A Guide to Southern Idaho's Freshwater Mollusks

Total Page:16

File Type:pdf, Size:1020Kb

A Guide to Southern Idaho's Freshwater Mollusks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Millimeters/Centimeters usda forest service -rocky mtnresearchstation usda forestservice idaho governor’sofficeofspeciesconservation This handy field guide will help citizen-scientists, researchers, researchers, This fieldguidewillhelpcitizen-scientists, handy and natural resource professionals learn aboutthe professionals more resource and natural orma j.smithmuseumof naturalhistory a guidetosouthernidaho’s Freshwater Mollusks Freshwater u.s. fish and wildlife service u.s.fishandwildlifeservice u.s. bureauofreclamation mollusks of southern Idaho. the collegeofidaho produced by: steve lysne, us fish and wildlife service a guidetosouthernidaho’s Freshwater Mollusks Freshwater usda forest service -idahogovernor’s officeofspeciesconservation usda forestservice the collegeof idaho,ormaj.smithmuseum ofnaturalhistory u.s. fish and wildlife service -u.s.bureauofreclamation u.s. fishandwildlifeservice 2009 a guide to southern idaho’s Freshwater Mollusks author: steve lysne produced by: u.s. fish and wildlife service u.s. bureau of reclamation usda forest service - rocky mtn research station idaho governor’s office of species conservation the college of idaho orma j. smith museum of natural history Table of Contents Introduction...................................................................... 1 How to Use This Guide.................................................... 3 Mollusk Anatomy.............................................................. 5 Freshwater Habitats.......................................................... 6 Springs Tributary Streams Large Rivers Lakes and Reservoirs Freshwater Mollusks.......................................................... 10 List of Mollusks in this Guide................................10 Part I: Elongated or pointed shells....................... 11 Part II: Round or wide shells................................ 21 Part III: Clams...................................................... 33 Invasive Species in Idaho..................................................39 Reporting Element Occurrences...................................... 40 Collecting Mollusks/Who to Contact Data Collection Forms (Back of Guide) Mollusk Literature............................................................ 42 Acknowledgments............................................................ 43 Introduction reshwater mollusks have a long American history. Years ago,F they served as a dietary staple for Native Americans, and by the late 19th century, shells were commonly used in the button industry at home and abroad. Although often quite small in size, mollusks have played a large part in both the social and economic history of humans. Today, there is growing interest in the role these animals play in biological mohawk tribe diversity and ecoystem health. The focus has turned to conserving freshwater mollusks, as Native Americans used bead-clamshell necklaces, called research now shows that “wampum,” for barter, gifts and cultural rights. they are the most imperiled group of animals in North America: greater than 60% of the 842 named species are considered imperiled, critically imperiled, or extinct. Much can be learned from these creatures and their habitats if efforts continue to understand our molluscan diversity. Molluscan research over the past 20 years has resulted in an ambitious program to survey and catalog the distribution of all North American freshwater mollusks. The information gathered will be of great use not only to researchers, but to natural resource managers and citizens. As more is learned about the distribution of mollusks, we will be able to better manage these species and the habitats upon which they depend. 1 Introduction How to Use This Guide A Guide to Southern Idaho’s Freshwater Mollusks contributes to the understanding of the diversity and distribution of mollusks his Guide is designed to be used by in southern Idaho. Tcitizen-scientists, researchers, and natural This Guide is a collaborative effort of several Idaho entities, resource professionals. Take this handy Guide including the U.S. Fish and Wildlife Service; U.S. Bureau of with you in the field to help identify the Reclamation; USDA Forest Service - Rocky Mountain Research freshwater snails or clams you find. Station; Idaho Governor’s Office of Species Conservation; The This book is organized by three simplified dan gustafson, College of Idaho’s Orma J. Smith Museum of Natural History/ montana state university shell types: William H. Clark, Museum Director; Dr. Jack B. Burch and Ethan • Elongated or pointed shells Nedeau for illustrations. Photography in this Guide is a collabora- • Round or wide shells tive effort by many individuals and agencies; see credits at back • Clams of book. The Guide would not have been possible without the Some of the mollusks in this Guide can be identified to the diligence of author Steve Lysne, who led the project when he was species-level based on their physical appearance, geographic employed by the U.S. Fish and Wildlife Service in Boise, Idaho. distribution, or lack of similar-looking species. Others, however, It is our hope that this Guide will encourage greater numbers cannot be determined by appearance or distribution, and may be of people to learn more about Idaho’s mollusks, and to actively more difficult to identify. Those species are only described to the engage in looking for these species in Idaho’s freshwaters. When level of genus. For characteristics described in each species profile, appropriate, we encourage samples to be submitted for research. please refer to Mollusk Anatomy, page 5. Samples will be deposited in the Orma J. Smith Museum of Common habitat type and general range maps are also included Natural History. Information about responsible collecting is on each species page. included in this Guide. Data collection forms are in this booklet. Pick up the snail or clam and orient Species distribution data contributed by citizen-scientists, it toward you to determine its shape, researchers, and natural resource professionals will be compiled and then try to match the specimen in an electronic database and made available to the public and with those from this Guide. scientific community. The net product will be reflective of the collective energy that is placed into this project. Thank you for taking the time to use the A Guide to Southern Idaho’s Freshwater Mollusks. 2 3 How to Use This Guide Mollusk Anatomy part i snail shoulder protoconch Elongated or pointed shells spire suture parietal lip body whorl aperture Stagnicola spp part ii umbilicus plait or fold (not shown) Round or wide shape midline tentacle foot Radix auricularia snout foot part iii ethan nedeau Clams * Southern Idaho has few large clams, but limpet apex slightly convex there are many “fingernail” or “pea” clams. shape here concave shape These are very difficult to identify and are not here included in this Guide. posterior slope anterior slope Gonidea angulata If you don’t feel you can positively identify the mollusk, or if it appears to be a species described only to the generic level, consider collecting the individual for positive identification. midline (See Reporting Element Occurrences, ethan nedeau page 40) 4 5 Freshwater Habitats Freshwater Habitats springs tributary Southern Idaho has a streams tremendous concentration Tributary streams in southern Idaho of freshwater springs and are generally mid-sized, with predictable spring-fed creeks. flows, although they are known Most exist on to flash flood private land. following Amazingly, severe weather. these springs Driven by and spring-fed snowmelt, creeks contribute tributaries are greater than 5,000 cubic feet per second (cfs) to the base flow of much colder the Snake River, which greatly improves water clarity, quality and than large rivers or reservoir systems habitat availability for mollusks. that typically have warmer water The springs are characterized by relatively slow flows, stable, temperatures due to large surface cool temperatures and crystal-clear water. Substrates for these areas and volume. types of habitat range from fine sands to larger pebble/gravel or Tributary streams have moderate cobble/boulder areas with submerged vegetation. to swift currents and cobble to boulder- Springs and creeks are easily sized substrates. In some areas, waded, and are ideal for clear- fine sediments may also be found. botttom buckets or hand collections. Tributaries are accessible to collectors with waders, though caution must be exercised in high flow conditions, deep pools and rapids. 6 7 Freshwater Habitats Freshwater Habitats large rivers lakes and reservoirs Idaho’s largest river is the Reservoirs are more Snake River. Its free-flowing common than lakes reaches contain swift, in southern Idaho, powerful currents and but similar groups of numerous habitats, including mollusks can be found riffles, runs, counter-current in both. Lakes and eddies and still reservoirs have deep, backwaters. slow-moving water and The Snake River is fine sediments, often artist or photographer credit generally warmer with abundant than its contrib- submerged vegetation. uting streams. Reservoirs are warm in the Nearly every summer and may freeze in the winter. type of substrate Reservoirs are best sampled with a exists in this system, dip-net in the shallows or any of the from fine clay silts to bedrock, various grab-samplers in deeper waters. and mollusks use all of them. Most mollusks will be found in deeper The diversity of
Recommended publications
  • Revisiting Big-Ear Radix Snails on the Kenai Peninsula by Matt Bowser
    Refuge Notebook • Vol. 19, No. 37 • September 15, 2017 Revisiting big-ear radix snails on the Kenai Peninsula by Matt Bowser Genetic relationships among selected big-ear radix snails collected in several geographic regions. Longer branch lengths correspond to more differences among barcode sequences, measured in expected changes per amino acidsite. “Sometimes one thing leads to another.” This is Alaska, he doubted that it had been introduced. a quote from a Refuge Notebook article I had writ- We dug into this question of whether or not the ten about the Kenai Peninsula’s first exotic freshwa- big-ear radix is exotic to our area. A literature search ter snail, the big-ear radix (Radix auricularia), last Jan- and expert opinion supported my first conclusion: the uary. I had been referring to the past, but more was to current understanding was that all populations of this come. Soon after the article appeared in the Clarion I snail currently in North America were the result of in- was contacted by retired geologist Dr. Dick Reger, who troduction from Europe. disagreed with statements in my article. He thought The history of Radix auricularia in North Amer- that this snail might be native. ica goes back to before 1869 when it was found near As a geologist, Dick had studied freshwater snails Troy, New York, apparently introduced with plants and clams in old sediments in our area to determine from Europe. By the early 1900s it had spread to multi- past conditions. He had also collected and identified ple locations in the Great Lakes.
    [Show full text]
  • 12. Owyhee Uplands Section
    12. Owyhee Uplands Section Section Description The Owyhee Uplands Section is part of the Columbia Plateau Ecoregion. The Idaho portion, the subject of this review, comprises southwestern Idaho from the lower Payette River valley in the northwest and the Camas Prairie in the northeast, south through the Hagerman Valley and Salmon Falls Creek Drainage (Fig. 12.1, Fig. 12.2). The Owyhee Uplands spans a 1,200 to 2,561 m (4,000 to 8,402 ft) elevation range. This arid region generally receives 18 to 25 cm (7 to 10 in) of annual precipitation at lower elevations. At higher elevations, precipitation falls predominantly during the winter and often as snow. The Owyhee Uplands has the largest human population of any region in Idaho, concentrated in a portion of the section north of the Snake River—the lower Boise and lower Payette River valleys, generally referred to as the Treasure Valley. This area is characterized by urban and suburban development as well as extensive areas devoted to agricultural production of crops for both human and livestock use. Among the conservation issues in the Owyhee Uplands include the ongoing conversion of agricultural lands to urban and suburban development, which limits wildlife habitat values. In addition, the conversion of grazing land used for ranching to development likewise threatens wildlife habitat. Accordingly, the maintenance of opportunity for economically viable Lower Deep Creek, Owyhee Uplands, Idaho © 2011 Will Whelan ranching operations is an important consideration in protecting open space. The aridity of this region requires water management programs, including water storage, delivery, and regulation for agriculture, commercial, and residential uses.
    [Show full text]
  • Habitat Usage by the Page Springsnail, Pyrgulopsis Morrisoni (Gastropoda: Hydrobiidae), from Central Arizona
    THE VELIGER ᭧ CMS, Inc., 2006 The Veliger 48(1):8–16 (June 30, 2006) Habitat Usage by the Page Springsnail, Pyrgulopsis morrisoni (Gastropoda: Hydrobiidae), from Central Arizona MICHAEL A. MARTINEZ* U.S. Fish and Wildlife Service, 2321 W. Royal Palm Rd., Suite 103, Phoenix, Arizona 85021, USA (*Correspondent: mike࿞[email protected]) AND DARRIN M. THOME U.S. Fish and Wildlife Service, 2800 Cottage Way, Rm. W-2605, Sacramento, California 95825, USA Abstract. We measured habitat variables and the occurrence and density of the Page springsnail, Pyrgulopsis mor- risoni (Hershler & Landye, 1988), in the Oak Creek Springs Complex of central Arizona during the spring and summer of 2001. Occurrence and high density of P. morrisoni were associated with gravel and pebble substrates, and absence and low density with silt and sand. Occurrence and high density were also associated with lower levels of dissolved oxygen and low conductivity. Occurrence was further associated with shallower water depths. Water velocity may play an important role in maintaining springsnail habitat by influencing substrate composition and other physico-chemical variables. Our study constitutes the first empirical effort to define P. morrisoni habitat and should be useful in assessing the relative suitability of spring environments for the species. The best approach to manage springsnail habitat is to maintain springs in their natural state. INTRODUCTION & Landye, 1988), is medium-sized relative to other con- geners, 1.8 to 2.9 mm in shell height, endemic to the The role that physico-chemical habitat variables play in Upper Verde River drainage of central Arizona (Williams determining the occurrence and density of aquatic micro- et al., 1985; Hershler & Landye, 1988; Hershler, 1994), invertebrates in spring ecosystems has been poorly stud- with all known populations existing within a complex of ied.
    [Show full text]
  • An Annotated Draft Genome for Radix Auricularia (Gastropoda, Mollusca)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Plymouth ElectronicGBE Archive and Research Library An Annotated Draft Genome for Radix auricularia (Gastropoda, Mollusca) Tilman Schell1,2,*, Barbara Feldmeyer2, Hanno Schmidt2, Bastian Greshake3, Oliver Tills4, Manuela Truebano4, Simon D. Rundle4, Juraj Paule5, Ingo Ebersberger2,3, and Markus Pfenninger1,2 1Molecular Ecology Group, Institute for Ecology, Evolution and Diversity, Goethe-University, Frankfurt am Main, Germany 2Adaptation and Climate, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany 3Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience Goethe-University, Frankfurt am Main, Germany 4Marine Biology and Ecology Research Centre, Marine Institute, School of Marine Science and Engineering, Plymouth University, United Kingdom 5Department of Botany and Molecular Evolution, Senckenberg Research Institute, Frankfurt am Main, Germany *Corresponding author: E-mail: [email protected]. Accepted: February 14, 2017 Data deposition: This project has been deposited at NCBI under the accession PRJNA350764. Abstract Molluscs are the second most species-rich phylum in the animal kingdom, yet only 11 genomes of this group have been published so far. Here, we present the draft genome sequence of the pulmonate freshwater snail Radix auricularia. Six whole genome shotgun libraries with different layouts were sequenced. The resulting assembly comprises 4,823 scaffolds with a cumulative length of 910 Mb and an overall read coverage of 72Â. The assembly contains 94.6% of a metazoan core gene collection, indicating an almost complete coverage of the coding fraction. The discrepancy of ~ 690 Mb compared with the estimated genome size of R.
    [Show full text]
  • Molecular Characterization of Liver Fluke Intermediate Host Lymnaeids
    Veterinary Parasitology: Regional Studies and Reports 17 (2019) 100318 Contents lists available at ScienceDirect Veterinary Parasitology: Regional Studies and Reports journal homepage: www.elsevier.com/locate/vprsr Original Article Molecular characterization of liver fluke intermediate host lymnaeids (Gastropoda: Pulmonata) snails from selected regions of Okavango Delta of T Botswana, KwaZulu-Natal and Mpumalanga provinces of South Africa ⁎ Mokgadi P. Malatji , Jennifer Lamb, Samson Mukaratirwa School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa ARTICLE INFO ABSTRACT Keywords: Lymnaeidae snail species are known to be intermediate hosts of human and livestock helminths parasites, Lymnaeidae especially Fasciola species. Identification of these species and their geographical distribution is important to ITS-2 better understand the epidemiology of the disease. Significant diversity has been observed in the shell mor- Okavango delta (OKD) phology of snails from the Lymnaeidae family and the systematics within this family is still unclear, especially KwaZulu-Natal (KZN) province when the anatomical traits among various species have been found to be homogeneous. Although there are Mpumalanga province records of lymnaeid species of southern Africa based on shell morphology and controversial anatomical traits, there is paucity of information on the molecular identification and phylogenetic relationships of the different taxa. Therefore, this study aimed at identifying populations of Lymnaeidae snails from selected sites of the Okavango Delta (OKD) in Botswana, and sites located in the KwaZulu-Natal (KZN) and Mpumalanga (MP) provinces of South Africa using molecular techniques. Lymnaeidae snails were collected from 8 locations from the Okavango delta in Botswana, 9 from KZN and one from MP provinces and were identified based on phy- logenetic analysis of the internal transcribed spacer (ITS-2).
    [Show full text]
  • Sensitivity of Freshwater Snails to Aquatic Contaminants: Survival and Growth of Endangered Snail Species and Surrogates in 28-D
    Sensitivity of freshwater snails to aquatic contaminants: Survival and growth of endangered snail species and surrogates in 28-day exposures to copper, ammonia and pentachlorophenol John M. Besser, Douglas L. Hardesty, I. Eugene Greer, and Christopher G. Ingersoll U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri Administrative Report (CERC-8335-FY07-20-10) submitted to U.S. Environmental Protection Agency (USEPA) Project Number: 05-TOX-04, Basis 8335C2F, Task 3. Project Officer: Dr. David R. Mount USEPA/ORD/NHEERL Mid-Continent Ecology Division 6201 Congdon Blvd, Duluth, MN 55804 USA April 13, 2009 Abstract – Water quality degradation may be an important factor affecting declining populations of freshwater snails, many of which are listed as endangered or threatened under the U.S. Endangered Species Act. Toxicity data for snails used to develop U.S. national recommended water quality criteria include mainly results of acute tests with pulmonate (air-breathing) snails, rather than the non-pulmonate snail taxa that are more frequently endangered. Pulmonate pond snails (Lymnaea stagnalis) were obtained from established laboratory cultures and four taxa of non-pulmonate taxa from field collections. Field-collected snails included two endangered species from the Snake River valley of Idaho -- Idaho springsnail (Pyrgulopsis idahoensis; which has since been de-listed) and Bliss Rapids snail (Taylorconcha serpenticola) -- and two non-listed taxa, a pebblesnail (Fluminicola sp.) collected from the Snake River and Ozark springsnail (Fontigens aldrichi) from southern Missouri. Cultures were maintained using simple static-renewal systems, with adults removed periodically from aquaria to allow isolation of neonates for long-term toxicity testing.
    [Show full text]
  • THE GEOMETRY of COILING in GASTROPODS Thompson.6
    602 ZO6LOGY: D. M. RA UP PROC. N. A. S. 3 Cole, L. J., W. E. Davis, R. M. Garver, and V. J. Rosen, Jr., Transpl. Bull., 26, 142 (1960). 4 Santos, G. W., R. M. Garver, and L. J. Cole, J. Nat. Cancer Inst., 24, 1367 (1960). I Barnes, D. W. H., and J. F. Loutit, Proc. Roy. Soc. B., 150, 131 (1959). 6 Koller, P. C., and S. M. A. Doak, in "Immediate and Low Level Effects of Ionizing Radia- tions," Conference held in Venice, June, 1959, Special Supplement, Int. J. Rad. Biol. (1960). 7 Congdon, C. C., and I. S. Urso, Amer. J. Pathol., 33, 749 (1957). 8 Biological Problems of Grafting, ed. F. Albert and P. B. Medawar (Oxford University Press, 1959). 9 Lederberg, J., Science, 129, 1649 (1959). 10Burnet, F. M., The Clonal Selection Theory of Acquired Immunity (Cambridge University Press, 1959). 11 Billingham, R. E., L. Brent, and P. B. Medawar, Phil. Trans. Roy. Soc. (London), B239, 357 (1956). 12 Rubin, B., Natyre, 184, 205 (1959). 13 Martinez, C., F. Shapiro, and R. A. Good, Proc. Soc. Exper. Biol. Med., 104, 256 (1960). 14 Cole, L. J., Amer. J. Physiol., 196, 441 (1959). 18 Cole, L. J., in Proceedings of the IXth International Congress of Radiology, Munich 1959 (Georg Thieme Verlag, in press). 16 Cole, L. J., R. M. Garver, and M. E. Ellis, Amer. J. Physiol., 196, 100 (1959). 17 Cole, L. J., and R. M. Garver, Nature, 184, 1815 (1959). 18 Cole, L. J., and W. E. Davis, Radiation Res., 12, 429 (1960).
    [Show full text]
  • 12-Month Finding on a Petition to Remove the Bliss Rapids Snail
    47536 Federal Register / Vol. 74, No. 178 / Wednesday, September 16, 2009 / Proposed Rules (2) The amount of the allotment for (1) The State has submitted to the claimed during a 2-year period of each of the 50 States and the District of Secretary, and has approved by the availability, beginning with the fiscal Columbia, and for each of the Secretary a State plan amendment or year of the final allotment and ending Commonwealths and Territories (not waiver request relating to an expansion with the end of the succeeding fiscal including the additional amount for FY of eligibility for children or benefits year following the fiscal year. 2009 determined under paragraph under title XXI of the Act that becomes Authority: (Section 1102 of the Social (c)(2)(ii) of this section) is equal to the effective for a fiscal year (beginning Security Act (42 U.S.C. 1302) product of: with FY 2010 and ending with FY (Catalog of Federal Domestic Assistance (i) The percentage determined by 2013); and Program No. 93.778, Medical Assistance dividing the amount in paragraph (2) The State has submitted to the Program) (e)(2)(i)(A) by the amount in paragraph Secretary, before the August 31 (Catalog of Federal Domestic Assistance (e)(2)(i)(B) of this section. preceding the beginning of the fiscal Program No. 93.767, State Children’s Health (A) The amount of the State allotment year, a request for an expansion Insurance Program)) allotment adjustment under this for each of the 50 States and the District Dated: June 19, 2009.
    [Show full text]
  • Northwest Standard Taxonomic Effort
    Northwest Standard Taxonomic Effort Amy Puls (PNAMP/USGS), Bob Wisseman (ABA), John Pfeiffer (EcoAnalysts), Sean Sullivan (Rithron), Sue Salter (Cordillera Consulting) Northwest Biological Assessment Workgroup Meeting Astoria, OR November 5, 2013 PNAMP provides a forum to enhance the capacity of multiple entities to collaborate to produce an effective and comprehensive network of aquatic monitoring programs in the Pacific Northwest based on sound science designed to inform public policy and resource management decisions. ACOE NPCC BLM OWEB BPA 20 Signatory PSMFC Partners form the CDFW USBR steering committee Colville Tribes USFS CRITFC 4 full-time staff USGS EPA Everyone is welcome WDFW IDFG to participate WA ECY NOAA WA GSRO NWIFC WA RCO www.pnamp.org Northwest Standard Taxonomic Effort (NWSTE) To improve macroinvertebrate data sharing across WHY the Pacific Northwest Standardized taxonomic nomenclature and HOW resolution to use when identifying macroinvertebrates 2012 NBAW The monitoring agency perspective (Jo Wilhelm, King Co. WA) The taxonomic labs perspective (Sean Sullivan, Rhithron) Lessons learned from SAFIT (Joe Slusark, Brady Richards) Integration with national efforts (Scott Grotheer, National WQ Lab/USGS) Included/excluded organisms • STE provides guidance on what taxa to include or exclude from benthic data sets. • Terrestrial invertebrates, water surface taxa, eggs, empty shells or cases are excluded entirely, or can be incorporated as incidental records not for metric calculations. 10 PNAMP STE Levels STE1: The coarsest taxonomic level – intended for rapid assessments and citizen or school group monitoring projects. STE2: The lowest practical (and cost effective) level - this is the target level for harmonizing benthic biomonitoring data sets across the region for comparison.
    [Show full text]
  • Gastropoda: Physidae) in Singapore
    BioInvasions Records (2015) Volume 4, Issue 3: 189–194 Open Access doi: http://dx.doi.org/10.3391/bir.2015.4.3.06 © 2015 The Author(s). Journal compilation © 2015 REABIC Research Article Clarifying the identity of the long-established, globally-invasive Physa acuta Draparnaud, 1805 (Gastropoda: Physidae) in Singapore Ting Hui Ng1,2*, Siong Kiat Tan3 and Darren C.J. Yeo1,2 1Department of Biological Sciences, National University of Singapore 14 Science Drive 4, Singapore 117543, Republic of Singapore 2NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Republic of Singapore 3Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Republic of Singapore E-mail: [email protected] (THN), [email protected] (SKT), [email protected] (DCJY) *Corresponding author Received: 24 December 2014 / Accepted: 6 May 2015 / Published online: 2 June 2015 Handling editor: Vadim Panov Abstract The freshwater snail identified as Physastra sumatrana has been recorded in Singapore since the late 1980’s. It is distributed throughout the island and commonly associated with ornamental aquatic plants. Although the species has previously been considered by some to be native to Singapore, its origin is currently categorised as unknown. Morphological comparisons of freshly collected specimens and material in museum collections with type material, together with DNA barcoding, show that both Physastra sumatrana, and a recent gastropod record of Stenophysa spathidophallus, in Singapore are actually the same species—the globally-invasive Physa acuta. An unidentified physid snail was also collected from the Singapore aquarium trade.
    [Show full text]
  • Native Unionoida Surveys, Distribution, and Metapopulation Dynamics in the Jordan River-Utah Lake Drainage, UT
    Version 1.5 Native Unionoida Surveys, Distribution, and Metapopulation Dynamics in the Jordan River-Utah Lake Drainage, UT Report To: Wasatch Front Water Quality Council Salt Lake City, UT By: David C. Richards, Ph.D. OreoHelix Consulting Vineyard, UT 84058 email: [email protected] phone: 406.580.7816 May 26, 2017 Native Unionoida Surveys and Metapopulation Dynamics Jordan River-Utah Lake Drainage 1 One of the few remaining live adult Anodonta found lying on the surface of what was mostly comprised of thousands of invasive Asian clams, Corbicula, in Currant Creek, a former tributary to Utah Lake, August 2016. Summary North America supports the richest diversity of freshwater mollusks on the planet. Although the western USA is relatively mollusk depauperate, the one exception is the historically rich molluskan fauna of the Bonneville Basin area, including waters that enter terminal Great Salt Lake and in particular those waters in the Jordan River-Utah Lake drainage. These mollusk taxa serve vital ecosystem functions and are truly a Utah natural heritage. Unfortunately, freshwater mollusks are also the most imperiled animal groups in the world, including those found in UT. The distribution, status, and ecologies of Utah’s freshwater mussels are poorly known, despite this unique and irreplaceable natural heritage and their protection under the Clean Water Act. Very few mussel specific surveys have been conducted in UT which requires specialized training, survey methods, and identification. We conducted the most extensive and intensive survey of native mussels in the Jordan River-Utah Lake drainage to date from 2014 to 2016 using a combination of reconnaissance and qualitative mussel survey methods.
    [Show full text]
  • First Record of the Acute Bladder Snail Physella Acuta (Draparnaud, 1805) in the Wild Waters of Lithuania
    BioInvasions Records (2019) Volume 8, Issue 2: 281–286 CORRECTED PROOF Rapid Communication First record of the acute bladder snail Physella acuta (Draparnaud, 1805) in the wild waters of Lithuania Rokas Butkus1,*, Giedrė Višinskienė2 and Kęstutis Arbačiauskas2,3 1Marine Research Institute, Klaipėda University, Herkaus Manto Str. 84, LT-92294 Klaipėda, Lithuania 2Nature Research Centre, Akademijos str. 2, LT-08412 Vilnius, Lithuania 3Department of Zoology, Institute of Biosciences, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania *Corresponding author E-mail: [email protected] Citation: Butkus R, Višinskienė G, Arbačiauskas K (2019) First record of the Abstract acute bladder snail Physella acuta (Draparnaud, 1805) in the wild waters of The acute bladder snail Physella acuta (Draparnaud, 1805) was observed for the Lithuania. BioInvasions Records 8(2): first time in the wild waters of Lithuania at one site in the lower reaches of the 281–286, https://doi.org/10.3391/bir.2019.8.2.10 Nevėžis River in 2015. The restricted distribution and low density suggest recent th Received: 11 October 2018 introduction. Although P. acuta in the first half of the 20 century was reported in Accepted: 25 February 2019 ponds of the Kaunas Botanical Garden, they appear to have vanished as of 2012. Thus we conclude that recent invasion into the wild most probably has resulted Published: 29 April 2019 from disposal of aquarium organisms. Thematic editor: David Wong Copyright: © Butkus et al. Key words: aquarium trade, local distribution, recent introduction, river This is an open access article distributed under terms of the Creative Commons Attribution License (Attribution 4.0 International - CC BY 4.0).
    [Show full text]