anie.202104574. King Abdulaziz University, Jeddah 21589 (Saudi Arabia) 2021 The Authors. Angewandte Chemie International Edition Dr. M. Abeykoon published by Wiley-VCH GmbH. This is an open access article under National Synchrotron Light Source II the terms of the Creative Commons Attribution Non-Commercial Brookhaven National Laboratory, Upton, NY 11973 (USA) NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non- commercial and no modifications or adaptations are made. &&&& 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH Angew. Chem. Int. Ed. 2021, 60,2–10 Ü Ü These are not the final page numbers! Angewandte Research Articles Chemie the growth of single- to few-unit-cell thick nanosheets by hindering growth along the b-axis of MFI.[4,11] However, the use of such simple SDAs to reduce crystalline domains down to few unit cells in directions other than the MFI b-axis has not yet been achieved. Here, we demonstrate that few-unit- cell MFI, with a highly broadened XRD pattern, can be synthesized using a relatively simple di-quaternary ammoni- um (bis-1,5(tributyl ammonium) pentamethylene) cation (called here tri-Bu-dC5) as an SDA. All-silica, aluminosili- cate, and stannosilicate MFI synthesis is reported along with sorption and catalytic properties. Synthesis of MFI and MEL with different crystal habit, stacking fault sequence and presence of rotational inter- [18–20] Scheme 1. Hypothesized opposing trends of tri-Bu-dC5 for minimizing growths has been studied extensively. We have demon- growth along all directions to generate ultra-small crystallites. Black, strated that at early stages of crystal growth (i.e., before green and red colors denote propyl, five methylene chain, and butyl crystal facets develop) bis-1,5(tripropyl ammonium) pentam- groups, respectively. ethylene cations (called here tri-Pr-dC5) hinder all growth rates compared to those observed using tetrapropyl ammo- nium (TPA), the typical SDA for MFI synthesis. Moreover, confirmed our anticipation that the frustrated tri-Bu-dC5 we have shown that at early stages of growth, tri-Pr-dC5 SDAwill not be a very effective SDA for MFI or MEL. Below, favors growth along the b-axis compared to the other it is shown that it is possible to grow highly crystalline few- crystallographic directions of MFI, while stacking faults and unit-cell pentasil zeolite, which we call FDP (few-unit-cell rotational intergrowths attributable to the presence of MEL crystalline domain pentasil zeolite). are not observed.[11,19] This finding combined with the well- established trends in MFI synthesis using its most common SDA, TPA cations, which favor growth along the c- and a- Results and Discussion axes, lead us to hypothesize that at early stages of crystal growth (i.e., before well-developed crystal facets emerge) the Characterization of the tri-Bu-dC5 SDA and its synthesis pentamethylene moiety is responsible for reversing the crystal procedure are provided in the Supporting Information. The shape of MFI from thin to long platelets along its b-axis. The SDAwas used in hydroxide form (tri-Bu-dC5(OH)2) obtained hypothesis that the pentamethylene moiety is responsible for by anion exchange of its bromide form (tri-Bu-dC5(Br)2). The favoring growth along the b-axis, is further corroborated by synthesis parameters along with crystal size and composition the finding that MFI growth using bis-1,6(tripropyl ammoni- of the FDP zeolites synthesized at 1208C are summarized in um) hexamethylene cations (tri-Pr-dC6) retains the b-axis as Table 1. We note here that conventional MFI was obtained at a slower growing direction. We have also demonstrated that the higher synthesis temperature of 1508C (Figure S2). The when using tetrabutyl ammonium (TBA) or phosphonium SDA exhibits structure-directing role towards MFI and was (TBP) SDAs, growth along the b-axis is hindered while MEL found to be preserved intact in the as-made product (Fig- presence and rotational intergrowths are enhanced leading to ure S3). single-unit-cell thick intergrown MFI nanosheets, a material The wide angle XRD pattern of the calcined Si-FDP (1) we call SPP (self-pillared pentasil).[4] Scheme 1 illustrates zeolite (see Table 1 for sample denotation) shows two these hypothesized opposing trends coded on bis-1,5(tributyl ammonium) pentamethylene cat- Table 1: Summary of synthesis parameters and compositions of calcined FDP zeolites obtained at ions (tri-Bu-dC5). Specifically, the 1208C. favoring and hindering of (i) Material Sol composition Crystallite size Si/Al or t [days] Rotation growth along the b-axis, (ii) MEL [nm][a] Si/Sn[b] or not stacking faults, and (iii) rotational H2O/SiO2 SDA/SiO2 intergrowths by different parts of Si-FDP (1) 38 0.15 6.0 – 7 yes the molecule. Si-FDP (2) 38 0.25 5.3 – 9 yes We decided to test the hypoth- Si-FDP (3) 13 0.15 7.3 – 3 yes esis that these opposing trends will Si-FDP (4) 13 0.25 5.2 – 7 yes create frustration in the SDA char- Si-FDP (5) 8 0.15 4.0 – 3 yes Al-FDP (1) 8 0.15 6.6 157 (100) 3 yes acteristics hindering crystal growth Al-FDP (2) 8 0.15 7.5 172 (200) 3 yes in all directions and limiting the Al-FDP (3) 8 0.15 7.1 260 (300) 3 yes resulting crystal size to few-unit- Al-FDP (4) 8 0.15 7.7 42 (50) 3 yes cells.
Recommended publications
  • The Selective Synthesis of Aromatics and Furans From
    THE SELECTIVE SYNTHESIS OF AROMATICS AND FURANS FROM BIOMASS-DERIVED COMPOUNDS by Eyas Mahmoud A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Engineering Summer 2016 © 2016 Eyas Mahmoud All Rights Reserved THE SELECTIVE SYNTHESIS OF AROMATICS AND FURANS FROM BIOMASS-DERIVED COMPOUNDS by Eyas Mahmoud Approved: __________________________________________________________ Abraham M. Lenhoff, Ph.D. Chair of the Department of Chemical and Biomolecular Engineering Approved: __________________________________________________________ Babatunde A. Ogunnaike, Ph.D. Dean of the College of Engineering Approved: __________________________________________________________ Ann L. Ardis, Ph.D. Senior Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Raul F. Lobo, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Dionisios G. Vlachos, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Donald A. Watson, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • Fulbright Scholars Directory
    FULBRIG HT SCHOLAR PROGRAM 2002-2003 Visiting Scholar Directory Directory of Visiting Fulbright Scholars and Occasional Lecturers V i s i t i n g F u l b r i g h t S c h o l a r P r o g r a m S t a f f To obtain U.S. contact information fo r a scholar listed in this directory, pleaseC IE S speaks ta ff member with the responsible fo r the scholar s home country. A fr ic a (S ub -S aharan ) T he M id d le E ast, N orth A frica and S outh A sia Debra Egan,Assistant Director Tracy Morrison,Senior Program Coordinator 202.686.6230 [email protected] 202.686.4013 [email protected] M ichelle Grant,Senior Program Coordinator Amy Rustic,Program Associate 202.686.4029 [email protected] 202.686.4022 [email protected] W estern H emisphere E ast A sia and the P acific Carol Robles,Senior Program Officer Susan McPeek,Senior Program Coordinator 202.686.6238 [email protected] 202.686.4020 [email protected] U.S.-Korea International Education Administrators ProgramMichelle Grant,Senior Program Coordinator 202.686.4029 [email protected] Am elia Saunders,Senior Program Associate 202.686.6233 [email protected] S pecial P rograms E urope and the N ew I ndependent S tates Micaela S. Iovine,Senior Program Officer 202.686.6253 [email protected] Sone Loh,Senior Program Coordinator New Century Scholars Program 202.686.4011 [email protected] Dana Hamilton,Senior Program Associate Erika Schmierer,Program Associate 202.686.6252 [email protected] 202.686.6255 [email protected] New Century Scholars
    [Show full text]
  • Prof. Michael Tsapatsis University of Minnesota Department of Chemical Engineering & Materials Science
    e CHEMICAL ENGINEERING Ch UC SANTA BARBARA TM CHEMICAL ENGINEERING 290 SEMINAR SERIES PRESENTS Prof. Michael Tsapatsis University of Minnesota Department of Chemical Engineering & Materials Science 4pm - Tuesday, February 9th 2016 in ENGR II room 1519 2-dimensional zeolites for catalysis and separations It is only recently that single-unit-cell thick zeolite nanosheets (2-dimensional zeolites; AIChE Journal 60(7), 2374-2381 (2014) ) with intact crystal and micropore structure were shown to be possible. The structural integrity and unprecedented purity and uniformity of these microporous nanosheets, open exciting possibilities for technological breakthroughs in molecular sieve membrane fabrication, synthesis of hierarchical catalysts and polymer-zeolite nanocomposites. Moreover, zeolite nanosheets enable for the first time zeolite pore mouth adsorption and catalysis to be studied by traditional uptake methods as well as surface science techniques. However, along with the exciting possibilities, challenges abound. For example, the in-plane dimensions of the existing nanosheets are in the sub-micrometer range limiting potential applications and processability as thin films. Moreover, the two exfoliated zeolites currently available are only a small fraction of zeolite topologies one would like to have available for a representative set. Earlier attempts to exfoliate other layered zeolites, including certain layered silicates and aluminophosphates with microporous layers, did not preserve the crystallographic order of the layers. Synthesis of high aspect ratio zeolite and other crystalline nanoporous nanosheets, methods to characterize their structure and properties, along with their processing and assembly to create membranes and catalysts will be the focus of this talk. Michael Tsapatsis joined the Department of Chemical Engineering and Materials Science at the University of Minnesota in September 2003 as a professor and he currently holds the Amundson Chair.
    [Show full text]
  • Synthesis, Catalysis, and Chemistry
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses July 2017 Nanoporous Solid Acid Materials for Biomass Conversion into Value-Added Chemicals: Synthesis, Catalysis, and Chemistry Hong Je Cho University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Catalysis and Reaction Engineering Commons Recommended Citation Cho, Hong Je, "Nanoporous Solid Acid Materials for Biomass Conversion into Value-Added Chemicals: Synthesis, Catalysis, and Chemistry" (2017). Doctoral Dissertations. 952. https://doi.org/10.7275/9584937.0 https://scholarworks.umass.edu/dissertations_2/952 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. NANOPOROUS SOLID ACID MATERIALS FOR BIOMASS CONVERSION INTO VALUE-ADDED CHEMICALS: SYNTHESIS, CATALYSIS, AND CHEMISTRY A Dissertation Presented by HONG JE CHO Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2017 Chemical Engineering © Copyright by Hong Je Cho 2017 All Rights Reserved NANOPOROUS SOLID ACID MATERIALS FOR BIOMASS CONVERSION INTO VALUE-ADDED CHEMICALS: SYNTHESIS, CATALYSIS, AND CHEMISTRY A Dissertation Presented by HONG JE CHO Approve as to style and content by: ______________________________________ Wei Fan, Chair ______________________________________ Friederike Jentoft, Member ______________________________________ Ashwin Ramasubramaniam, Member ___________________________________ John Klier, Department Head Department of Chemical Engineering ACKNOWLEDGEMENTS This work was supported by Catalysis Center for Energy Innovation (funded by the US Dept.
    [Show full text]
  • Catalysis and Reaction Engineering Division 2020
    Catalysis and Reaction Engineering Division 2020 Held at the 2020 AIChE Annual Meeting Online 16 – 20 November 2020 Volume 1 of 2 ISBN: 978-1-7138-2313-1 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2020) by AIChE All rights reserved. Printed with permission by Curran Associates, Inc. (2021) For permission requests, please contact AIChE at the address below. AIChE 120 Wall Street, FL 23 New York, NY 10005-4020 Phone: (800) 242-4363 Fax: (203) 775-5177 www.aiche.org Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: [email protected] Web: www.proceedings.com TABLE OF CONTENTS VOLUME 1 (19A) CATALYTIC REACTION PATHWAYS AND PROCESS SYNTHESIS FOR BIOMASS CONVERSION TO HIGH-VALUE CHEMICALS FOR ORGANIC DYE AND POLYMER APPLICATIONS .................................................................................................................................................. 1 Hochan Chang, Ishan Bajaj, George W. Huber, Christos T. Maravelias, James A. Dumesic (19B) SUPERACID POLYMER CATALYSTS FOR HYDROXYMETHYLFURFURAL PRODUCTION .................................................................................................................................................... 2 Ibeh S. Omodolor, Sarah A. Walz, Subhash Kalidindi, Vimantha Bamunuarachchi, Ravikumar Gogar,
    [Show full text]
  • Basic Research Needs for Catalysis Science
    Basic Research Needs for Catalysis Science Report of the Basic Energy Sciences Workshop on Basic Research Needs for Catalysis Science to Transform Energy Technologies May 8–10, 2017 Image courtesy of Argonne National Laboratory. DISCLAIMER This report was prepared as an account of a workshop sponsored by the U.S. Department of Energy. Neither the United States Government nor any agency thereof, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Copyrights to portions of this report (including graphics) are reserved by original copyright holders or their assignees, and are used by the Government’s license and by permission. Requests to use any images must be made to the provider identified in the image credits. This report is available in pdf format at https://science.energy.gov/bes/community-resources/reports/ REPORT OF THE BASIC RESEARCH NEEDS WORKSHOP FOR CATALYSIS SCIENCE Basic Research Needs for Catalysis Science TO TRANSFORM ENERGY TECHNOLOGIES Report from the U.S. Department of Energy, Office of Basic Energy Sciences Workshop May 8–10, 2017, in Gaithersburg, Maryland CHAIR: ASSOCIATE CHAIRS: Carl A.
    [Show full text]
  • Deciphering Biomass Fragmentation Using Millisecond Micro-Reactor Kinetics
    Deciphering Biomass Fragmentation using Millisecond Micro-Reactor Kinetics A DISSERTATION SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY SAURABH MADUSKAR IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Adviser: Paul J. Dauenhauer MAY 2018 © Saurabh Maduskar 2018 Acknowledgements First and foremost, I would like to thank my advisor, Paul Dauenhauer, who guided me throughout my Ph.D. and provided mentorship in research and professional development. His excitement and creativity towards solving challenging problems motivated me to complete the research projects. The work culture in Dauenhauer research group helped me accomplish both professional and personal goals in my graduate life. I would like to thank Dauenhauer group alumni Andrew Teixeria, Christoph Krumm, Alex Paulsen, Luke Williams for their support, mentoring, and guidance during initial years of my PhD. I would also like to thank my current lab mates Kristeen Joseph, Katherine Vinter, Omar Abdelrehman, Greg Fracas, Vineet Mallikal for their continued support and encouragement. I specially thank my batchmates Kristeen and Katie for baring with me throughout the long journey of graduate school. I would like to thank the department of Chemical Engineering and Materials Science, University of Minnesota and the department of Chemical Engineering, University of Massachusetts Amherst for giving me an opportunity to work as a research assistant and graduate student with some of the brightest people I have known. I would like to thank the professors and mentors I have had at both the universities, continually igniting that spark of curiosity, forcing me to work harder. Finally, I would like to thank my family, and friends; without their support, I undoubtedly would not have made it to this point today.
    [Show full text]
  • Frontiers at the Interface of Homogeneous and Heterogeneous Catalysis
    FRONTIERS AT THE INTERFACE OF HOMOGENEOUS AND HETEROGENEOUS CATALYSIS Meeting of the Catalysis Science Program Chemical Sciences, Geosciences and Biosciences Division Office of Basic Energy Sciences U.S. Department of Energy Westin Annapolis Annapolis, Maryland June 30 – July 2, 2013 This document was produced under contract number DE-AC05-060R23100 between the U.S. Department of Energy and Oak Ridge Associated Universities. FOREWORD The 2013 Catalysis Science Program Meeting is sponsored by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences (BES), U.S. Department of Energy. It is being held on June 30 through July 2, 2013, at the Westin Annapolis Hotel, Annapolis, Maryland. The purposes of this meeting are to discuss the recent advances in the chemical, physical, and biological bases of catalysis science, to foster exchange of ideas and cooperation among participants, and to discuss the new challenges and opportunities recently emerging in energy technologies. Catalysis activities within BES emphasize fundamental research aimed at initially understanding and finally controlling the chemical conversion of natural and artificial feedstocks. The long-term goal of this research is to discover fundamental principles and produce ever more insightful approaches to predict structure-reactivity behavior. Such knowledge, integrated with advances in chemical and materials synthesis, in situ and operando analytical instrumentation, and chemical kinetics and quantum chemistry methods, will allow the control of chemical reactions along desired pathways. Ultimately, this new knowledge should impact the efficiency of conversion of natural resources into fuels, chemicals, materials, or other forms of energy, while minimizing the impact to the environment. This year’s meeting is focused on three topical areas: (i) the interface of homogeneous and heterogeneous catalysis, (ii) catalysis for biomass or solar energy conversion, and (iii) molecular catalysis, with an emphasis on organic synthesis.
    [Show full text]
  • Demystifying Mass Transfer in Electrolyzers Through Rapid Prototyping with 3D Printed Parallel Plate Cells
    Catalysis and Reaction Engineering Division 2019 Held at the 2019 AIChE Annual Meeting Orlando, Florida, USA 10 - 15 November 2019 Volume 1 of 2 ISBN: 978-1-7138-0541-0 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2019) by AIChE All rights reserved. Printed with permission by Curran Associates, Inc. (2020) For permission requests, please contact AIChE at the address below. AIChE 120 Wall Street, FL 23 New York, NY 10005-4020 Phone: (800) 242-4363 Fax: (203) 775-5177 www.aiche.org Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: [email protected] Web: www.proceedings.com TABLE OF CONTENTS VOLUME 1 (8A) DEMYSTIFYING MASS TRANSFER IN ELECTROLYZERS THROUGH RAPID PROTOTYPING WITH 3D PRINTED PARALLEL PLATE CELLS ............................................................................1 Stéphane Weusten, Luc Murrer, Mattheus De Groot, John Van Der Schaaf (8B) ADDITIVE MANUFACTURING OF CATALYST SUPPORT STRUCTURES WITH IN OPERANDO ADJUSTABLE MASS TRANSPORT AND FLOW CHARACTERISTICS............................................3 Sebastian Trunk, Giang Do, Wilhelm Schwieger, Hannsjörg Freund (8C) ROLE OF 3D PRINTED AND LED-DRIVEN PHOTOSTATION IN PHOTOCATALYTIC AND PHOTO-FENTON ACTIVITY OF IRON OXIDE DOPED GRAPHITIC CARBON NITRIDE ........................4 Mathew M. Desipio,
    [Show full text]
  • Stimulating Methods for Promoting Catalytic Resonance
    doi.org/10.26434/chemrxiv.12818174.v1 The Catalytic Mechanics of Dynamic Surfaces: Stimulating Methods for Promoting Catalytic Resonance Manish Shetty, Amber Walton, Sallye R. Gathmann, M. Alexander Ardagh, Joshua Gopeesingh, Joaquin Resasco, Turan Birol, Qi Zhang, Michael Tsapatsis, Dionisios Vlachos, Phillip Christopher, C. Daniel Frisbie, Omar Abdelrahman, Paul Dauenhauer Submitted date: 17/08/2020 • Posted date: 24/08/2020 Licence: CC BY-NC-ND 4.0 Citation information: Shetty, Manish; Walton, Amber; Gathmann, Sallye R.; Ardagh, M. Alexander; Gopeesingh, Joshua; Resasco, Joaquin; et al. (2020): The Catalytic Mechanics of Dynamic Surfaces: Stimulating Methods for Promoting Catalytic Resonance. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.12818174.v1 Transformational catalytic performance in rate and selectivity is obtainable through catalysts that change on the time scale of catalytic turnover frequency. In this work, dynamic catalysts are defined in the context and history of forced and passive dynamic chemical systems, with classification of unique catalyst behaviors based on temporally-relevant linear scaling parameters. The conditions leading to catalytic rate and selectivity enhancement are described as modifying the local electronic or steric environment of the active site to independently accelerate sequential elementary steps of an overall catalytic cycle. These concepts are related to physical systems and devices that stimulate a catalyst using light, vibrations, strain, and electronic manipulations including electrocatalysis,
    [Show full text]
  • Unraveling Cellulose for Renewable Plastics and Fuels
    UW Chemical Engineering Spring 2013 Seminar Series Date: Monday, May 20 Time: 4:00 - 5:00 p.m. Place: PAA A110 Unraveling Cellulose for Renewable Plastics and Fuels Paul Dauenhauer Assistant Professor Chemical Engineering University of Massachusetts Amherst Biography Paul Dauenhauer is director of the University of Massachusetts Reaction Engineering and Catalysis Laboratory and Assistant Professor of Chemical Engineering at the University of Massachusetts Amherst. Paul received his B.S. in Chemistry and Chemical Engineering from the University of Wisconsin Madison in 2004. In 2008, he received his Ph.D. in Chemical Engineering from the University of Minnesota with a focus on catalytic reforming of biomass advised by Professor Lanny Schmidt. Paul has also worked for the Dow Chemical Corporation as a Senior Research Engineer and Cargill, Inc. He currently serves as Thrust Leader of the DOE-funded Catalysis Center for Energy Innovation, associate editor of Chemical Engineering Science, and manager of the Waste-to- Energy engineering program at UMass. His work focusing on catalytic biomass conversion has been recognized for its achievements in renewable biofuels and chemicals, and Prof. Dauenhauer has received the NSF-CAREER, the Dept. of Energy Early Career, and the 3M Nontenured Faculty awards supporting his research efforts. Abstract Utilization of non-food, lignocellulosic biomass such as trees and grasses provides unprecedented opportunity to sustain a lifestyle which benefits from plastics, chemicals and fuels. These feedstocks are rich in the carbohydrate polymers cellulose and hemicellulose, which can be broken down and chemically reduced to the same fuels and chemicals that we currently derive from petroleum. With a focus on production of chemicals including p-xylene, we demonstrate a new technology to convert sugars derived from cellulose to furans and eventually six-carbon aromatics.
    [Show full text]
  • Challenges of and Insights Into Acid-Catalyzed Transformations of Sugars Stavros Caratzoulas,†,‡ Mark E
    Feature Article pubs.acs.org/JPCC Terms of Use Challenges of and Insights into Acid-Catalyzed Transformations of Sugars Stavros Caratzoulas,†,‡ Mark E. Davis,†,§ Raymond J. Gorte,†,∥ Rajamani Gounder,†,§ Raul F. Lobo,†,‡ Vladimiros Nikolakis,†,‡ Stanley I. Sandler,†,‡ Mark A. Snyder,†,⊥ Michael Tsapatsis,†,@ and Dionisios G. Vlachos*,†,‡ † ‡ Catalysis Center for Energy Innovation and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States § Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States ∥ Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States ⊥ Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States @Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States ABSTRACT: The selective transformation of hexose and pentose sugars to intermediate platform chemicals, such as furans, is an essential step in the conversion of cellulosic and hemicellulosic biomass to biofuels and biochemicals. Yet, many challenges in achieving commercially viable processes remain. In this feature article, we outline challenges that need to be overcome to enable these transformations. Then, we present the newly introduced acid-catalyzed isomerization of aldose sugars to ketose sugars via a class of solid Lewis acid catalysts (e.g., Sn-Beta, Ti-Beta). We elucidate mechanistic
    [Show full text]