RESEARCH ARTICLE Non-equilibrium repressor binding kinetics link DNA damage dose to transcriptional timing within the SOS gene network Matthew J. Culyba1¤a*, Jeffrey M. Kubiak1☯, Charlie Y. Mo1☯¤b, Mark Goulian2, Rahul M. Kohli1,3 1 Department of Medicine, Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America, 2 Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America, 3 Department of Biochemistry and Biophysics, a1111111111 University of Pennsylvania, Philadelphia, PA, United States of America a1111111111 a1111111111 ☯ These authors contributed equally to this work. a1111111111 ¤a Current address: Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, a1111111111 Pittsburgh, PA, United States of America ¤b Current address: Laboratory of Bacteriology, The Rockefeller University, New York, NY, United States of America *
[email protected] OPEN ACCESS Abstract Citation: Culyba MJ, Kubiak JM, Mo CY, Goulian M, Kohli RM (2018) Non-equilibrium repressor Biochemical pathways are often genetically encoded as simple transcription regulation net- binding kinetics link DNA damage dose to transcriptional timing within the SOS gene network. works, where one transcription factor regulates the expression of multiple genes in a path- PLoS Genet 14(6): e1007405. https://doi.org/ way. The relative timing of each promoter's activation and shut-off within the network can 10.1371/journal.pgen.1007405 impact physiology. In the DNA damage repair pathway (known as the SOS response) of Editor: Ivan Matic, Universite Paris Descartes, Escherichia coli, approximately 40 genes are regulated by the LexA repressor. After a DNA INSERM U1001, FRANCE damaging event, LexA degradation triggers SOS gene transcription, which is temporally Received: November 20, 2017 separated into subsets of `early', `middle', and `late' genes.