Thylacinus Cynocephalus the Mitochondrial Genome Sequence of the Tasmanian Tiger

Total Page:16

File Type:pdf, Size:1020Kb

Thylacinus Cynocephalus the Mitochondrial Genome Sequence of the Tasmanian Tiger Downloaded from genome.cshlp.org on March 9, 2009 - Published by Cold Spring Harbor Laboratory Press The mitochondrial genome sequence of the Tasmanian tiger ( Thylacinus cynocephalus) Webb Miller, Daniela I. Drautz, Jan E. Janecka, et al. Genome Res. 2009 19: 213-220 originally published online January 12, 2009 Access the most recent version at doi:10.1101/gr.082628.108 Supplemental http://genome.cshlp.org/content/suppl/2009/01/14/gr.082628.108.DC1.html Material References This article cites 23 articles, 14 of which can be accessed free at: http://genome.cshlp.org/content/19/2/213.full.html#ref-list-1 Open Access Freely available online through the Genome Research open access option. Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article or click here To subscribe to Genome Research go to: http://genome.cshlp.org/subscriptions Copyright © 2009 by Cold Spring Harbor Laboratory Press Downloaded from genome.cshlp.org on March 9, 2009 - Published by Cold Spring Harbor Laboratory Press Letter The mitochondrial genome sequence of the Tasmanian tiger (Thylacinus cynocephalus) Webb Miller,1,10 Daniela I. Drautz,1 Jan E. Janecka,2 Arthur M. Lesk,1 Aakrosh Ratan,1 Lynn P. Tomsho,1 Mike Packard,1 Yeting Zhang,1 Lindsay R. McClellan,1 Ji Qi,1 Fangqing Zhao,1 M. Thomas P. Gilbert,3 Love Dale´n,4 Juan Luis Arsuaga,5 Per G.P. Ericson,6 Daniel H. Huson,7 Kristofer M. Helgen,8 William J. Murphy,2 Anders Go¨therstro¨m,9 and Stephan C. Schuster1,10 1Pennsylvania State University, Center for Comparative Genomics and Bioinformatics, University Park, Pennsylvania 16802, USA; 2Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA; 3Centre for Ancient Genetics, University of Copenhagen, DK-2100 Copenhagen, Denmark; 4School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom; 5Centro Mixto UCM-ISCIII de Evolucio´n y Comportamiento Humanos, c/Sinesio Delgado 4 Pabellon 14, 28029 d, Spain; 6Department of Vertebrate Zoology, Swedish Museum of Natural History, S-10405 Stockholm, Sweden; 7Center for Bioinformatics Tu¨bingen, Tu¨bingen University, Tu¨bingen 72076, Germany; 8Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013-7012, USA; 9Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, S-752 36 Uppsala, Sweden We report the first two complete mitochondrial genome sequences of the thylacine (Thylacinus cynocephalus), or so-called Tasmanian tiger, extinct since 1936. The thylacine’s phylogenetic position within australidelphian marsupials has long been debated, and here we provide strong support for the thylacine’s basal position in Dasyuromorphia, aided by mi- tochondrial genome sequence that we generated from the extant numbat (Myrmecobius fasciatus). Surprisingly, both of our thylacine sequences differ by 11%–15% from putative thylacine mitochondrial genes in GenBank, with one of our samples originating from a direct offspring of the previously sequenced individual. Our data sample each mitochondrial nucle- otide an average of 50 times, thereby providing the first high-fidelity reference sequence for thylacine population ge- netics. Our two sequences differ in only five nucleotides out of 15,452, hinting at a very low genetic diversity shortly before extinction. Despite the samples’ heavy contamination with bacterial and human DNA and their temperate storage history, we estimate that as much as one-third of the total DNA in each sample is from the thylacine. The microbial content of the two thylacine samples was subjected to metagenomic analysis, and showed striking differences between a wild-captured individual and a born-in-captivity one. This study therefore adds to the growing evidence that extensive sequencing of museum collections is both feasible and desirable, and can yield complete genomes. [Supplemental material is available online at www.genome.org. The sequence data from this study have been submitted to GenBank under accession nos. FJ515780–FJ515782. See also http://thylacine.psu.edu.] The thylacine has attracted considerable attention from biologists, (Paddle 2000). Until very recently (Pask et al. 2008), extractions for several reasons. Morphologically unique and phylogenetically from museum specimens have not yielded usable amounts of en- isolated in its own taxonomic family (Thylacinidae), it also pro- dogenous DNA, but rather bacterial or human contaminants (see vides one of the most striking examples of convergent evolution in Supplemental Material), despite the availability of hundreds of mammals, showing remarkable eco-morphological similarities thylacine specimens in public and private collections. Because with members of the placental carnivore family Canidae (i.e., available thylacine DNA is degraded and of low quantity, most wolves and dogs). The causes and timing of its extinction across phylogenetic studies have focused on short segments of widely both its historical range (midland woods and coastal heath habitats used mitochondrial genes, e.g., 12S rRNA and cytochrome b (cytb) in Tasmania) and its Holocene distribution (extending to conti- (Thomas et al. 1989; Krajewski et al. 1992, 1997, 2000). nental Australia and New Guinea) are of great interest to many Several studies have explored the phylogenetic relationships researchers (Johnson and Wroe 2003). It has become a focal point of the thylacine. Some early morphological studies allied it with for discussions about large-mammal extinction that include pon- South American marsupials (e.g., Sinclair 1906). Later morpho- dering whether the species can be resurrected through a combina- logical phylogenies placed it within the Australian marsupial ra- tion of ancient DNA research and modern reproductive medicine diation in Dasyuromorphia, a clade also comprising the numbat (Myrmecobius fasciatus) and the family Dasyuridae (insectivorous 10Corresponding authors. and carnivorous marsupials) (e.g., Sarich et al. 1982). An initial E-mail [email protected]; fax (814) 863-6699. molecular study used a 219-bp fragment from the 12S ribosomal E-mail [email protected]; fax (814) 863-6699. RNA gene and placed the thylacine in Dasyuridae (Thomas et al. Article published online before print. Article and publication date are available at http://www.genome.org/cgi/doi/10.1101/gr.082628.108. Freely available on- 1989), consistent with an earlier serological study (Sarich et al. line through the Genome Research Open Access option. 1982). A more extensive analysis using 12S and cytb genes, and the 19:213–220 Ó 2009 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/09; www.genome.org Genome Research 213 www.genome.org Downloaded from genome.cshlp.org on March 9, 2009 - Published by Cold Spring Harbor Laboratory Press Miller et al. nuclear protamine P1 gene, suggested a sister Thylacinidae + To help resolve the phylogenetic position of the thylacine Dasyuridae relationship with a basal position for the numbat, within Dasyuromorphia, we also sequenced the mitochondrial though this topology lacked strong statistical support (Krajewski genome of the numbat using the same approach. Two samples et al. 1992, 1997, 2000). were sequenced, one from liver and one from hair shafts, which In this study, we have utilized ‘‘next-generation’’ sequencing we assembled into mitochondrial genome sequences with 41.2- technology and improved methods for extraction of ancient DNA and 206.5-fold mean coverage, respectively. to generate two highly accurate thylacine mitochondrial genomes. The new data allow us to determine more accurately the Properties of the thylacine samples thylacine’s phylogenetic position among marsupials. More gen- erally, the success of the current project shows that museum We identified a substantial amount of human DNA contamination specimens preserved under a variety of conditions are amenable to in the thylacine samples, unlike in our earlier analysis of woolly genomic sequencing. mammoth bone (Poinar et al. 2006; Gilbert et al. 2007b) and hair shafts (Gilbert et al. 2007a, 2008; Miller et al. 2008). For example, from the ethanol-preserved specimen (thylacine 2 in Table 1), we Results and Discussion identified 44,493 reads (4.3%) that originated from the human nuclear genome and 136 reads from the human mitochondrial ge- Sequencing the thylacine and numbat mitochondrial genomes nome. The distribution of read lengths for the human DNA is similar Four specimens of thylacine were sampled, three stored as dried to that for the thylacine DNA (Supplemental Fig. S3), suggesting that skins, and the other an almost complete animal placed in ethanol. the contamination was introduced long ago. The ratio of nuclear From each specimen, we attempted to extract DNA from hair reads to mitochondrial reads (327:1) suggests that the contamina- shafts (Gilbert et al. 2007a). One of the dry specimens and the tion is from a human tissue or tissues not particularly rich in mi- sample stored in ethanol resulted in enough DNA to attempt ge- tochondrial DNA. (Compare with the nu/mt ratios in Table 1.) For nomic analysis. The successfully processed dried skin was from an thylacine 1 (the dry skin), 8.9% of the reads were human, and their individual that died in the National Zoo, Washington D.C., in average length was 131.9 bp, suggesting a more recent origin. We 1905 and has been kept at room
Recommended publications
  • A Specialised Thylacinid, Thylacinus Macknessi; (Marsupialia: Thylacinidae) from Miocene Deposits of Riversleigh, Northwestern Queensland
    A SPECIALISED THYLACINID, THYLACINUS MACKNESSI; (MARSUPIALIA: THYLACINIDAE) FROM MIOCENE DEPOSITS OF RIVERSLEIGH, NORTHWESTERN QUEENSLAND JEANElTE MUIRHEAD M uirhead, J ., 1992. A specialised thylacinid, Thylacinus macknessi, (Marsupialia: Thylacinidae) from Miocene deposits of Riversleigh, northwestern Queensland. Australian Mammalogy 15: 67-76. Thylacinus macknessi is described from Miocene sediments of Riversleigh, northwestern Queensland. Comparisons with other thylacinids and dasyurids reveal it to be a new species of Thy/acinus. In most features it is as specialised as T. cynocepha/us and it is not considered to be ancestral to any other taxon. The presence of such a specialised thylacine in the Riversleigh deposits argues for a pre-Late Oligocene divergence of this group from the Dasyuridae. Key words: Thylacine, 1h)'lacinus macknessi, Thylacinidae, Riversleigh, Tertiary, Queensland, Marsupialia. I. Muirhead. Schoo/ of Bi%gica/ Sciences, University of New South Wa/es, PO Box I Kensington New South Wales 2033. Manuscript received /4 September 1991. THE Thylacinidae is a small family consisting of a abbreviations used are: QMF, Queensland Museum recently extinct form Thy/acinus cynocepha/us Harris, palaeontological collection; AR, temporary catalogue and two Tertiary taxa. Although thylacinid premolars number in School of Biological Science, U niversity of have been recovered from the Miocene Wipajiri New South Wales. Measurements of tooth dimensions Formation of South Australia and the late Pliocene of 7: macknessi are presented
    [Show full text]
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • Thylacinidae
    FAUNA of AUSTRALIA 20. THYLACINIDAE JOAN M. DIXON 1 Thylacine–Thylacinus cynocephalus [F. Knight/ANPWS] 20. THYLACINIDAE DEFINITION AND GENERAL DESCRIPTION The single member of the family Thylacinidae, Thylacinus cynocephalus, known as the Thylacine, Tasmanian Tiger or Wolf, is a large carnivorous marsupial (Fig. 20.1). Generally sandy yellow in colour, it has 15 to 20 distinct transverse dark stripes across the back from shoulders to tail. While the large head is reminiscent of the dog and wolf, the tail is long and characteristically stiff and the legs are relatively short. Body hair is dense, short and soft, up to 15 mm in length. Body proportions are similar to those of the Tasmanian Devil, Sarcophilus harrisii, the Eastern Quoll, Dasyurus viverrinus and the Tiger Quoll, Dasyurus maculatus. The Thylacine is digitigrade. There are five digital pads on the forefoot and four on the hind foot. Figure 20.1 Thylacine, side view of the whole animal. (© ABRS)[D. Kirshner] The face is fox-like in young animals, wolf- or dog-like in adults. Hairs on the cheeks, above the eyes and base of the ears are whitish-brown. Facial vibrissae are relatively shorter, finer and fewer than in Tasmanian Devils and Quolls. The short ears are about 80 mm long, erect, rounded and covered with short fur. Sexual dimorphism occurs, adult males being larger on average. Jaws are long and powerful and the teeth number 46. In the vertebral column there are only two sacrals instead of the usual three and from 23 to 25 caudal vertebrae rather than 20 to 21.
    [Show full text]
  • Australia's Biodiversity and Climate Change
    Australia’s Biodiversity and Climate Change A strategic assessment of the vulnerability of Australia’s biodiversity to climate change A report to the Natural Resource Management Ministerial Council commissioned by the Australian Government. Prepared by the Biodiversity and Climate Change Expert Advisory Group: Will Steffen, Andrew A Burbidge, Lesley Hughes, Roger Kitching, David Lindenmayer, Warren Musgrave, Mark Stafford Smith and Patricia A Werner © Commonwealth of Australia 2009 ISBN 978-1-921298-67-7 Published in pre-publication form as a non-printable PDF at www.climatechange.gov.au by the Department of Climate Change. It will be published in hard copy by CSIRO publishing. For more information please email [email protected] This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the: Commonwealth Copyright Administration Attorney-General's Department 3-5 National Circuit BARTON ACT 2600 Email: [email protected] Or online at: http://www.ag.gov.au Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for Climate Change and Water and the Minister for the Environment, Heritage and the Arts. Citation The book should be cited as: Steffen W, Burbidge AA, Hughes L, Kitching R, Lindenmayer D, Musgrave W, Stafford Smith M and Werner PA (2009) Australia’s biodiversity and climate change: a strategic assessment of the vulnerability of Australia’s biodiversity to climate change.
    [Show full text]
  • Phylogenetic Relationships of Living and Recently Extinct Bandicoots Based on Nuclear and Mitochondrial DNA Sequences ⇑ M
    Molecular Phylogenetics and Evolution 62 (2012) 97–108 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenetic relationships of living and recently extinct bandicoots based on nuclear and mitochondrial DNA sequences ⇑ M. Westerman a, , B.P. Kear a,b, K. Aplin c, R.W. Meredith d, C. Emerling d, M.S. Springer d a Genetics Department, LaTrobe University, Bundoora, Victoria 3086, Australia b Palaeobiology Programme, Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden c Australian National Wildlife Collection, CSIRO Sustainable Ecosystems, Canberra, ACT 2601, Australia d Department of Biology, University of California, Riverside, CA 92521, USA article info abstract Article history: Bandicoots (Peramelemorphia) are a major order of australidelphian marsupials, which despite a fossil Received 4 November 2010 record spanning at least the past 25 million years and a pandemic Australasian range, remain poorly Revised 6 September 2011 understood in terms of their evolutionary relationships. Many living peramelemorphians are critically Accepted 12 September 2011 endangered, making this group an important focus for biological and conservation research. To establish Available online 11 November 2011 a phylogenetic framework for the group, we compiled a concatenated alignment of nuclear and mito- chondrial DNA sequences, comprising representatives of most living and recently extinct species. Our Keywords: analysis confirmed the currently recognised deep split between Macrotis (Thylacomyidae), Chaeropus Marsupial (Chaeropodidae) and all other living bandicoots (Peramelidae). The mainly New Guinean rainforest per- Bandicoot Peramelemorphia amelids were returned as the sister clade of Australian dry-country species. The wholly New Guinean Per- Phylogeny oryctinae was sister to Echymiperinae.
    [Show full text]
  • Lwo NEW EARL Y MIOCENE THYLACINES from RIVERSLEIGH, NORTHWESTERN QUEENSLAND
    lWO NEW EARL y MIOCENE THYLACINES FROM RIVERSLEIGH, NORTHWESTERN QUEENSLAND JEANETTE MUIRHEAD Muirhead, J. 19970630: Two new early Miocene thy1acinesfrom Rivers1eigh. northwestern Queensland. Memoirs of the Queens/and Musewn 41(2): 367-377. Brisbane. ISSN 0079- 8835. Thylacines, Wabulacinus ridei gen. et sp. nov.and Ngamalacinus timmulvaneyi gen. et sp. nov ., are described from the early Miocene of Riversleigh. northwestern Queensland. Both show carnivorous adaptation intermediate between that of the plesiomorphic Nimbacinus dicksoni and derived Thylacinus. The family concept is revised to include these new taxa. All known thylacinid genera occur in late Oligocene to middle Miocene Riversleigh faunas and some may have overlapped in time followed by a decline in family diversity since the Miocene. D Thylacine, marsupial. carnivore, Miocene, Riversleigh, Queensland. i. Muirhead, School of Biological Sciences, University of New South Wales NSW 2052 Australia; received 25 June 1995. The Thylacinidae consists of three species of Wabulacinus gen. nov. Thylacinus (T. cynocephalus Harris, 1808, T. potens Woodburne, 1967 and T. macknessi TYPE SPECIES. Wabulacinus ridei gen. et sp. nov. Muirhead, 1992) and the monotypicNimbacinus dicksoni Muirhead & Archer, 1990 from the late ETYMOLOGY. Wanyii Wabula, long ago; Greek Icynos.dog. Masculine. Oligocene to middle Miocene of Queensland and the Northern Territory (Muirhead & Archer, DIAGNOSIS. Infraorbital foramen surrounded wholll 1990). It is the oldest and most primitive thY- by the maxillary and positioned low and anterior to M ; lacinid, more closely resembling dasyurids in cenb"OCristaand preparacrista parallel, forming contin- many plesiomorphic features. Thylacinus potens uous Sb"aight line on MI; entoconid absent (on M3); from the late Miocene Alcoota Local Fauna hypoconulid enlarged (on M3).
    [Show full text]
  • Decline and Extinction of Australian Mammals Since European Settlement
    Ongoing unraveling of a continental fauna: Decline FEATURE ARTICLE and extinction of Australian mammals since European settlement John C. Z. Woinarskia,b,1, Andrew A. Burbidgec, and Peter L. Harrisond aNorthern Australian Hub of National Environmental Research Program and bThreatened Species Recovery Hub of National Environmental Science Program, SEE COMMENTARY Charles Darwin University, Darwin, NT 0909, Australia; cResearch Fellow, Department of Parks and Wildlife, Wanneroo, WA 6069, Australia; and dMarine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia This Feature Article is part of a series identified by the Editorial Board as reporting findings of exceptional significance. Edited by William J. Bond, University of Cape Town, Cape Town, South Africa, and approved January 13, 2015 (received for review September 10, 2014) The highly distinctive and mostly endemic Australian land mam- than previously recognized and that many surviving Australian mal fauna has suffered an extraordinary rate of extinction (>10% native mammal species are in rapid decline, notwithstanding the of the 273 endemic terrestrial species) over the last ∼200 y: in generally low level in Australia of most of the threats that are comparison, only one native land mammal from continental North typically driving biodiversity decline elsewhere in the world. America became extinct since European settlement. A further 21% of Australian endemic land mammal species are now assessed to Earlier Losses be threatened, indicating that the rate of loss (of one to two European settlement at 1788 marks a particularly profound extinctions per decade) is likely to continue. Australia’s marine historical landmark for the Australian environment, the opening mammals have fared better overall, but status assessment for up of the continent to a diverse array of new factors, and an ap- them is seriously impeded by lack of information.
    [Show full text]
  • 2014 Annual Reports of the Trustees, Standing Committees, Affiliates, and Ombudspersons
    American Society of Mammalogists Annual Reports of the Trustees, Standing Committees, Affiliates, and Ombudspersons 94th Annual Meeting Renaissance Convention Center Hotel Oklahoma City, Oklahoma 6-10 June 2014 1 Table of Contents I. Secretary-Treasurers Report ....................................................................................................... 3 II. ASM Board of Trustees ............................................................................................................ 10 III. Standing Committees .............................................................................................................. 12 Animal Care and Use Committee .......................................................................... 12 Archives Committee ............................................................................................... 14 Checklist Committee .............................................................................................. 15 Conservation Committee ....................................................................................... 17 Conservation Awards Committee .......................................................................... 18 Coordination Committee ....................................................................................... 19 Development Committee ........................................................................................ 20 Education and Graduate Students Committee ....................................................... 22 Grants-in-Aid Committee
    [Show full text]
  • Palaeoecology of Oligo-Miocene Local Faunas from Riversleigh
    Palaeoecology of Oligo-Miocene Local Faunas from Riversleigh Troy J. M. Myers 2002 i Table of Contents Chapter 1 Introduction............................................................................................ 1 Chapter 2 Marsupial body mass prediction ............................................................ 8 Chapter 3 A review of cenogram methodology and body-size distribution moment statistics in the determination of environmental parameters................ 38 Chapter 4 A discriminant function analysis of recent and fossil Australian faunas 69 Chapter 5 Classification and ordination analysis of selected Riversleigh Local Faunas ............................................................................................... 88 Chapter 6 The Nambaroo-Balbaroo palaeocommunity....................................... 110 Chapter 7 The Litokoala – Muribacinus palaeocommunity ................................. 129 Chapter 8 The Last Minute-Ringtail palaeocommunity ....................................... 146 Chapter 9 The independent Local Faunas ......................................................... 158 The Hiatus Local Fauna ........................................................................................159 The White Hunter Local Fauna.............................................................................162 The Cleft-Of-Ages Local Fauna............................................................................182 The Keith’s Chocky Block Local Fauna...............................................................187
    [Show full text]
  • How to Cite Complete Issue More Information About This Article
    Therya ISSN: 2007-3364 Centro de Investigaciones Biológicas del Noroeste Woinarski, John C. Z.; Burbidge, Andrew A.; Harrison, Peter L. A review of the conservation status of Australian mammals Therya, vol. 6, no. 1, January-April, 2015, pp. 155-166 Centro de Investigaciones Biológicas del Noroeste DOI: 10.12933/therya-15-237 Available in: http://www.redalyc.org/articulo.oa?id=402336276010 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Project academic non-profit, developed under the open access initiative THERYA, 2015, Vol. 6 (1): 155-166 DOI: 10.12933/therya-15-237, ISSN 2007-3364 Una revisión del estado de conservación de los mamíferos australianos A review of the conservation status of Australian mammals John C. Z. Woinarski1*, Andrew A. Burbidge2, and Peter L. Harrison3 1National Environmental Research Program North Australia and Threatened Species Recovery Hub of the National Environmental Science Programme, Charles Darwin University, NT 0909. Australia. E-mail: [email protected] (JCZW) 2Western Australian Wildlife Research Centre, Department of Parks and Wildlife, PO Box 51, Wanneroo, WA 6946, Australia. E-mail: [email protected] (AAB) 3Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia. E-mail: [email protected] (PLH) *Corresponding author Introduction: This paper provides a summary of results from a recent comprehensive review of the conservation status of all Australian land and marine mammal species and subspecies.
    [Show full text]
  • Functional Morphology of Marsupial Moles ( Marsupialia, N Otoryctidae) Contents
    Verh. naturwiss. Ver. Hamburg (NF) 42 39-149 Hamburg 2006 Functional morphology of marsupial moles ( Marsupialia, N otoryctidae) By NATALIE MARINA WARBURTON, Nedlands (Western Australia*) With 22 Figures Abstract: Marsupial moles (Notoryctes) are the most highly specialised burrowing marsupials. The specialisa­ tions of the appendicular musculo-skeletal system of the marsupial moles are extensive and widespread; the ma­ jor alterations are concentrated in, but not restricted to, the forelimb. Many of the derived features of the mus­ cular system appear to be adaptations for improving the mechanical advantage of the limbs for burrowing. A number of the specialisations of the muscular system of the marsupial moles are convergent with those pre­ viously documented in other fossorial mammals, including golden moles ( Chrysochloris), rodents (Spalacidae) and armadillos (Dasypodidae: Chlamyphorus). There are, however, a number of unique specialisations of the musculo-skeletal system of Notoryctes. The functional morphology of the locomotor apparatus of marsupial moles is interpreted on the basis of the descriptions of the anatomy of the skeletal and muscular systems. The burrowing technique of the marsupial moles is a modified form of the parasagittal digging method that is used by other fossorial mammals, such as golden moles, armadillos and some rodents including pocket gophers (Geomyidae). Differences in the functional morphology of the hindlimb between marsupial moles and other fossorial mammals are a reflection of the fact that marsupial moles do not construct permanent open burrow systems, but instead constantly dig through loose soil, backfilling as they progress. The functional morphology of the tail is uniquely specialised in the marsupial moles to function as the fifth limb during the pentapedal bur­ rowing locomotion.
    [Show full text]
  • Marsupial Carnivore Feeding Ecology and Extinction Risk
    WHO'S ON THE MENU: MARSUPIAL CARNIVORE FEEDING ECOLOGY AND EXTINCTION RISK Thesis submitted by ARIE TTARD M A For the Degree of Doctor of Philosophy in the School of Biological, Earth & Environmental Sciences Faculty of Science March 2013 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Attard First name: Marie Other name/s: Rosanna Gabrielle Abbreviation for degree as given in the University calendar: PhD School: School of Biological, Earth and Environmental Sciences Faculty: Faculty of Science Title: Who's on the menu: marsupial carnivore feeding ecology and extinction risk Abstract The aim of this thesis is to assess the role of diet in the extinction of Australia's iconic marsupial carnivore, the thylacine (Thylacinus cynocephalus) in Tasmania. Herein, we present two novel techniques to address fundamental questions regarding their maximum prey size and potential competition with sympatric predators. Three-dimensional computer models of the thylacine skull were used to assess their biomechanical limitations in prey size within a comparative context. This included living relatives from the family Dasyuiridae as well as a recently recovered fossil, Nimbacinus dickoni, from the family Thylacindae. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) of tissues from thylacine and potential prey species were used to assess the thylacine’s dietary composition. Furthermore, we integrate historical and recent marsupial carnivore stable isotope data to assess long-term changes in the ecosystem in response to multiple human impacts following European settlement. Our biomechanical findings support the notion that solitary thylacines were limited to hunting prey weighing less than their body mass.
    [Show full text]