Characterization of Seca-Sod Operon in Borrellia Burgdorferi

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Seca-Sod Operon in Borrellia Burgdorferi University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 12-2001 Characterization of secA-sod operon in Borrellia burgdorferi. Tonya Lynn Nichols University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Medical Immunology Commons, and the Medical Microbiology Commons Recommended Citation Nichols, Tonya Lynn, "Characterization of secA-sod operon in Borrellia burgdorferi." (2001). Electronic Theses and Dissertations. Paper 2881. https://doi.org/10.18297/etd/2881 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. CHARACTERIZATION OF THE SECA-SOD OPERON IN BORRELIA BURGDORFERI By Tonya Lynn Nichols B. S., Livingston University, 1986 M. S., Baylor University, 1991 A Dissertation Submitted to the Faculty of the Graduate School of the University of Louisville In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy Department of Microbiology and Immunology University of Louisville School of Medicine Louisville, Kentucky 2001 ABSTRACT Borrelia burgdorferi, the causative agent of Lyme disease, has been characterized as a microaerophilic spirochete. O2 consumption and utilization potentially yield reactive oxygen intermediates, such as superoxide, hydroxyl radicals, and hydrogen peroxide. This study investigated the expression of the sod gene, which encodes the only, identified oxidative defense mechanism in B. burgdorferi. Using primer extension analysis and RT- PCR, it was found that sod and secA are organized as a single transcriptional unit under the control of σ70-like promoter upstream of the secA open reading frame. Generally, gene expression decreases with increased distance from the promoter; however, secA expression was observed to be relatively lower amounts than sod. Both genes were expressed in all phases of growth, with greatest expression observed in stationary phase. Because transcription of most sod genes is tightly regulated by iron concentration, the secA-sod gene expression was analyzed in borrelial cells grown in varying amounts of metal. Iron- restriction did not significantly affect growth nor did it affect transcription of secA or sod. Likewise, no major differences in transcription were observed with restricting or supplementing media with manganese. To test the possibility that the borrelial SOD may function with either iron or manganese as a cofactor as in cambialistic SODs, SOD activity was assayed and the highest activity was observed in increased manganese concentrations. Protein expression profiles of Sh-2-82 cultured in metal-defined media were investigated by one- and two-dimensional gel electrophoresis. Approximately 15 proteins were differentially expressed in response to metal concentration. iii ACKNOWLEDGMENTS There are many individuals who have played pivotal roles in helping me become the scientist and the person that I am today. As a graduate student at the University of Louisville, I was most influenced by my major professor, Dr. Faye Austin. I thank her for the opportunity to work in her laboratory on B. burgdorferi. Under her guidance, I received a good foundation in the difficult study of RNA genetics. From her, I have learned the value of attention to detail in experimental design, experimentation, and record-keeping, which will follow me throughout my scientific career. Dr. Uldis Streips has also been a key player in my success. I appreciate the time he has devoted to my project and me. I have good memories of our trips to WindRiver where scientific thoughts and ideas were exchanged in an informal, enjoyable manner. I also thank Dr. Robert Stout, Dr. Thomas Geoghegan, and Dr. Ronald Doyle, for their helpful suggestions during this project and their participation as committee members. Additionally, I thank Joan Gagel for her coordination efforts in the preparation of this dissertation. For her kindness and assistance, I would like to thank Jan Powars. There were many others who befriended me and supported me throughout my graduate study, and I am thankful for all of my friends at the University of Louisville. Most of all, I am grateful to my husband, Greg, and our two sons, Matthew and Joshua, for their love, support and understanding. Through a family effort, we have accomplished this goal together. iv TABLE OF CONTENTS ABSTRACT….……………………………………………………………………………. iii ACKNOWLEDGMENTS…..……………………………………………………………... iv TABLE OF CONTENTS………………………………………………………………….. v LIST OF TABLES….……………………………………………………………………… viii LIST OF FIGURES………………………………………………………………………... ix LIST OF ABBREVIATIONS…………………………….…………………...…………... xi INTRODUCTION….……………………………………………………………………… 1 I. Lyme disease….…………………………………………………………………. 1 A. Epidemiology……………………………………………….…………….. 1 B. Clinical features…………………………………………………………... 4 C. Immunopathogenesis……………………………………………………… 6 D. Treatment……………………………………………….………………… 11 E. Vaccine……………………………………………………………………. 11 II. Borrelia burgdorferi….…………….…………………………………………… 13 A. Taxonomy ……………………………………………………………… 13 B. Genetic organization……………………………………………………… 14 C. Morphological features…………………………………………………… 16 D. Metabolism…..…………………………………………………………… 17 E. Virulence Factors….……………………………………………………… 18 III. Transcriptional control in bacteria...…………………………………………… 21 A. Organization of bacterial promoters……………………………………… 21 B. Organization of borrelial promoters……………………………………… 23 C. Processing of bacterial mRNA…..……………………………………….. 25 IV. Bacterial responses to stress and environmental signals….…………………… 27 A. Stationary phase….……………………………………………………….. 27 B. Heat shock response….…………………………………………………… 28 C. Borrelial heat shock response…………………….……………………….. 29 D. Oxidative stress response….……………………………………………… 30 E. Borrelial oxidative stress response……………….………………………. 33 F. Metalloregulation of oxidative stress…..………………………………… 35 V. SecA-dependent protein secretion……………………………………………… 40 A. Overview of secretion mechanisms….…………………………………… 40 B. Transcriptional organization and regulation of SecA…..………………… 42 C. Secretory genes in B. burgdorferi…….…………………………………... 43 SPECIFIC AIMS…...……………………………………………………………………… 45 v MATERIALS AND METHODS…..……………………………………………………… 47 Bacterial strains…..…………………………………………………………… 47 Media and growth conditions………………………………………………… 47 RNA isolation………………………………………………………………… 50 Northern blot analysis….…...………………………………………………… 50 Reverse transcriptase polymerase chain reaction (RT-PCR)….……………… 53 Primer extension (PE) analysis…..…………………………………………… 53 Polymerase chain reaction (PCR)….…………………………………………. 54 DNA sequencing……………………………………………………………… 54 Ribonuclease protection assay (RPA)….……………………………………... 55 Secondary structure analysis…..……………………………………………… 57 Preparation of cell-free extract (CFE)………………………………………... 57 Sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE)….……………………………………………………….. 58 Non-denaturing PAGE and SOD activity staining….………………………... 58 Spectrophotometric analysis of SOD activity………….……………………... 59 Two-dimensional gel electrophoresis………………………………………… 59 In-gel tryptic digestion of proteins……………………………………………. 61 Computer imaging……………………………………………………………. 62 Statistical analysis…………………………………….………………………. 62 RESULTS………………………………………………………………………………….. 63 Chapter 1 – Transcriptional analysis of sod in B. burgdorferi….……………. 63 Detection of secA-sod transcript……………………………………… 63 Determination of secA and sod promoter…………………………….. 66 Prediction of secondary structure of secA and sod mRNA transcripts…….…………………………………………………... 79 Chapter 2 – Identifying a possible role for iron in B. burgdorferi……………. 82 Identification of Fur-binding boxes…………………………………... 82 Development of iron-limiting culture conditions…………………….. 82 Chapter 3 – Expression of secA-sod as a function of metal availability……… 101 Development of ribonuclease protection assay………………………. 101 Detection of secA-sod mRNA transcript in different phases of growth….………...…………………………………… 104 Detection of secA-sod mRNA transcript as a function of metal availability…………………………….………………. 107 Chapter 4 – Protein profiling of B. burgdorferi Sh-2-82…..……………….… 114 vi Demonstration of SOD activity…...…………………………………. 114 Effect of metal availability on protein profiles by SDS-PAGE…... 117 Protein profiling by 2D gel electrophoresis….…………………… 120 DISCUSSION….………………………………………………………………………... 133 LITERATURE CITED….……………………………………………………………… 142 VITA….………………………………………………………………………………… 179 vii LIST OF TABLES Table 1. Formulations of Barbour-Stoenner-Kelly (BSK) media….…..….……. 48 Table 2. Oligonucleotide hybridization probe or primer sequences…………….. 52 Table 3. Biotinylated oligonucletide probes used in ribonuclease protection assays…………………………………. 56 Table 4. Summary of growth patterns of Sh-2-82 in metal-restricted media…… 110 Table 5. Protein identification by MALDI-TOF...……………………………… 124 viii LIST OF FIGURES Figure 1. Northern blot analysis of Sh-2-82 mRNA…..……………………………. 65 Figure 2. RT-PCR analysis of the sod transcript…………………………………… 68 Figure 3. Approximate locations of primers used in primer extension analyses….... 70 Figure 4. Lack of σ70-like promoter region upstream of B. burgdorferi sod…..……
Recommended publications
  • LYME DISEASE Other Names: Borrelia Burgdorferi
    LYME DISEASE Other names: Borrelia burgdorferi CAUSE Lyme disease is caused by a spirochete bacteria (Borrelia burgdorferi) that is transmitted through the bite from an infected arthropod vector, the black-legged or deer tick Ixodes( scapularis). SIGNIFICANCE Lyme disease can infect people and some species of domestic animals (cats, dogs, horses, and cattle) causing mild to severe illness. Although wildlife can be infected by the bacteria, it typically does not cause illness in them. TRANSMISSION The bacteria has been observed in the blood of a number of wildlife species including several bird species but rarely appears to cause illness in these species. White-footed mice, eastern chipmunks, and shrews serve as the primary natural reservoirs for Lyme disease in eastern and central parts of North America. Other species appear to have low competencies as reservoirs for the bacteria. The transmission of Lyme disease is relatively convoluted due to the complex life cycle of the black-legged tick. This tick has multiple developmental stages and requires three hosts during its life cycle. The life cycle begins with the eggs of the ticks that are laid in the spring and from which larval ticks emerge. Larval ticks do not initially carryBorrelia burgdorferi, the bacteria must be acquired from their hosts they feed upon that are carriers of the bacteria. Through the summer the larval ticks feed on the blood of their first host, typically small mammals and birds. It is at this point where ticks may first acquireBorrelia burgdorferi. In the fall the larval ticks develop into nymphs and hibernate through the winter.
    [Show full text]
  • Association of Borrelia Garinii and B. Valaisiana with Songbirds in Slovakia
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Public Health Resources Public Health Resources 5-2003 Association of Borrelia garinii and B. valaisiana with Songbirds in Slovakia Klara Hanincova Department of Infectious Disease Epidemiology, Imperial College of Science, Technology and Medicine, London W2 1PG Veronika Taragelova Institute of Zoology, Slovak Academy of Science, 81364 Bratislava Juraj Koci Department of Biology, Microbiology and Immunology, University of Trnava, 918 43 Trnava, Slovakia Stefanie M. Schafer Department of Infectious Disease Epidemiology, Imperial College of Science, Technology and Medicine, London W2 1PG Rosie Hails NERC Centre of Ecology and Hydrology, Oxford OX 1 3SR See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/publichealthresources Part of the Public Health Commons Hanincova, Klara; Taragelova, Veronika; Koci, Juraj; Schafer, Stefanie M.; Hails, Rosie; Ullmann, Amy J.; Piesman, Joseph; Labuda, Milan; and Kurtenbach, Klaus, "Association of Borrelia garinii and B. valaisiana with Songbirds in Slovakia" (2003). Public Health Resources. 115. https://digitalcommons.unl.edu/publichealthresources/115 This Article is brought to you for free and open access by the Public Health Resources at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Public Health Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Klara Hanincova, Veronika Taragelova, Juraj Koci, Stefanie M. Schafer, Rosie Hails, Amy J. Ullmann, Joseph Piesman, Milan Labuda, and Klaus Kurtenbach This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ publichealthresources/115 APPLIED AND ENVIRONMENTAL MICROBIOLOGY, May 2003, p. 2825–2830 Vol. 69, No. 5 0099-2240/03/$08.00ϩ0 DOI: 10.1128/AEM.69.5.2825–2830.2003 Copyright © 2003, American Society for Microbiology.
    [Show full text]
  • Canine Lyme Borrelia
    Canine Lyme Borrelia Borrelia burgdorferi bacteria are the cause of Lyme disease in humans and animals. They can be visualized by darkfild microscopy as "corkscrew-shaped" motile spirochetes (400 x). Inset: The black-legged tick, lxodes scapularis (deer tick), may carry and transmit Borrelia burgdorferi to humans and animals during feeding, and thus transmit Lyme disease. Samples: Blood EDTA-blood as is, purple-top tubes or EDTA-blood preserved in sample buffer (preferred) Body fluids Preserved in sample buffer Notes: Send all samples at room temperature, preferably preserved in sample buffer MD Submission Form Interpretation of PCR Results: High Positive Borrelia spp. infection (interpretation must be correlated to (> 500 copies/ml swab) clinical symptoms) Low Positive (<500 copies/ml swab) Negative Borrelia spp. not detected Lyme Borreliosis Lyme disease is caused by spirochete bacteria of a subgroup of Borrelia species, called Borrelia burgdorferi sensu lato. Only one species, B. burgdorferi sensu stricto, is known to be present in the USA, while at least four pathogenic species, B. burgdorferi sensu stricto, B. afzelii, B. garinii, B. japonica have been isolated in Europe and Asia (Aguero- Rosenfeld et al., 2005). B. burgdorferi sensu lato organisms are corkscrew-shaped, motile, microaerophilic bacteria of the order Spirochaetales. Hard-shelled ticks of the genus Ixodes transmit B. burgdorferi by attaching and feeding on various mammalian, avian, and reptilian hosts. In the northeastern states of the US Ixodes scapularis, the black-legged deer tick, is the predominant vector, while at the west coast Lyme borreliosis is maintained by a transmission cycle which involves two tick species, I.
    [Show full text]
  • Investigation of the Lipoproteome of the Lyme Disease Bacterium
    INVESTIGATION OF THE LIPOPROTEOME OF THE LYME DISEASE BACTERIUM BORRELIA BURGDORFERI BY Alexander S. Dowdell Submitted to the graduate degree program in Microbiology, Molecular Genetics & Immunology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. _____________________________ Wolfram R. Zückert, Ph.D., Chairperson _____________________________ Indranil Biswas, Ph.D. _____________________________ Mark Fisher, Ph.D. _____________________________ Joe Lutkenhaus, Ph.D. _____________________________ Michael Parmely, Ph.D. Date Defended: April 27th, 2017 The dissertation committee for Alexander S. Dowdell certifies that this is the approved version of the following dissertation: INVESTIGATION OF THE LIPOPROTEOME OF THE LYME DISEASE BACTERIUM BORRELIA BURGDORFERI _____________________________ Wolfram R. Zückert, Ph.D., Chairperson Date Approved: May 4th, 2017 ii Abstract The spirochete bacterium Borrelia burgdorferi is the causative agent of Lyme borreliosis, the top vector-borne disease in the United States. B. burgdorferi is transmitted by hard- bodied Ixodes ticks in an enzootic tick/vertebrate cycle, with human infection occurring in an accidental, “dead-end” fashion. Despite the estimated 300,000 cases that occur each year, no FDA-approved vaccine is available for the prevention of Lyme borreliosis in humans. Development of new prophylaxes is constrained by the limited understanding of the pathobiology of B. burgdorferi, as past investigations have focused intensely on just a handful of identified proteins that play key roles in the tick/vertebrate infection cycle. As such, identification of novel B. burgdorferi virulence factors is needed in order to expedite the discovery of new anti-Lyme therapeutics. The multitude of lipoproteins expressed by the spirochete fall into one such category of virulence factor that merits further study.
    [Show full text]
  • Transhemispheric Exchange of Lyme Disease Spirochetes by Seabirds BJO¨ RN OLSEN,1,2 DAVID C
    JOURNAL OF CLINICAL MICROBIOLOGY, Dec. 1995, p. 3270–3274 Vol. 33, No. 12 0095-1137/95/$04.0010 Copyright q 1995, American Society for Microbiology Transhemispheric Exchange of Lyme Disease Spirochetes by Seabirds BJO¨ RN OLSEN,1,2 DAVID C. DUFFY,3 THOMAS G. T. JAENSON,4 ÅSA GYLFE,1 1 1 JONAS BONNEDAHL, AND SVEN BERGSTRO¨ M * Department of Microbiology1 and Department of Infectious Diseases,2 Umeå University, S-901 87 Umeå, and Department of Zoology, Section of Entomology, and Zoological Museum, University of Uppsala, S-752 36 Uppsala,4 Sweden, and Alaska Natural Heritage Program, Environment and Natural Resources Institute, University of Alaska, Anchorage, Anchorage, Alaska 995013 Received 19 June 1995/Returned for modification 17 August 1995/Accepted 18 September 1995 Lyme disease is a zoonosis transmitted by ticks and caused by the spirochete Borrelia burgdorferi sensu lato. Epidemiological and ecological investigations to date have focused on the terrestrial forms of Lyme disease. Here we show a significant role for seabirds in a global transmission cycle by demonstrating the presence of Lyme disease Borrelia spirochetes in Ixodes uriae ticks from several seabird colonies in both the Southern and Northern Hemispheres. Borrelia DNA was isolated from I. uriae ticks and from cultured spirochetes. Sequence analysis of a conserved region of the flagellin (fla) gene revealed that the DNA obtained was from B. garinii regardless of the geographical origin of the sample. Identical fla gene fragments in ticks obtained from different hemispheres indicate a transhemispheric exchange of Lyme disease spirochetes. A marine ecological niche and a marine epidemiological route for Lyme disease borreliae are proposed.
    [Show full text]
  • Assessing Lyme Disease Relevant Antibiotics Through Gut Bacteroides Panels
    Assessing Lyme Disease Relevant Antibiotics through Gut Bacteroides Panels by Sohum Sheth Abstract: Lyme borreliosis is the most prevalent vector-borne disease in the United States caused by the transmission of bacteria Borrelia burgdorferi harbored by the Ixodus scapularis ticks (Sharma, Brown, Matluck, Hu, & Lewis, 2015). Antibiotics currently used to treat Lyme disease include oral doxycycline, amoxicillin, and ce!riaxone. Although the current treatment is e"ective in most cases, there is need for the development of new antibiotics against Lyme disease, as the treatment does not work in 10-20% of the population for unknown reasons (X. Wu et al., 2018). Use of antibiotics in the treatment of various diseases such as Lyme disease is essential; however, the downside is the development of resistance and possibly deleterious e"ects on the human gut microbiota composition. Like other organs in the body, gut microbiota play an essential role in the health and disease state of the body (Ianiro, Tilg, & Gasbarrini, 2016). Of importance in the microbiome is the genus Bacteroides, which accounts for roughly one-third of gut microbiome composition (H. M. Wexler, 2007). $e purpose of this study is to investigate how antibiotics currently used for the treatment of Lyme disease in%uences the Bacteroides cultures in vitro and compare it with a new antibiotic (antibiotic X) identi&ed in the laboratory to be e"ective against B. burgdorferi. Using microdilution broth assay, minimum inhibitory concentration (MIC) was tested against nine di"erent strains of Bacteroides. Results showed that antibiotic X has a higher MIC against Bacteroides when compared to amoxicillin, ce!riaxone, and doxycycline, making it a promising new drug for further investigation and in vivo studies.
    [Show full text]
  • Borrelia Burgdorferi Surface Exposed Groel Is a Multifunctional Protein
    pathogens Article Borrelia burgdorferi Surface Exposed GroEL Is a Multifunctional Protein Thomas Cafiero and Alvaro Toledo * Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA; tcafi[email protected] * Correspondence: [email protected]; Tel.: +1-848-932-0955 Abstract: The spirochete, Borrelia burgdorferi, has a large number of membrane proteins involved in a complex life cycle, that includes a tick vector and a vertebrate host. Some of these proteins also serve different roles in infection and dissemination of the spirochete in the mammalian host. In this spirochete, a number of proteins have been associated with binding to plasminogen or components of the extracellular matrix, which is important for tissue colonization and dissemination. GroEL is a cytoplasmic chaperone protein that has previously been associated with the outer membrane of Borrelia. A His-tag purified B. burgdorferi GroEL was used to generate a polyclonal rabbit antibody showing that GroEL also localizes in the outer membrane and is surface exposed. GroEL binds plasminogen in a lysine dependent manner. GroEL may be part of the protein repertoire that Borrelia successfully uses to establish infection and disseminate in the host. Importantly, this chaperone is readily recognized by sera from experimentally infected mice and rabbits. In summary, GroEL is an immunogenic protein that in addition to its chaperon role it may contribute to pathogenesis of the spirochete by binding to plasminogen and components of the extra cellular matrix. Keywords: Borrelia burgdorferi; Lyme disease; GroEL; Moonlight protein Citation: Cafiero, T.; Toledo, A. Borrelia burgdorferi Surface Exposed 1. Introduction GroEL Is a Multifunctional Protein. Pathogens 2021, 10, 226.
    [Show full text]
  • Genetic Diversity of Borrelia Garinii from Ixodes Uriae Collected in Seabird T Colonies of the Northwestern Atlantic Ocean Hannah J
    Ticks and Tick-borne Diseases 10 (2019) 101255 Contents lists available at ScienceDirect Ticks and Tick-borne Diseases journal homepage: www.elsevier.com/locate/ttbdis Original article Genetic diversity of Borrelia garinii from Ixodes uriae collected in seabird T colonies of the northwestern Atlantic Ocean Hannah J. Munroa, Nicholas H. Ogdenb,c, Samir Mechaib,c, L. Robbin Lindsayd, ⁎ Gregory J. Robertsone, Hugh Whitneya, Andrew S. Langa, a Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, A1B 3X9, Canada b Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, J2S 2M2, Canada c Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, J2S 2M2, Canada d National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada e Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, Newfoundland and Labrador, A1N 4T3, Canada ARTICLE INFO ABSTRACT Keywords: The occurrence of Borrelia garinii in seabird ticks, Ixodes uriae, associated with different species of colonial Ixodes seabirds has been studied since the early 1990s. Research on the population structure of this bacterium in ticks Borrelia from seabird colonies in the northeastern Atlantic Ocean has revealed admixture between marine and terrestrial North Atlantic Ocean tick populations. We studied B. garinii genetic diversity and population structure in I. uriae collected from seabird Seabirds colonies in the northwestern Atlantic Ocean, in Newfoundland and Labrador, Canada. We applied a multi-locus MLST sequence typing (MLST) scheme to B. garinii found in ticks from four species of seabirds.
    [Show full text]
  • Lyme Disease Borrelia Burgdorferi Anaplasmosis Anaplasma
    TICKBORNE DISEASES IN MICHIGAN: A REFERENCE FOR HEALTH CARE PROVIDERS Lyme disease Anaplasmosis Borrelia burgdorferi Anaplasma phagocytophillum Blacklegged (deer) tick Blacklegged (deer) tick Vector Incubation Period 3 – 30 days 1 – 2 weeks Early localized disease: • Characteristic erythema migrans (EM) rash . Fever, chills • Fever & chills . Severe headache • Headache . Malaise • Myalgia & arthralgia . Myalgia • Lymphadenopathy . Gastrointestinal symptoms Signs and Disseminated disease (weeks to months after . Cough Symptoms exposure): . Rash (rare cases) • Multiple EM lesions . Stiff neck* • Nervous system abnormalities including nerve . Confusion* paralysis (facial muscles), meningitis • Arthritis in large joints, especially the knee *May present later (5 days after onset of symptoms) • Myocarditis, pericarditis, or atrioventricular node and may be prevented by early treatment block Typically observed during the first week of clinical disease: • Mild anemia • Elevated erythrocyte sedimentation rate • Thrombocytopenia • Mildly elevated hepatic transaminases General • Leukopenia (characterized by relative and absolute • Microscopic hematuria or proteinuria lymphopenia and a left shift) Laboratory • In Lyme meningitis, CSF typically shows • Mild to moderate elevations in hepatic Findings lymphocytic pleocytosis, slightly elevated transaminases may occur in some patients protein, and normal glucose • Visualization of morulae in the cytoplasm of granulocytes is highly suggestive of a diagnosis; however, blood smear examination is insensitive. Antibodies to A. phagocytophillum are detectable 7- • Demonstration of diagnostic IgM or IgG 10 days after illness onset. antibodies in serum. A two-tier testing protocol • Demonstration of a four-fold change in IgG-specific is recommended – EIA or IFA should be antibody titer by IFA test in paired serum samples; Laboratory performed first; if positive or equivocal it is or followed by a Western blot.
    [Show full text]
  • Borrelia Burgdorferi)
    The Lyme Bacterium (Borrelia burgdorferi) Habitat : Called an endoparasite, this bacterium can only live inside of another organism. Remarkably, B. burgforferi can survive in a range of temperatures, from the hemolymph of insects to the warm blood of mammals. Diet : B. burgforferi obtains nutrients and energy from the blood of a host. Life Cycle/Reproduction: B. burgforferi reproduces asexually, making identical copies of itself with each duplication. They can reproduce rapidly, and one scientific study found an average of 2,735 bacteria/tick 15 days after the tick had fed. Although the scientists found that recently molted nymphs had only 300 bacteria/nymph, within 75 days, these nymphs had an average of 61,275 bacteria! The tick serves as the vector for the bacteria, moving it from one “holding place” or “reservoir” to another host, which may even be a human. Small rodents, especially mice, act as good reservoirs. If a larva bites an infected mouse, that tick will likely become infected itself. The tick vector can then bite another host and transmit the bacteria, propagating itself. Dispersal: There are two types of dispersal associated with this bacterium. First, there is dispersal of individual bacteria. For example within the tick, the bacteria attach to the mid-gut to avoid being digested by the tick. When the tick attaches to a vertebrate host, the bacteria detach from the mid-gut and migrate to the salivary glands, where they can then be transmitted to the vertebrate host. Secondly, there is dispersal of the entire population of bacteria. This type of dispersal requires that the bacteria successfully “move” from a reservoir to a host with the help of a vector.
    [Show full text]
  • A New Borrelia Species Defined by Multilocus Sequence Analysis Of
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 2009, p. 5410–5416 Vol. 75, No. 16 0099-2240/09/$08.00ϩ0 doi:10.1128/AEM.00116-09 Copyright © 2009, American Society for Microbiology. All Rights Reserved. A New Borrelia Species Defined by Multilocus Sequence Analysis of Housekeeping Genesᰔ† Gabriele Margos,1* Stephanie A. Vollmer,1 Muriel Cornet,2 Martine Garnier,2 Volker Fingerle,3 Bettina Wilske,4§ Antra Bormane,5 Liliana Vitorino,6 Margarida Collares-Pereira,6 Michel Drancourt,7 and Klaus Kurtenbach1‡ Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom1; Centre National de Re´fe´rence des Borrelia, Institut Pasteur, 75724 Paris Cedex 15, France2; National Reference Center for Borrelia, Bayerisches Landesamt fu¨r Gesundheit und Lebensmittelsicherheit (LGL), Branch Oberschleißheim, Veterina¨rstrasse 2, 85764 Oberschleißheim, Germany3; National Reference Center for Borreliae, Max von Pettenkofer Institute, University of Munich, Pettenkofer-Strasse 9a, D80336 Munich, Germany4; State Agency Public Health Agency, Klijanu Str. 7, LV-1012 Riga, Latvia5; Unidade de Leptospirose e Borreliose de Lyme, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, R. da Junqueira 96, 1349-008 Lisbon, Portugal6; and Unite´des Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS-IRD 6236, IFR48, Faculte´deMe´decine, Universite´de la Mediterrane´e, Marseille, France7 Received 17 January 2009/Accepted 30 May 2009 Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status.
    [Show full text]
  • Borrelia Burgdorferi Igg, Igm Fully Automated Chemiluminescence Assays for an Accurate Detection of Igg and Igm Antibodies to Borrelia Burgdorferi
    Infectious Disease Borrelia burgdorferi IgG, IgM Fully automated chemiluminescence assays for an accurate detection of IgG and IgM antibodies to Borrelia Burgdorferi FOR OUTSIDE THE US AND CANADA ONLY Infectious Disease Borrelia burgdorferi IgG, IgM Searching for diagnostic clarity: Unique selection of raw materials LIAISON® Borrelia serology line The diagnosis of Lyme borreliosis is based on clinical The LIAISON® Borrelia assays are based on recombinant proteins manifestations and history of exposure to ticks in an endemic that allow reduction of cross-reactivity problems providing area. Clinical manifestation of Lyme borreliosis may be similar higher specificity in comparison with whole-cell lysate assays. to that of other diseases, and serological detection of Borrelia The use of immunodominant Borrelia antigens, VIsE for IgG antibodies represents a fundamental aid to diagnosis (Fig.1). assay, OspC and VlsE for IgM assay, has improved the diagnostic sensitivity in all stages of Lyme infection. Tests with high diagnostic accuracy are particularly important for differential diagnosis since additional factors complicate • LIAISON® Borrelia IgG features the antigen VlsE, an serological findings: outer surface lipoprotein playing a major role in the immune response to Lyme disease and leading to decisive • early stage of infection may not show a measurable immune increase of sensitivity in neuroborreliosis (NB). The response VlsE antigen is poorly represented in whole-cell lysate obtained from in vitro cultured B. burgdorferi. • IgM antibodies may persist for months • LIAISON® Borrelia IgM II uses two recombinant antigens: • cross-reaction with other spirochaete proteins, or other OspC, an outer surface protein highly specific for infectious diseases or autoimmune disorders may cause IgM detection in the early phase of infection, and the false positive antibody response VlsE protein.
    [Show full text]