Correcting Sampling Bias in Non-Market Valuation with Kernel Mean Matching
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Status Quo Bias and Decisions to Withdraw Life-Sustaining Treatment
HUMANITIES | MEDICINE AND SOCIETY The status quo bias and decisions to withdraw life-sustaining treatment n Cite as: CMAJ 2018 March 5;190:E265-7. doi: 10.1503/cmaj.171005 t’s not uncommon for physicians and impasse. One factor that hasn’t been host of psychological phenomena that surrogate decision-makers to disagree studied yet is the role that cognitive cause people to make irrational deci- about life-sustaining treatment for biases might play in surrogate decision- sions, referred to as “cognitive biases.” Iincapacitated patients. Several studies making regarding withdrawal of life- One cognitive bias that is particularly show physicians perceive that nonbenefi- sustaining treatment. Understanding the worth exploring in the context of surrogate cial treatment is provided quite frequently role that these biases might play may decisions regarding life-sustaining treat- in their intensive care units. Palda and col- help improve communication between ment is the status quo bias. This bias, a leagues,1 for example, found that 87% of clinicians and surrogates when these con- decision-maker’s preference for the cur- physicians believed that futile treatment flicts arise. rent state of affairs,3 has been shown to had been provided in their ICU within the influence decision-making in a wide array previous year. (The authors in this study Status quo bias of contexts. For example, it has been cited equated “futile” with “nonbeneficial,” The classic model of human decision- as a mechanism to explain patient inertia defined as a treatment “that offers no rea- making is the rational choice or “rational (why patients have difficulty changing sonable hope of recovery or improvement, actor” model, the view that human beings their behaviour to improve their health), or because the patient is permanently will choose the option that has the best low organ-donation rates, low retirement- unable to experience any benefit.”) chance of satisfying their preferences. -
A Task-Based Taxonomy of Cognitive Biases for Information Visualization
A Task-based Taxonomy of Cognitive Biases for Information Visualization Evanthia Dimara, Steven Franconeri, Catherine Plaisant, Anastasia Bezerianos, and Pierre Dragicevic Three kinds of limitations The Computer The Display 2 Three kinds of limitations The Computer The Display The Human 3 Three kinds of limitations: humans • Human vision ️ has limitations • Human reasoning 易 has limitations The Human 4 ️Perceptual bias Magnitude estimation 5 ️Perceptual bias Magnitude estimation Color perception 6 易 Cognitive bias Behaviors when humans consistently behave irrationally Pohl’s criteria distilled: • Are predictable and consistent • People are unaware they’re doing them • Are not misunderstandings 7 Ambiguity effect, Anchoring or focalism, Anthropocentric thinking, Anthropomorphism or personification, Attentional bias, Attribute substitution, Automation bias, Availability heuristic, Availability cascade, Backfire effect, Bandwagon effect, Base rate fallacy or Base rate neglect, Belief bias, Ben Franklin effect, Berkson's paradox, Bias blind spot, Choice-supportive bias, Clustering illusion, Compassion fade, Confirmation bias, Congruence bias, Conjunction fallacy, Conservatism (belief revision), Continued influence effect, Contrast effect, Courtesy bias, Curse of knowledge, Declinism, Decoy effect, Default effect, Denomination effect, Disposition effect, Distinction bias, Dread aversion, Dunning–Kruger effect, Duration neglect, Empathy gap, End-of-history illusion, Endowment effect, Exaggerated expectation, Experimenter's or expectation bias, -
Downloads Automatically
VIRGINIA LAW REVIEW ASSOCIATION VIRGINIA LAW REVIEW ONLINE VOLUME 103 DECEMBER 2017 94–102 ESSAY ACT-SAMPLING BIAS AND THE SHROUDING OF REPEAT OFFENDING Ian Ayres, Michael Chwe and Jessica Ladd∗ A college president needs to know how many sexual assaults on her campus are caused by repeat offenders. If repeat offenders are responsible for most sexual assaults, the institutional response should focus on identifying and removing perpetrators. But how many offenders are repeat offenders? Ideally, we would find all offenders and then see how many are repeat offenders. Short of this, we could observe a random sample of offenders. But in real life, we observe a sample of sexual assaults, not a sample of offenders. In this paper, we explain how drawing naive conclusions from “act sampling”—sampling people’s actions instead of sampling the population—can make us grossly underestimate the proportion of repeat actors. We call this “act-sampling bias.” This bias is especially severe when the sample of known acts is small, as in sexual assault, which is among the least likely of crimes to be reported.1 In general, act sampling can bias our conclusions in unexpected ways. For example, if we use act sampling to collect a set of people, and then these people truthfully report whether they are repeat actors, we can overestimate the proportion of repeat actors. * Ayres is the William K. Townsend Professor at Yale Law School; Chwe is Professor of Political Science at the University of California, Los Angeles; and Ladd is the Founder and CEO of Callisto. 1 David Cantor et al., Report on the AAU Campus Climate Survey on Sexual Assault and Sexual Misconduct, Westat, at iv (2015) [hereinafter AAU Survey], (noting that a relatively small percentage of the most serious offenses are reported) https://perma.cc/5BX7-GQPU; Nat’ Inst. -
Cognitive Bias Mitigation: How to Make Decision-Making More Rational?
Cognitive Bias Mitigation: How to make decision-making more rational? Abstract Cognitive biases distort judgement and adversely impact decision-making, which results in economic inefficiencies. Initial attempts to mitigate these biases met with little success. However, recent studies which used computer games and educational videos to train people to avoid biases (Clegg et al., 2014; Morewedge et al., 2015) showed that this form of training reduced selected cognitive biases by 30 %. In this work I report results of an experiment which investigated the debiasing effects of training on confirmation bias. The debiasing training took the form of a short video which contained information about confirmation bias, its impact on judgement, and mitigation strategies. The results show that participants exhibited confirmation bias both in the selection and processing of information, and that debiasing training effectively decreased the level of confirmation bias by 33 % at the 5% significance level. Key words: Behavioural economics, cognitive bias, confirmation bias, cognitive bias mitigation, confirmation bias mitigation, debiasing JEL classification: D03, D81, Y80 1 Introduction Empirical research has documented a panoply of cognitive biases which impair human judgement and make people depart systematically from models of rational behaviour (Gilovich et al., 2002; Kahneman, 2011; Kahneman & Tversky, 1979; Pohl, 2004). Besides distorted decision-making and judgement in the areas of medicine, law, and military (Nickerson, 1998), cognitive biases can also lead to economic inefficiencies. Slovic et al. (1977) point out how they distort insurance purchases, Hyman Minsky (1982) partly blames psychological factors for economic cycles. Shefrin (2010) argues that confirmation bias and some other cognitive biases were among the significant factors leading to the global financial crisis which broke out in 2008. -
THE ROLE of PUBLICATION SELECTION BIAS in ESTIMATES of the VALUE of a STATISTICAL LIFE W
THE ROLE OF PUBLICATION SELECTION BIAS IN ESTIMATES OF THE VALUE OF A STATISTICAL LIFE w. k i p vi s c u s i ABSTRACT Meta-regression estimates of the value of a statistical life (VSL) controlling for publication selection bias often yield bias-corrected estimates of VSL that are substantially below the mean VSL estimates. Labor market studies using the more recent Census of Fatal Occu- pational Injuries (CFOI) data are subject to less measurement error and also yield higher bias-corrected estimates than do studies based on earlier fatality rate measures. These re- sultsareborneoutbythefindingsforalargesampleofallVSLestimatesbasedonlabor market studies using CFOI data and for four meta-analysis data sets consisting of the au- thors’ best estimates of VSL. The confidence intervals of the publication bias-corrected estimates of VSL based on the CFOI data include the values that are currently used by government agencies, which are in line with the most precisely estimated values in the literature. KEYWORDS: value of a statistical life, VSL, meta-regression, publication selection bias, Census of Fatal Occupational Injuries, CFOI JEL CLASSIFICATION: I18, K32, J17, J31 1. Introduction The key parameter used in policy contexts to assess the benefits of policies that reduce mortality risks is the value of a statistical life (VSL).1 This measure of the risk-money trade-off for small risks of death serves as the basis for the standard approach used by government agencies to establish monetary benefit values for the predicted reductions in mortality risks from health, safety, and environmental policies. Recent government appli- cations of the VSL have used estimates in the $6 million to $10 million range, where these and all other dollar figures in this article are in 2013 dollars using the Consumer Price In- dex for all Urban Consumers (CPI-U). -
Bias and Fairness in NLP
Bias and Fairness in NLP Margaret Mitchell Kai-Wei Chang Vicente Ordóñez Román Google Brain UCLA University of Virginia Vinodkumar Prabhakaran Google Brain Tutorial Outline ● Part 1: Cognitive Biases / Data Biases / Bias laundering ● Part 2: Bias in NLP and Mitigation Approaches ● Part 3: Building Fair and Robust Representations for Vision and Language ● Part 4: Conclusion and Discussion “Bias Laundering” Cognitive Biases, Data Biases, and ML Vinodkumar Prabhakaran Margaret Mitchell Google Brain Google Brain Andrew Emily Simone Parker Lucy Ben Elena Deb Timnit Gebru Zaldivar Denton Wu Barnes Vasserman Hutchinson Spitzer Raji Adrian Brian Dirk Josh Alex Blake Hee Jung Hartwig Blaise Benton Zhang Hovy Lovejoy Beutel Lemoine Ryu Adam Agüera y Arcas What’s in this tutorial ● Motivation for Fairness research in NLP ● How and why NLP models may be unfair ● Various types of NLP fairness issues and mitigation approaches ● What can/should we do? What’s NOT in this tutorial ● Definitive answers to fairness/ethical questions ● Prescriptive solutions to fix ML/NLP (un)fairness What do you see? What do you see? ● Bananas What do you see? ● Bananas ● Stickers What do you see? ● Bananas ● Stickers ● Dole Bananas What do you see? ● Bananas ● Stickers ● Dole Bananas ● Bananas at a store What do you see? ● Bananas ● Stickers ● Dole Bananas ● Bananas at a store ● Bananas on shelves What do you see? ● Bananas ● Stickers ● Dole Bananas ● Bananas at a store ● Bananas on shelves ● Bunches of bananas What do you see? ● Bananas ● Stickers ● Dole Bananas ● Bananas -
Human Dimensions of Wildlife the Fallacy of Online Surveys: No Data Are Better Than Bad Data
Human Dimensions of Wildlife, 15:55–64, 2010 Copyright © Taylor & Francis Group, LLC ISSN: 1087-1209 print / 1533-158X online DOI: 10.1080/10871200903244250 UHDW1087-12091533-158XHuman Dimensions of WildlifeWildlife, Vol.The 15, No. 1, November 2009: pp. 0–0 Fallacy of Online Surveys: No Data Are Better Than Bad Data TheM. D. Fallacy Duda ofand Online J. L. Nobile Surveys MARK DAMIAN DUDA AND JOANNE L. NOBILE Responsive Management, Harrisonburg, Virginia, USA Internet or online surveys have become attractive to fish and wildlife agencies as an economical way to measure constituents’ opinions and attitudes on a variety of issues. Online surveys, however, can have several drawbacks that affect the scientific validity of the data. We describe four basic problems that online surveys currently present to researchers and then discuss three research projects conducted in collaboration with state fish and wildlife agencies that illustrate these drawbacks. Each research project involved an online survey and/or a corresponding random telephone survey or non- response bias analysis. Systematic elimination of portions of the sample population in the online survey is demonstrated in each research project (i.e., the definition of bias). One research project involved a closed population, which enabled a direct comparison of telephone and online results with the total population. Keywords Internet surveys, sample validity, SLOP surveys, public opinion, non- response bias Introduction Fish and wildlife and outdoor recreation professionals use public opinion and attitude sur- veys to facilitate understanding their constituents. When the surveys are scientifically valid and unbiased, this information is useful for organizational planning. Survey research, however, costs money. -
Working Memory, Cognitive Miserliness and Logic As Predictors of Performance on the Cognitive Reflection Test
Working Memory, Cognitive Miserliness and Logic as Predictors of Performance on the Cognitive Reflection Test Edward J. N. Stupple ([email protected]) Centre for Psychological Research, University of Derby Kedleston Road, Derby. DE22 1GB Maggie Gale ([email protected]) Centre for Psychological Research, University of Derby Kedleston Road, Derby. DE22 1GB Christopher R. Richmond ([email protected]) Centre for Psychological Research, University of Derby Kedleston Road, Derby. DE22 1GB Abstract Most participants respond that the answer is 10 cents; however, a slower and more analytic approach to the The Cognitive Reflection Test (CRT) was devised to measure problem reveals the correct answer to be 5 cents. the inhibition of heuristic responses to favour analytic ones. The CRT has been a spectacular success, attracting more Toplak, West and Stanovich (2011) demonstrated that the than 100 citations in 2012 alone (Scopus). This may be in CRT was a powerful predictor of heuristics and biases task part due to the ease of administration; with only three items performance - proposing it as a metric of the cognitive miserliness central to dual process theories of thinking. This and no requirement for expensive equipment, the practical thesis was examined using reasoning response-times, advantages are considerable. There have, moreover, been normative responses from two reasoning tasks and working numerous correlates of the CRT demonstrated, from a wide memory capacity (WMC) to predict individual differences in range of tasks in the heuristics and biases literature (Toplak performance on the CRT. These data offered limited support et al., 2011) to risk aversion and SAT scores (Frederick, for the view of miserliness as the primary factor in the CRT. -
Why So Confident? the Influence of Outcome Desirability on Selective Exposure and Likelihood Judgment
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of North Carolina at Greensboro Archived version from NCDOCKS Institutional Repository http://libres.uncg.edu/ir/asu/ Why so confident? The influence of outcome desirability on selective exposure and likelihood judgment Authors Paul D. Windschitl , Aaron M. Scherer a, Andrew R. Smith , Jason P. Rose Abstract Previous studies that have directly manipulated outcome desirability have often found little effect on likelihood judgments (i.e., no desirability bias or wishful thinking). The present studies tested whether selections of new information about outcomes would be impacted by outcome desirability, thereby biasing likelihood judgments. In Study 1, participants made predictions about novel outcomes and then selected additional information to read from a buffet. They favored information supporting their prediction, and this fueled an increase in confidence. Studies 2 and 3 directly manipulated outcome desirability through monetary means. If a target outcome (randomly preselected) was made especially desirable, then participants tended to select information that supported the outcome. If made undesirable, less supporting information was selected. Selection bias was again linked to subsequent likelihood judgments. These results constitute novel evidence for the role of selective exposure in cases of overconfidence and desirability bias in likelihood judgments. Paul D. Windschitl , Aaron M. Scherer a, Andrew R. Smith , Jason P. Rose (2013) "Why so confident? The influence of outcome desirability on selective exposure and likelihood judgment" Organizational Behavior and Human Decision Processes 120 (2013) 73–86 (ISSN: 0749-5978) Version of Record available @ DOI: (http://dx.doi.org/10.1016/j.obhdp.2012.10.002) Why so confident? The influence of outcome desirability on selective exposure and likelihood judgment q a,⇑ a c b Paul D. -
Levy, Marc A., “Sampling Bias Does Not Exaggerate Climate-Conflict Claims,” Nature Climate Change 8,6 (442)
Levy, Marc A., “Sampling bias does not exaggerate climate-conflict claims,” Nature Climate Change 8,6 (442) https://doi.org/10.1038/s41558-018-0170-5 Final pre-publication text To the Editor – In a recent Letter, Adams et al1 argue that claims regarding climate-conflict links are overstated because of sampling bias. However, this conclusion rests on logical fallacies and conceptual misunderstanding. There is some sampling bias, but it does not have the claimed effect. Suggesting that a more representative literature would generate a lower estimate of climate- conflict links is a case of begging the question. It only make sense if one already accepts the conclusion that the links are overstated. Otherwise it is possible that more representative cases might lead to stronger estimates. In fact, correcting sampling bias generally does tend to increase effect estimates2,3. The authors’ claim that the literature’s disproportionate focus on Africa undermines sustainable development and climate adaptation rests on the same fallacy. What if the climate-conflict links are as strong as people think? It is far from obvious that acting as if they were not would somehow enhance development and adaptation. The authors offer no reasoning to support such a claim, and the notion that security and development are best addressed in concert is consistent with much political theory and practice4,5,6. Conceptually, the authors apply a curious kind of “piling on” perspective in which each new paper somehow ratchets up the consensus view of a country’s climate-conflict links, without regard to methods or findings. Consider the papers cited as examples of how selecting cases on the conflict variable exaggerates the link. -
10. Sample Bias, Bias of Selection and Double-Blind
SEC 4 Page 1 of 8 10. SAMPLE BIAS, BIAS OF SELECTION AND DOUBLE-BLIND 10.1 SAMPLE BIAS: In statistics, sampling bias is a bias in which a sample is collected in such a way that some members of the intended population are less likely to be included than others. It results in abiased sample, a non-random sample[1] of a population (or non-human factors) in which all individuals, or instances, were not equally likely to have been selected.[2] If this is not accounted for, results can be erroneously attributed to the phenomenon under study rather than to the method of sampling. Medical sources sometimes refer to sampling bias as ascertainment bias.[3][4] Ascertainment bias has basically the same definition,[5][6] but is still sometimes classified as a separate type of bias Types of sampling bias Selection from a specific real area. For example, a survey of high school students to measure teenage use of illegal drugs will be a biased sample because it does not include home-schooled students or dropouts. A sample is also biased if certain members are underrepresented or overrepresented relative to others in the population. For example, a "man on the street" interview which selects people who walk by a certain location is going to have an overrepresentation of healthy individuals who are more likely to be out of the home than individuals with a chronic illness. This may be an extreme form of biased sampling, because certain members of the population are totally excluded from the sample (that is, they have zero probability of being selected). -
Observational Studies and Bias in Epidemiology
The Young Epidemiology Scholars Program (YES) is supported by The Robert Wood Johnson Foundation and administered by the College Board. Observational Studies and Bias in Epidemiology Manuel Bayona Department of Epidemiology School of Public Health University of North Texas Fort Worth, Texas and Chris Olsen Mathematics Department George Washington High School Cedar Rapids, Iowa Observational Studies and Bias in Epidemiology Contents Lesson Plan . 3 The Logic of Inference in Science . 8 The Logic of Observational Studies and the Problem of Bias . 15 Characteristics of the Relative Risk When Random Sampling . and Not . 19 Types of Bias . 20 Selection Bias . 21 Information Bias . 23 Conclusion . 24 Take-Home, Open-Book Quiz (Student Version) . 25 Take-Home, Open-Book Quiz (Teacher’s Answer Key) . 27 In-Class Exercise (Student Version) . 30 In-Class Exercise (Teacher’s Answer Key) . 32 Bias in Epidemiologic Research (Examination) (Student Version) . 33 Bias in Epidemiologic Research (Examination with Answers) (Teacher’s Answer Key) . 35 Copyright © 2004 by College Entrance Examination Board. All rights reserved. College Board, SAT and the acorn logo are registered trademarks of the College Entrance Examination Board. Other products and services may be trademarks of their respective owners. Visit College Board on the Web: www.collegeboard.com. Copyright © 2004. All rights reserved. 2 Observational Studies and Bias in Epidemiology Lesson Plan TITLE: Observational Studies and Bias in Epidemiology SUBJECT AREA: Biology, mathematics, statistics, environmental and health sciences GOAL: To identify and appreciate the effects of bias in epidemiologic research OBJECTIVES: 1. Introduce students to the principles and methods for interpreting the results of epidemio- logic research and bias 2.