Mutant Lexa Proteins with Specific Defects in Autodigestion (Self-Processing Reactions/Lexa Repressor/Specific Cleavage/Proteolysis/Reca-Mediated Cleavage) DONALD P

Total Page:16

File Type:pdf, Size:1020Kb

Mutant Lexa Proteins with Specific Defects in Autodigestion (Self-Processing Reactions/Lexa Repressor/Specific Cleavage/Proteolysis/Reca-Mediated Cleavage) DONALD P Proc. Natl. Acad. Sci. USA Vol. 93, pp. 11528-11533, October 1996 Biochemistry Mutant LexA proteins with specific defects in autodigestion (self-processing reactions/LexA repressor/specific cleavage/proteolysis/RecA-mediated cleavage) DONALD P. SHEPLEYt AND JOHN W. LITrLEt#§ Departments of tBiochemistry and tMolecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 Communicated by Sydney Kustu, University of California, Berkeley, CA, July 24, 1996 (received for review April 4, 1996) ABSTRACT In self-processing biochemical reactions, a pro- are under control of two regulatory proteins: the LexA repressor, tein or RNA molecule specifically modifies its own structure. which represses the SOS genes during normal growth; and the Many such reactions are regulated in response to the needs ofthe RecA protein, which is quiescent during normal growth but is cell by an interaction with another effector molecule. In the promptly activated upon inducing treatments to a form that can system we study here, specific cleavage of the Escherichia coli facilitate the specific cleavage of LexA. Cleavage inactivates LexA repressor, LexA cleaves itself in vitro at a slow rate, but in LexA, leading to derepression of the SOS regulon. Although vivo cleavage requires interaction with an activated form ofRecA RecA serves as a catalyst in vivo for LexA cleavage, RecA serves protein. RecA acts indirectly as a coprotease to stimulate LexA an indirect role in stimulating cleavage, and hence we term this autodigestion. We describe here a new class of ex4 mutants, exA function of RecA its coprotease activity. (Adg-; for autodigestion-defective) mutants, termed Adg- for As with any self-processing molecule, LexA has an active site brevity. Adg- mutants specifically interfered with the ability of and a substrate site. The cleavage site is analogous to the LexA to autodigest but left intact its ability to undergo RecA- substrate in an enzyme-catalyzed reaction; the active site is mediated cleavage. The data are consistent with a conforma- composed of a catalytic center, which carries out the chemistry tional model in which RecA favors a reactive conformation of bond breakage, and of a binding pocket, which binds the capable of undergoing cleavage. To our knowledge, this is the cleavage site and positions the peptide bond relative to the first example of a mutation in a regulated self-processing reac- catalytic center. LexA (202 aa) has the following domain tion that impairs the rate of self-processing without markedly structure: the N-terminal domain is the DNA-binding domain; affecting the stimulated reaction. Had wild-type lex4 carried the C-terminal domain allows dimerization and contains the such a substitution, discovery of its self-processing would have active site for cleavage; and the cleavage site (Ala-84/Gly-85) been difficult; we suggest that, in other systems, a slow rate of lies between the two domains. At a mechanistic level, LexA is self-processing has prevented recognition that a reaction is of almost certainly a serine protease; Ser-1 19 in LexA reacts with this nature. a serine protease inhibitor (4), and changes of Ser-119 to Ala completely block cleavage (5). Unlike classical serine pro- teases, however, the serine appears to be activated by a Self-processing biochemical reactions are those in which a deprotonated lysine residue, Lysl56 in LexA. It seems likely protein or RNA molecule carries out a specific covalent that RecA acts by somehow reducing the pKa of Lys-156, modification of its own structure (1). In principle, the rates of allowing cleavage to proceed at neutral pH. self-processing reactions can be very high, because all the A model for the action of RecA was recently developed (6) reactants are present at high local concentrations. Nonethe- based on the properties of a new type of lexA mutation, termed less, in some cases, the rates of self-processing reactions are lexA (Inds) and here referred to as Inds. Inds mutant proteins slow and are greatly stimulated by an external agent, implying display greatly increased rates of specific cleavage, both in vivo that these self-processing molecules are designed to undergo a and in vitro (6-8). Biochemical analysis of the cleavage reaction slow intrinsic reaction but to be capable of large rate increases. for three of these proteins, all changing Gln-92 in LexA to an Examples of regulated reactions include many reactions in aromatic amino acid, led to the conclusion that these mutations two-component regulatory systems; LexA repressor self- mimic, to some extent, the role of RecA in promoting cleavage. cleavage, which is mediated by an activated form of RecA; and Based on the properties of these mutant proteins, we developed an "honorary" self-processing reaction, the GTPase activity of a model (Scheme I) for the specific cleavage reaction. eukaryotic Ras proteins, which is stimulated by interactions with GTPase-activating proteins. K L* k It is of interest in such systems to understand the relation- , ship between the self-processing reaction and its stimulated L*_H L p counterpart. Are the mechanisms of these reactions the same? That is, does the effector increase the rate of the reaction, or does the stimulated reaction follow a different pathway? In the tj Kconf present system, we have explored the properties of mutant L-H . L proteins to address the relationship between self-cleavage and K its RecA-stimulated counterpart. In this work, we describe a L new type of mutant: one that affects the rate of a self- Scheme I processing reaction but not that of the reaction catalyzed by the outside effector. In Scheme I, P represents the products of the cleavage The self-processing reaction we study here plays a central role reaction. According to this model, LexA can exist in two forms: in the SOS regulatory system of Escherichia coli (1-3). In this the L form cannot autodigest, while the L* form autodigests system, a set of '20 genes is derepressed following conditions with a first-order rate constant kref. L and L* interconvert, and that damage DNA or inhibit DNA replication. These SOS genes the [L*]/[L] ratio is defined by the equilibrium constant Kconf. The publication costs of this article were defrayed in part by page charge Abbreviations: X-Gal, 5-bromo-4-chloro-3-indolyl ,B-D-galactoside. payment. This article must therefore be hereby marked "advertisement" in §To whom reprint requests should be addressed. e-mail: accordance with 18 U.S.C. §1734 solely to indicate this fact. [email protected]. 11528 Downloaded by guest on October 1, 2021 Biochemistry: Shepley and Little Proc. Natl. Acad. Sci. USA 93 (1996) 11529 Both L and L* can be protonated on Lys-156, but the pKa for isolates of pJWL228 derivatives were maintained in JL468, protonation is considerably lower for L* than for L; pKL* is <6, which lacks T7 RNA polymerase, to avoid selective pressure while pKL is 10. for loss of LexA function. One important tenet of this model is that the Inds mutations Assay of Cleavage Rate. Reaction conditions for LexA increase the value of Kc.nf and that RecA has the same effect, autodigestion and RecA-mediated cleavage were measured as but to a far greater extent. If Kc.nf >> 1, the equilibrium described (9). Autodigestion was carried out at pH 10.0 or, between LH+ and L* is shifted toward L*, reducing the where indicated, pH 8.7. In RecA-mediated cleavage reac- apparent pKa of LexA. Activated RecA greatly stabilizes the tions, activated RecA was at 1 ,M and LexA was at 4 ,AM. L* form, even at neutral pH. We omit RecA from this diagram, Rates were estimated by visual inspection of Coomassie- since there may be multiple equilibria involving RecA and stained gels, and have an uncertainty of "20%. In some RecA:LexA complexes, and we do not know which species of experiments, we used Tricine gels (13), which give better LexA bind to RecA. resolution of the cleavage fragments than the Laemmli system. The model predicts that it may be possible to isolate LexA We estimated from mixing experiments that a sample con- mutations that have specific defects in autodigestion but are taining 70% fragments and 30% intact LexA gave about largely unaffected for RecA-mediated cleavage. These muta- equally intense staining for the intact protein and the C- tions would be those that specifically reduce the value ofKco,f. terminal fragment. If RecA could overcome the effect of these mutations, it might In Vivo Assay for Repressor Function. Derivatives of still be able to exert its effect on cleavage, so that it could pJWL184 were introduced into strain JL1752, which is recA- stabilize the L* form well enough to promote cleavage at lexA (Def), so that the only LexA function was provided by the we expect a mutation with a neutral pH. Accordingly, would plasmid, and cleavage could not result from the action of reduced Kconf to be much more severely affected for autodi- than for RecA-dependent cleavage; the difference RecA. This strain also carried a sulA::lacZ operon fusion as a gestion and levels would depend on the extent to which RecA could overcome reporter of LexA repressor function, 13-galactosidase Finally, the the defect. Hence, we term this type of mutation a lexA (Adg-) were detected on MacConkey indicator plates. mutation, for autodigestion-defective, and refer to it here as strain had an F' with a lacIqIS mutation, rendering the Lac Adg- for the sake of brevity. We report the isolation of several repressor insensitive to the presence of the inducer, lactose, in Adg- mutants. the indicator plates, ensuring that LexA was expressed at the basal level from the lac promoter.
Recommended publications
  • Amwands 1.Pdf
    CHARACTERIZATION OF THE DYNAMIC INTERACTIONS OF TRANSCRIPTIONAL ACTIVATORS by Amberlyn M. Wands A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemistry) in The University of Michigan 2010 Doctoral Committee: Associate Professor Anna K. Mapp, Chair Professor Hashim M. Al-Hashimi Professor E Neil G. Marsh Associate Professor Jorge A. Iñiguez-Lluhí Amberlyn M. Wands All rights reserved 2010 Acknowledgements I have so many people to thank for helping me throughout my graduate school career. First, I would like to thank my advisor Dr. Anna Mapp for all of the guidance you have given me, as well as allowing me the freedom to express myself as a scientist. Your patience and confidence in my abilities means a lot to me, and I promise to keep working on presenting myself to others in a positive yet assertive manner. I would also like to thank you for taking the time to instill in your students the importance of thinking and writing critically about scientific concepts, which I know we will carry with us into our future careers. Next I would like to thank my committee members for their time, and for always asking me challenging questions that made me look at my projects from a different perspective. I would also like to give a special thanks to Dr. Carol Fierke and Dr. John Hsieh for their willingness to work on a collaboration with people starting with a minimal background in the field of transient kinetics. Their love of solving kinetic problems is inspiring, and I appreciate being given the opportunity to work with them.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Identification of New Substrates and Physiological Relevance
    Université de Montréal The Multifaceted Proprotein Convertases PC7 and Furin: Identification of New Substrates and Physiological Relevance Par Stéphanie Duval Biologie Moléculaire, Faculté de médecine Thèse présentée en vue de l’obtention du grade de Philosophiae doctor (Ph.D) en Biologie moléculaire, option médecine cellulaire et moléculaire Avril 2020 © Stéphanie Duval, 2020 Résumé Les proprotéines convertases (PCs) sont responsables de la maturation de plusieurs protéines précurseurs et sont impliquées dans divers processus biologiques importants. Durant les 30 dernières années, plusieurs études sur les PCs se sont traduites en succès cliniques, toutefois les fonctions spécifiques de PC7 demeurent obscures. Afin de comprendre PC7 et d’identifier de nouveaux substrats, nous avons généré une analyse protéomique des protéines sécrétées dans les cellules HuH7. Cette analyse nous a permis d’identifier deux protéines transmembranaires de fonctions inconnues: CASC4 et GPP130/GOLIM4. Au cours de cette thèse, nous nous sommes aussi intéressé au rôle de PC7 dans les troubles comportementaux, grâce à un substrat connu, BDNF. Dans le chapitre premier, je présenterai une revue de la littérature portant entre autres sur les PCs. Dans le chapitre II, l’étude de CASC4 nous a permis de démontrer que cette protéine est clivée au site KR66↓NS par PC7 et Furin dans des compartiments cellulaires acides. Comme CASC4 a été rapporté dans des études de cancer du sein, nous avons généré des cellules MDA- MB-231 exprimant CASC4 de type sauvage et avons démontré une diminution significative de la migration et de l’invasion cellulaire. Ce phénotype est causé notamment par une augmentation du nombre de complexes d’adhésion focale et peut être contrecarré par la surexpression d’une protéine CASC4 mutante ayant un site de clivage optimale par PC7/Furin ou encore en exprimant une protéine contenant uniquement le domaine clivé N-terminal.
    [Show full text]
  • 2D Nmr Studies of Biomolecules: Protein Structures and Protein-Dna Interactions 2D Nmr Studies of Biomolecules: Protein Structures and Protein-Dna Interactions
    2D NMR STUDIES OF BIOMOLECULES: PROTEIN STRUCTURES AND PROTEIN-DNA INTERACTIONS 2D NMR STUDIES OF BIOMOLECULES: PROTEIN STRUCTURES AND PROTEIN-DNA INTERACTIONS 2D NMR STUDIES VAN BIOMOLECULEN: EIWITSTRUCTUREN EN EIWIT-DNA INTERACTIES (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Rijksuniversiteit te Utrecht op gezag van de Rector Magnificus, Prof. Dr. J.A van Ginkel ingevolge het besluit van het College van Dekanen in het openbaar te verdedigen op 25 oktober 1989 des namiddags te 12.45 uur door Rudolf Mat hias Johannes Nicolaas Lamerichs geboren op 1 oktober 1959 te Echt Promotor: Prof. Dr. R. Kaptein Co-promotor: Dr. R. Boelens aan mijn ouders ter herinnering aan mijn vader Voorwoord Naarmate de kennis over de wereld om ons heen toeneemt, lijkt het erop dat onderzoek steeds meer "team-work" wordt. Meer en meer mensen werken, ieder binnen zijn of haar eigen specialisme, aan een bepaald onderwerp. Dit geldt ook voor het onderzoek beschreven in dit proefschrift. Allereerst ben ik dank verschuldigd aan mijn promotor, Rob Kaptein, die mij gedurende de afgelopen vier jaar ruime mogelijkheden geboden heeft om het werk te verrichten dat geresulteerd heeft in dit proefschrift. Mijn co-promotor, Rolf Boelens, was onontbeerlijk om mij regelmatig weer op het goede spoor te zetten. Ton Ruilmann en André Padilla hebben mij wegwijs gemaakt in de jungle van programmatuur die tegenwoordig beschikbaar is om molekuulstructuren te bepalen. Verder wil ik alle collega's hartelijk danken voor alle bijdragen die zij geleverd hebben. Het enthousiasme van Larry Berliner mag daarbij zeker niet ongenoemd blijven.
    [Show full text]
  • Bacillus Subtilis Pcra Couples DNA Replication, Transcription, Recombination and Segregation
    ORIGINAL RESEARCH published: 21 July 2020 doi: 10.3389/fmolb.2020.00140 Bacillus subtilis PcrA Couples DNA Replication, Transcription, Recombination and Segregation María Moreno-del Alamo 1, Rubén Torres 1, Candela Manfredi 1†, José A. Ruiz-Masó 2, Gloria del Solar 2 and Juan Carlos Alonso 1* 1 Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain, 2 Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the Edited by: recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating Chew Chieng Yeo, end resection (addAB or recQ), positive and negative RecA modulators (rarA or recX Sultan Zainal Abidin and recU), or genes involved in the reactivation of a stalled RNA polymerase (recD2, University, Malaysia helD, hepA, and ywqA). We also report that B. subtilis mutations previously designated Reviewed by: Arijit Dutta, as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is The University of Texas Health Science suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd, but it is not Center at San Antonio, United States Harshad Ghodke, epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD2, helD, hepA, or ywqA University of Wollongong, Australia in response to DNA damage. PcrA depletion led to the accumulation of unsegregated *Correspondence: chromosomes, and this defect is increased by recQ, rarA, or recU inactivation.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier Et Al
    US 200601 10747A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier et al. (43) Pub. Date: May 25, 2006 (54) PROCESS FOR IMPROVED PROTEIN (60) Provisional application No. 60/591489, filed on Jul. EXPRESSION BY STRAIN ENGINEERING 26, 2004. (75) Inventors: Thomas M. Ramseier, Poway, CA Publication Classification (US); Hongfan Jin, San Diego, CA (51) Int. Cl. (US); Charles H. Squires, Poway, CA CI2O I/68 (2006.01) (US) GOIN 33/53 (2006.01) CI2N 15/74 (2006.01) Correspondence Address: (52) U.S. Cl. ................................ 435/6: 435/7.1; 435/471 KING & SPALDING LLP 118O PEACHTREE STREET (57) ABSTRACT ATLANTA, GA 30309 (US) This invention is a process for improving the production levels of recombinant proteins or peptides or improving the (73) Assignee: Dow Global Technologies Inc., Midland, level of active recombinant proteins or peptides expressed in MI (US) host cells. The invention is a process of comparing two genetic profiles of a cell that expresses a recombinant (21) Appl. No.: 11/189,375 protein and modifying the cell to change the expression of a gene product that is upregulated in response to the recom (22) Filed: Jul. 26, 2005 binant protein expression. The process can improve protein production or can improve protein quality, for example, by Related U.S. Application Data increasing solubility of a recombinant protein. Patent Application Publication May 25, 2006 Sheet 1 of 15 US 2006/0110747 A1 Figure 1 09 010909070£020\,0 10°0 Patent Application Publication May 25, 2006 Sheet 2 of 15 US 2006/0110747 A1 Figure 2 Ester sers Custer || || || || || HH-I-H 1 H4 s a cisiers TT closers | | | | | | Ya S T RXFO 1961.
    [Show full text]
  • Non-Canonical Functions of the Bacterial Sos Response
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2019 Non-Canonical Functions Of The aB cterial Sos Response Amanda Samuels University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Microbiology Commons Recommended Citation Samuels, Amanda, "Non-Canonical Functions Of The aB cterial Sos Response" (2019). Publicly Accessible Penn Dissertations. 3253. https://repository.upenn.edu/edissertations/3253 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3253 For more information, please contact [email protected]. Non-Canonical Functions Of The aB cterial Sos Response Abstract DNA damage is a pervasive environmental threat, as such, most bacteria encode a network of genes called the SOS response that is poised to combat genotoxic stress. In the absence of DNA damage, the SOS response is repressed by LexA, a repressor-protease. In the presence of DNA damage, LexA undergoes a self-cleavage reaction relieving repression of SOS-controlled effector genes that promote bacterial survival. However, depending on the bacterial species, the SOS response has an expanded role beyond DNA repair, regulating genes involved in mutagenesis, virulence, persistence, and inter-species competition. Despite a plethora of research describing the significant consequences of the SOS response, it remains unknown what physiologic environments induce and require the SOS response for bacterial survival. In Chapter 2, we utilize a commensal E. coli strain, MP1, and established that the SOS response is critical for sustained colonization of the murine gut. Significantly, in evaluating the origin of the genotoxic stress, we found that the SOS response was nonessential for successful colonization in the absence of the endogenous gut microbiome, suggesting that competing microbes might be the source of genotoxic stress.
    [Show full text]
  • Specificity Determinants for the Interaction of Repressor and P22 Repressor Dimers
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Specificity determinants for the interaction of repressor and P22 repressor dimers Frederick W. Whipple, Natalie H. Kuldell, Lynn A. Cheatham, and Ann Hochschild Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, 02115 USA The related phage k and phage P22 repressors each bind cooperatively to adjacent and separated operator sites, an interaction that involves a pair of repressor dimers. The specificities of these interactions differ: Each dimer interacts with its own type but not with dimers of the heterologous repressor. The two repressors exhibit significant amino acid sequence homology in their carboxy-terminal domains, which are responsible for both dimer formation and the dimer-dimer interaction. Here, we identify a collection of amino acid substitutions that disrupt the protein-protein interaction of DNA-bound k repressor dimers and show that several of these substitutions have the same effect when introduced at the corresponding positions of P22 repressor. We use this information to construct a variant of the k repressor bearing only six non-wild-type amino acids that has a switched specificity; that is, it binds cooperatively with P22 repressor, but not with wild-type k repressor. These results identify a series of residues that determine the specificities of the two interactions. [Key Words: k repressor; P22 repressor; cooperativity; protein-protein interactions; DNA looping; transcriptional regulators] Received February 14, 1994; revised version accepted April 12, 1994. Transcriptional regulation in both prokaryotes and eu- amino-terminal domain contacts the DNA and interacts karyotes involves the interaction of both adjacently and with RNA polymerase, whereas the carboxy-terminal nonadjacently bound regulatory proteins.
    [Show full text]
  • Identification of Sensory-Neuron-Specific Sodium Ctiannel Nayl.8 Interacting Proteins by Yeast Two-Hybrid Screen
    Identification of Sensory-Neuron-Specific Sodium Ctiannel Nayl.8 Interacting Proteins by Yeast Two-Hybrid Screen Wing Yee Louisa Poon A Thesis submitted for the degree of Doctor of Philosophy to University of London Department of Biology University College London 2003 ProQuest Number: U642410 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U642410 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Voltage-gated sodium channels initiate and propagate action potentials in excitable cells. Ten distinct pore-forming a-subunits of voltage-gated sodium channels have been identified. The tetrodotoxin-resistant (TTX-r) sodium channel Navl.8 (also known as SNS/PN3) is primarily expressed in small diameter C-fiber-associated sensory neurons. Behavioral studies on Navl.8 null mutant mice have demonstrated a role for Nay 1.8 in the detection of noxious thermal, mechanical and inflammatory stimuli. Unlike other sodium channels, Nayl.8 is poorly expressed in mammalian cell lines even in the presence of accessory p-subunits. Experimental evidence suggests that Nay 1.8 requires accessory neuronal co-factors for high-level expression to produce currents comparable to characteristics exhibited in sensory neurons by endogenous Nayl.8.
    [Show full text]
  • Genome Wide Mapping of Peptidases in Rhodnius Prolixus
    ORIGINAL RESEARCH published: 12 December 2017 doi: 10.3389/fphys.2017.01051 Genome Wide Mapping of Peptidases in Rhodnius prolixus: Identification of Protease Gene Duplications, Horizontally Transferred Proteases and Analysis of Peptidase A1 Structures, with Considerations on Their Role in the Evolution of Edited by: Xanthe Vafopoulou, Hematophagy in Triatominae York University, Canada Reviewed by: Bianca S. Henriques 1†, Bruno Gomes 1†, Samara G. da Costa 1, Caroline da Silva Moraes 1, Leonardo Luis Fruttero, Rafael D. Mesquita 2, 3, Viv M. Dillon 4, Eloi de Souza Garcia 1, 2, Patricia Azambuja 1, 2, Facultad de Ciencias Químicas, 5 1, 2 Universidad Nacional de Córdoba, Roderick J. Dillon and Fernando A. Genta * Argentina 1 Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute – Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio Márcio Galvão Pavan, de Janeiro, Brazil, 2 National Institute of Science and Technology for Molecular Entomology (INCT-EM), Cidade Universitária, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil, 3 Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 4 Institute of Integrative Brazil Biology, University of Liverpool, Liverpool, United Kingdom, 5 Division of Biomedical and Life Sciences, Lancaster University, *Correspondence: Lancaster, United Kingdom Fernando A. Genta genta@ioc.fiocruz.br; [email protected] Triatominae is a subfamily of the order Hemiptera whose species are able to feed in the †These authors have contributed vertebrate blood (i.e., hematophagy). This feeding behavior presents a great physiological equally to this work. challenge to insects, especially in Hemipteran species with a digestion performed by lysosomal-like cathepsins instead of the more common trypsin-like enzymes.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Clostridium Thermocellum
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2011 Model-Guided Systems Metabolic Engineering of Clostridium thermocellum Christopher Gowen Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Engineering Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2529 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. ©Christopher M Gowen 2011 All rights reserved. MODEL-GUIDED SYSTEMS METABOLIC ENGINEERING OF CLOSTRIDIUM THERMOCELLUM A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT VIRGINIA COMMONWEALTH UNIVERSITY. BY CHRISTOPHER MARK GOWEN M.S. ENGINEERING, VIRGINIA COMMONWEALTH UNIVERSITY, 2008 B.S. BIOSYSTEMS ENGINEERING, CLEMSON UNIVERSITY, 2006 DIRECTOR: STEPHEN S. FONG, PH.D. ASSISTANT PROFESSOR, CHEMICAL & LIFE SCIENCE ENGINEERING VIRGINIA COMMONWEALTH UNIVERSITY RICHMOND, VIRGINIA MAY, 2011 ii ACKNOWLEDGEMENT For Grandy. "Can't never did do nothin'" I have many people to whom I am indebted for incredible love, support, and guidance. To begin, I would like to thank my advisor, Dr. Fong, for his guidance, instruction, and flexibility. Few educators can balance so well the sometimes competing drives for impactful research and scientific education, and I am grateful for the patience and flexibility he shows in letting his graduate students find their own independence. I would also like to thank Dr. Sherry Baldwin, Dr. Paul Brooks, Dr. Mark McHugh, Dr.
    [Show full text]